
EDA284 Lab 1: Introduction to gem5

Contacts: Mustafa Abduljabbar, Jeckson Souza and Miquel Pericàs,
Emails: musabdu, jeckson, miquelp@chalmers.se

February 14, 2020

gem5 is a modular and extensible platform that enables you to simulate one or more computer
systems in multiple ways. It is written in C++, but most of its functionality is provided through
Python wrappers, which are what you will generally deal with in the labs. gem5 features mul-
tiple interchangeable CPU models, event-driven memory system, mutiple ISA support, and other
architecture-related features (for more details, refer to https://www.gem5.org/about). The learning
book for gem5 is available on http://learning.gem5.org/book/.

By the end of this lab, you should be able to:

• understand basic gem5 usage using a simple ARM CPU and memory system.

• read and interpret the relevant parts of the output and stat files that are generated after
simulation.

• in light of a prebuilt GEneralized Matrix Multiplication (GEMM) that is optimized on differ-
ent stages, co-design your hardware to benefit from the optimization phases.

• run gem5 in full-system mode simulating a parallel BIG.little architecture, draw the roofline
model of the given system, and locate your experiments on the plot.

1 Hello World with gem5

To save you “build” time in the lab, you are given a prebuilt gem5 container available on
https://www.dropbox.com/s/r7vuluhqjsq7twy/gem5.tar.gz?dl=0, that is tested on your lab’s ma-
chines (ED3507). Using the menu on the right, click “Download” to obtain the tar file as shown in
Figure 1.

.

Figure 1: Downloading gem5 container

1

https://www.gem5.org/about/
http://learning.gem5.org/book/
https://www.dropbox.com/s/r7vuluhqjsq7twy/gem5.tar.gz?dl=0


Now, you should be able to simulate systems that target ARMv8 ISA. As mentioned, gem5 has
been built and dynamically linked on the lab machines. If you still face dependency issues when
running the “Hello World” simulation on the lab machines, or if you are curious to start a clean
build on your own linux system, use the instructions provided here
http://learning.gem5.org/book/part1/building.html. From now on, replace GEM5 PATH with the
absolute path to gem5

Tasks:

(a) Name 4 available target ISAs that can be simulated in gem5.

(b) Using Part 1 of the learning book, follow the instructions to create a simple hardware con-
figuration script. Run it using the provided gem5 build system ./build/ARM/gem5.opt -d

GEM5 PATH/m5out/YOUR STATS OUTPUT FOLDER your python config script, and report the
observed standard output. Notice that the -d parameter allows you to redirect the output
of the simulation to a non-default folder. It can be convenient if you want to automate your
simulations, as by default gem5 always overwrites the content in m5out.

(c) What are other available CPU models that can be used with your ARM system, and how do
they differ?

(d) Read further on understanding the output and stat files that are generated after each simu-
lation run. As you might have noticed, the basic configuration scripts are already available
in configs/learning gem5/part1/. However, it is strongly recommended to incrementally
develop these scripts to help you understand the system being used.
Now, equip your system with L1/L2 instruction and data caches following the instructions in
Part 1 of the book.
Use two different CPU models with your cache-enabled system and document 2-3 differences.
Also, double CPU frequency in one of the model and write your observations.

(e) Attempt another memory model (instead of DDR3). Document 2 differences on the stats
output.

2 Architecture-Aware Programming

You are supplied with double-precision (using 64-bit double matrix elements) GEMM binaries that
are built using an ARM g++ compiler
(aarch64-linux-gnu-g++) and that underwent several optimization phases. The general usage of
all binaries is as follows:

./gemm_### matrix_dim_size <0:non-transposed,1:transposed> matrix_tile_size number_of_threads

Note that tile size and dim size contain counts of elements (not counts of bytes).
The code, binaries and Makefile are downloadable at:
https://www.dropbox.com/s/7uzprnqdocf029w/matmul.tar.gz?dl=0. If you choose to rebuild on
your linux system, you will need to download the ARM gnu-g++ compiler
(aarch64-linux-gnu-g++), which is available in most linux distributions’ package repositories.

2

http://learning.gem5.org/book/part1/building.html
https://www.dropbox.com/s/7uzprnqdocf029w/matmul.tar.gz?dl=0


Note that for all bins, transposed and non-transposed versions are available.
The differences between the binaries are listed below:
Version 1: gemm: is the basic naive GEMM implementation.
Version 2: gemm tiled: is a tiled GEMM implementation.
Version 3: gemm threaded: is an OpenMP threaded naive GEMM implementation.
Version 4: gemm threaded tiled: is an OpenMP threaded and tiled GEMM implementation.

