) CHALMERS

<5427 UNIVERSITY OF TECHNOLOGY

EDA284 Lab 3: Simulation of Cache Coherence
Protocols

Contacts: Mustafa Abduljabbar, Madhavan Manivannan and Miquel Pericas,
Emails: musabdu, madhavan, miquelp@chalmers.se

March 13, 2020

We assume a cache coherent multi-core system as the baseline for this lab. Figure 1 shows the
organization of the baseline system. Each core has access to a private L1 cache and a Last Level
Cache (LLC) that is shared across multiple cores. The private L1 caches communicate with the
LLC using a simple bus. Coherence is maintained across the multiple private L1 caches using a
snooping based write invalidate cache coherence protocol. This simple baseline will be used to un-
derstand different cache coherence protocols. The baseline system is modeled using MultiCacheSim
https://github.com/blucia0a/MultiCacheSim and Pin tool by Intel https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool

Background

How are memory accesses handled? Memory accesses (issued by threads) in a multi-threaded
application are captured by Pin. Each request is then handled by the pin tool that models the
baseline cache hierarchy shown in Figure 1. The access is sent to the core’s private L1 cache to
check if the data are available in the cache. In case the data are found in the L1 cache with suitable
permissions, the access is complete and control is returned back to Pin. If the request misses at the
private L1 cache, the private caches of the other cores and the LLC are snooped. If the requested
data resides in a remote cache the appropriate cache responds with the data. In case the requested

L1 L1l L1
& »Bus

| SharedLLC

Figure 1: Baseline Organization - L1 DCache 64K (8way,64byte blocks) LLC 4MB (16way, 64byte
blocks)

https://github.com/blucia0a/MultiCacheSim
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

L1 Snoops

Figure 2: Memory Access Flowchart

data are not available in the on-chip hierarchy the request is considered an LLC miss. Figure 2
shows a generic flowchart of how memory accesses are handled in the baseline system. Please note
that this only provides a simplified view of the actions involved at each level of the on-chip cache
hierarchy.

Cache Coherence Protocols

The cache coherence protocols we use for evaluation are:
(1) MSI protocol.
(2) MESI protocol.

(3) MESI protocol optimized for migratory sharing.

For details regarding how MSI and MESI protocols work, please refer to the textbook. Protocol
3 (MESI + migratory) includes a small modification to the baseline MESI protocol. In this protocol,
when a Read request for a modified block is received by a remote cache, the line is forwarded with
exclusive permissions to the requester and the copy in the remote cache is invalidated. Interested
readers may refer to the source code of MultiCacheSim for the cache coherence protocol.

Microbenchmarks

We use three microbenchmarks for comparing different coherence protocols. These microbench-
marks have been designed to stress certain communication patterns so that they can be used for

comparative evaluation of the different protocols.

Running the Benchmarks

The pin tarball can be found here https://www.dropbox.com/s/8tguhwmuwzeorb7/eda284 lab3.tar.gz?dl=0.
The benchmark tarball contains microbenchmark sources. Start by first building the microbench-

marks and the pin tool (found inside ./source/tools/MutiCacheSim/). The generic command for
invoking pin and using a pin tool is as follows.

./pin -t <tool name> <tool options> -- ./app_binary <app options>
To simulate the micro-benchmark on a certain configuration use the following command:

./pin -ifeellucky -mt -t ./source/tools/MultiCacheSim/obj-intel64/mcs.so \
-csize 65536 -bsize 64 -assoc 8 -1llc -llcsize 1048576 -llcbsize 64 \
-llcassoc 16 -numcaches 4 -protos \
./source/tools/MultiCacheSim/obj-intel64/mcs_mesi.so \

-- benchmark_path <benchmark options> \

The parameters used in the commandline (listed above) configure the baseline system.

./pin -> Pin Binary

ifeellucky -> fixes compatibility issues

mt -> multithreaded mode

t ./source/tools/MultiCacheSim/objintel64/mcs.so > MultiCacheSim pin tool
csize —-> L1 cache size

bsize -> L1 block size

assoc —> L1 block associativity

1llc -> enable LLC

llccsize —> LLC cache size

llcbsize -> LLC block size

llcassoc —> LLC block associativity

protos -> coherence protocol of interest

numcaches -> Number of Private Caches (Should match the number of application threads)

Interpreting the Results

The simulator only reports cache access statistics (local accesses, remote accesses, hits, misses, etc).
For this lab you can estimate the execution time of microbenchmarks based on these cache access
statistics. To estimate the execution time you should assume that a private L1 access (hit) takes
1 cycle, an LLC access (hit) takes 20 cycles, and a remote L1 access (hit) takes 30 cycles. Finally
assume that offchip accesses take 50 cycles each.

Tasks
Notes

e Do not use results from cpuid0 in your analysis as it includes statistics for the serial section
of the program (which is not of interest).

https://www.dropbox.com/s/8tguhwmuwzeorb7/eda284_lab3.tar.gz?dl=0

e An int is four bytes and a cache line is 64 bytes.

e To evaluate the effect of working set size, modify the number of counters used by the bench-
mark.

e Evaluate benchmarks with three Working Set Sizes (WSS smaller than L1 cache capacity,
WSS larger than L1 capacity and WSS larger than LLC capacity)

Benchmark Analysis

(a) Analyze the source code of the microbenchmarks 1 and 2, and provide a brief description of
how each of the microbenchmarks work.

(b) Comment on the prominent communication patterns in each of the microbenchmarks.

MSI vs. MESI
(a) Evaluate MSI and MESI in the context of microbenchl and microbench2 using 8 threads.
(b) Compare MSI and MESI.
(c) When is having the E state beneficial (over baseline MSI)?
)

(d) How does the behavior change when the dataset size changes?

MESI vs MESI+migratory

(a) Evaluate MESI and MESI+migratory optimizations in the context of microbenchl and mi-
crobench3 using 8 threads.

(b) Compare MEST and MESI+migratory.
(¢) Why is one better than the other?

(d) How does the behavior change when the dataset size changes?

Analyzing Cache Access
(a) What is the point of enabling ALIGN_ALLOC in microbenchmark3.c (i.e., what are we avoiding)?

(b) Show an example run to explain the difference between microbenchmark3 and microbench-
mark4 using pin. Also, reflect on the effect of cache coherence protocols in such scenarios.