It is advised to run always with matrix dim size 128/256 to reduce simulation time.

Tasks:

(a) On your basic system developed in Section 1 - Part b, replace the binary path in the Python
script to
- run Version 1 with and without transposition. Document your observations on the stats
output.
- run Version 1 and Version 2 (both with transpose enabled). Should there be differences on
the stats output? why or why not?

(b) On 2-level cache system developed in Section 1 - Part d, replace the binary path in the Python
script to
- run Version 2 with 2 different cache sizes. Note the impact on the stats output.
- configure your hardware with new appropriate L1 and L2 cache sizes. Observe and justify
the impact in 5 cases:
1) tile size < L1 cache.
2) tile size = L1 cache.
3) L1 cache < tile size < L2 cache.
4) tile size = L2 cache.
5) tile size > L2 cache.

3 Your First Parallel ARMv8 BIG.little Architecture

So far, you have been using gem5 in application-only (non-full-system) mode, where gem5 can
execute a variety of architecture/OS binaries with Linux emulation on the host linux system. Using
full-system mode, gem5 can model up to 64 (heterogeneous) cores of a Realview ARM platform,
and boot unmodified Linux and Android with a combination of in-order and out-of-order CPUs.
The ARM implementation supports 32 or 64-bit kernels and applications. For the purpose of this
lab, you are provided with a linux image that is pre-loaded with the needed binaries in its file
system. If you choose to create your ARM linux image to attempt your enthusiastic codes, read
the documentation on http://old.gem5.org/ARM Kernel.html and
https://www.gem5.org/documentation/general docs/fullsystem/disks. However, this step is not
needed for this lab.

You will also use a modified script originally provided by ARM called fs bigLITTLE.py. There
are a few important parameters in this script that will be used in your simulations, which are the
following:

3

http://old.gem5.org/ARM_Kernel.html
https://www.gem5.org/documentation/general_docs/fullsystem/disks


• cpu-type: CPU simulation mode (more on that later)

• kernel: path to the Linux kernel file

• disk: path to the disk image file

• big-cpus: number of out-of-order cores in the system

• little-cpus: number of in-order cores in the system

• bootscript: a script to be executed after the system initialization

• caches: use caches in the simulation

• restore: restore simulation after a checkpoint (more on that later)

gem5 allows different simulation modes that exploit various levels of details of the CPU. For
instance, in the atomic model, no timings are counted when executing the applications (latencies
and pipelines are ignored), while in the O3CPU model the entire out-of-order structure, along
with caches and memory latencies are simulated. Needless to say, the O3CPU is more complex, and
will take more time to simulate the same amount of instructions. However, if you want to evaluate
the behavior of a real processor, you must use detailed CPU models. Thus, to reduce our simulation
time, a helpful strategy is to simulate only the regions of interest of the application using complex
(but detailed) models, and executing the rest with the fast ones.

In this lab, you will use gem5’s checkpoint feature to fast-forward the Linux boot operation.
This operation has two main advantages:

(a) The entire boot operation can be simulated using the fast atomic model, as timings and pro-
cessor state are not important during this process. From there, you can restore the simulation
using a complex model, which can be used to simulate user applications and extract important
statistics.

(b) After a checkpoint is created, you can restore the simulation from that point again as many
times as you want. Therefore, the boot operation has to be executed only once per processor
configuration.

Note: If you want to change basic configurations on the processor (such as the number of cores
available in the system or the issue order), you will have to boot the system again and create a new
checkpoint.

3.1 System boot, checkpoint, and restoration process.

First of all, set your M5 PATH to the location containing the disks, binaries and bootloader files
(boot.arm and boot.arm64). To set M5 PATH in our case

export M5_PATH=GEM5_PATH/imgs/aarch-system-20170616/

4



Booting up the full system is a lengthy process, so to speed up experiments, we created a
checkpoint for you that already stores the booted state of the system. We will put the steps
required for initializing the system in the appendix, should you want to create a checkpoint on your
own.

Now, we restore the simulation using a detailed CPU model using the following command:

build/ARM/gem5.opt -d GEM5_PATH/m5out/YOUR_STATS_OUTPUT_FOLDER \

configs/example/arm/fs_bigLITTLE.py \

--cpu-type exynos \

--kernel GEM5_PATH/imgs/aarch-system-20170616/binaries/vmlinux.arm64 \

--disk GEM5_PATH/imgs/aarch-system-20170616/disks/linaro-minimal-lab-aarch64.img \

--big-cpus 4 \

--little-cpus 0 \

--bootscript GEM5_PATH/imgs/aarch-system-20170616/Script.rcS \

--restore="GEM5_PATH/checkpoint/cpt.3372247250500/" \

--caches

Notice that in the restore/fast-forward phase here, the parameter for cpu-type is “exynos”
(exynos are the detailed models for the Samsung Exynos ARM processor in the fs bigLITTLE.py
script), and there are two extra parameters:

– caches: enable caches in our simulations (required for the detailed CPU models).

– restore: restore the simulation from the given checkpoint

You will notice that your terminal will start outputting information about gem5 state. Mean-
while, open a new terminal and type:

telnet localhost 3456

The system will be available for bash usage after logging some messages. Afterwords, you will
see the message:

INIT: no more processes left in this runlevel

bash-4.2#

After a full system simulation, the stats.txt file in your output folder will be updated with the
information from that simulation. This includes cycles taken to execute OS operations such as a
change directory command (cd). One way to isolate the stats of the target application is to use
“m5 resetstats” before executing the app and “m5 dumpstats” after the execution, for example:

m5 resetstats; GOMP_CPU_AFFINITY="0,1,2,3" /home/root/gemm_### args; m5 dumpstats.

Notes:
– The pre-compiled GEMM binaries are located in the /home/root/ directory of the booted linux
kernel’s file system.
– For multithreaded runs, setting the affinity GOMP CPU AFFINITY="0,1,2,3" is required to get the
desired speed-up .
– m5 resetstats will reset all the currently collected statistics of the system (cycles, instruction

5



count, memory misses...), while m5 dumpstats will write in the stats.txt file the current system
statistics. For more special commands, type ”m5” in your telnet terminal.
– When you close the system using m5 exit, the stats file will be appended by the another snapshot
of stats. What matters is the first snapshot (i.e., the one that was generated after you called m5

dumpstats.

Tasks:

(a) Develop a roofline model for the system being used. Make sure you explain how you arrived
at the different parameters that constitute your model.

(b) Run Version 3 of the code with 4 threads on the system image you are connected to, close
and collect your stats file and plot the point on the model.

(c) Run Version 4 of the code with 4 threads on the system image you are connected to, close
and collect your stats file and plot the point on the model. Comment on the bounds of your
algorithm given your observations and the roofline model.

Report Submission

• You can submit the report as a group of two. Write down CIDs of each partner.

• You will get a PASS only if all the tasks are properly addressed in the report.

• The reports should be submitted on Canvas, no later then Thursday, February 27th, 2020
23:59

Appendix

To initialize the gem5 simulation:

build/ARM/gem5.opt -d GEM5_PATH/m5out/YOUR_STATS_OUTPUT_FOLDER \

configs/example/arm/fs_bigLITTLE.py \

--cpu-type atomic \

--kernel GEM5_PATH/imgs/aarch-system-20170616/binaries/vmlinux.arm64 \

--disk GEM5_PATH/imgs/aarch-system-20170616/disks/linaro-minimal-lab-aarch64.img \

--big-cpus 4 \

--little-cpus 0 \

--bootscript GEM5_PATH/imgs/aarch-system-20170616/Script.rcS

This command will start the simulation of the Linux kernel using the processor described by
the fs bigLITTLE.py script with two out-of-order cores.

Observe that in this stage you will use –cpu-type atomic to initialize our system. Make sure
that the parameters –kernel, –disk, and –bootscript are pointing to the right directory.

6



You will notice that your terminal will start outputting information about gem5 state. Mean-
while, open a new terminal and type:

telnet localhost 3456

Using this telnet connection, you will now see the output of the Linux boot process. After a
few minutes (the boot time vary depending on the host machine, but typically takes between 5-10
minutes using the atomic mode), the system will be available for bash usage. You will see the
message:

INIT: no more processes left in this runlevel

bash-4.2#

This is the point you want to fast-forward when simulating with complex CPU models. To
create a checkpoint of the current system state, type the following command:

m5 checkpoint

You will notice in the terminal of the simulator state the following message:

Dropping checkpoint at tick XYZ

XYZ represents the current simulation tick when the checkpoint creation was requested. The
name of your checkpoint will be cpt.XYZ and its files will be found at your simulation output
directory (in this case at ’/home/YOUR USER/gem5/m5out/lab1/config1’).

You can now use the following command in your simulation terminal:

m5 exit

7


	Hello World with gem5
	Architecture-Aware Programming
	Your First Parallel ARMv8 BIG.little Architecture
	System boot, checkpoint, and restoration process.


