
Problems and Solutions for the Examination of EDA284 (2018-10-29) 

Problem 1 (12p)

The goal of this exercise is to reason about three locking schemes designed to protect a shared data 
structures in three different scenarios. The underlying parallel computer is a sequentially consistent 
shared  memory  bus-based  multiprocessor  that  uses  the  MSI-invalidate  protocol  to  manage 
coherence across private caches. 

The three scenarios under consideration are: 
• Scenario #1: the shared data structure is accessed by a single thread. 
• Scenario #2: the lock is accessed by multiple threads but lock contention is very low. 
• Scenario #3: the lock is accessed by many threads, and lock contention is high.   

The  following  codes  show the  implementation  of  the  three  locking  schemes.  In  the  following 
assume that R0=0, and that the lock is taken when its value is 1. The variable holding the lock is  
_lock.

Action/Label Lock #1 Lock #2 Lock #3

Lock: T&S R1, _lock
BNEZ R1, Lock

LW R1, _lock
BNEZ R1, Lock
T&S R1, _lock
BNEZ R1, Lock

ADDI R1,R0,1
LL R2,_lock
SC R1,_lock
BEQZ R1, Lock
BNEZ R2, Lock

Unlock: SW R0, _lock SW R0, _lock SW R0, _lock

That task is to describe, for each of the three locking schemes:
(a) How well do the locking schemes apply to the three scenarios shown above?
(b) What synchronization hardware needs to be added to the basic bus-based multiprocessor (as 
described in Lecture 4) to support the locking schemes?
(c)  Assume  now  that  the  memory  consistency  model  is  a  synchronization-based  memory 
consistency model such as weak ordering. Will the locking schemes still work correctly? 

Solution to Problem 1: 

The three locks correspond to a test-and-set based spinlock, a test-and-test-and-set spinlock, and a 
LL-SC spinlock that implements the same functionality as the test-and-set spinlock (the first four 
lines emulate a T&S and the fifth line checks if the lock was successfully taken). 

(a) Performance and Efficiency

Scenario 1: 
Since the data is only accessed by a single thread it is not necessary to actually implement mutual 
exclusion in the access. No lock should be used for this case. However, even if a lock is used, the 
overhead will be low, since the lock will always reside in the local cache and it will always be taken 
in the first try. 

Scenario 2:



In scenario 2 multiple threads access the data structure. As long as contention is low Locks 1 and 3 
are a slightly better solution as it takes only one atomic read-write to take the lock, while Lock 2 
requires at least 1 load and 1 atomic read-write operation. 

Scenario 3: 
Given that the lock is highly contented, we assume that most threads do not immediately get access 
to the lock. Given that the coherence protocol is MSI, using Lock 1 will result in the lock migrating 
across all spinning threads. Each T&S generates an invalidation and a migration. Lock 2 is a better 
solution in this case as it exploits the 'S' state that allows multiple threads to share the value. All 
threads keep the lock locally in the 'S' state, and only when the lock is released by the holding 
thread is a invalidation generated. Hence there is only one invalidation each time a lock is release, 
instead of continuously by all the spinning threads (Lock 1). Since Lock #3 is an emulation of Lock 
#1, the behavior is similar to Lock #1. 

(b) Hardware support

Locks 1 and 2 require HW necessary to implement atomic read-modify-write instructions:
• invalidation-based coherence protocol
• cache controller acquires cache line in ‘M’ state and performs T&S atomically

Lock 3 uses LL-SC which is typically found in load/store architectures (e.g. RISC pipelines). LL-
SC support requires: 

• LL-bit, set when LL is executed 
• method to detect writes to cache line with lock (resets LL-bit)
• SC fails if LL-bit has been reset

(c) Memory Consistency

In weak ordering, accesses to synchronization data are treated differently by the hardware
from accesses  to  other  shared and private  data.  Such operations  act  as  memory barriers on all 
accesses,  hence  the  behavior  for  programs using  locks  is  equivalent  to  sequential  consistency. 
Hence all three lock implementations are still correct under weak ordering. 



Problem 2 (6p)

Amdahl’s law and Gustafson’s law are two speed-up models used to assess the expected impact of 
an  architectural  improvement,  and  to  guide  the  efforts  to  improve  the  performance of  parallel 
computer system.  

(a) Describe Amdahl’s law and provide the mathematical formulation to determine the speed-up as a 
function  of  the  parallelizable  program fraction  and  the  number  of  processors  used  to  run  the 
program. 

(b) Describe Gustafson’s law conceptually and discuss what motivated its development

Solution to Problem 2

(a) Amdahl’s law considers a problem of fixed size (or work) and states that the upper bound to 
performance is determined by the fraction of the problem (F) that can be parallelized. The formula 
for the speed-up for P processors is: 
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(b) Gustafson’s law provides a speed-up formula considering a problem if fixed time (as opposed to 
Amdahl’s  law  which  considers  a  problem  of  fixed  size).  Amdahl’s  law  suggests  that  adding 
resources to solve a fixed problem in less time quickly leads to diminishing returns. Gustafson’s law 
takes the opposing view that, as faster and larger computers are developed, scientists/engineers use 
them to solve larger and more complex problems. Hence Gustafson’s law fixes the time it takes to 
obtain a result, instead of the problem size.     



Problem 3 (6p)

In this problem you are asked to describe basic metrics of interconnection networks and to analyze 
the performance of some basic network topologies. 

(a)  Describe  in  a  few  sentences  the  following  latency  and  bandwidth  measures  used  for 
interconnection networks: (a) routing distance, (b) network diameter,  (c) bandwidth per node and 
(d) bisection bandwidth. 

(b) Consider the following network topologies: a bus, a NxN crossbar switch, a bidirectional ring 
with  N nodes,  and a  n-by-n  2D mesh such that  N=n*n.  The  task  is  to  determine  the  network 
diameter and bisection width of these four network topologies, as a function of N (or n). 

Solutions to Problem 3

8.(a) 

Routing distance: Nb of links traversed by a packet
Network diameter:  Longest routing distance over all pairs of nodes
Bandwidth per node: Aggregate bandwidth across all links divided by the number of nodes
Bisection bandwidth: Bandwidth when all nodes in one network bisection communicate with nodes 
in the other bisection

8.(b)

Bus:
Network Diameter = 1
Bisection Width = 1 (or less, due to contention and arbitration)

Crossbar: 
Network Diameter = 1
Bisection width = N

Bidirectional Ring: 
Network diameter = N/ 2
Bisection width = 2

n-by-n Mesh:
Network diameter = 2 * (n-1)
Bisection width = n



Problem 4 (6p)

To effectively use multicores,  simplifying the development of parallel  software while providing 
high performance is an important goal. A recent proposal to achieve these goals is Hardware-based 
Transactional Memory (TM). Your task is to compare HW Transactional Memory with traditional 
single-global locks and fine-grained lock-based programming in terms of:

(a) Programming complexity  
(b) Performance
(c) Hardware support

Write no more than 1-3 sentences for each item

Solution to problem 4

Answers are directly in the slides:
(a) Transactional memory (TM) simplifies shared memory programming by allowing to execute sets 
of  writes  (ST)  and  reads  (LD)  in  an  atomic  way.  Just  annotate  with  Transactin_begin  and 
Transaction_end. Complexity Similar to coarse-grained

(b) Performance is similar to fine-grained locking when conflict probability is low. When conflicts 
are  high,  performance  decreases  and  can  be  even  worse  than  a  single  global  lock  if  most 
transactions need to restart. 

(c) HW-based TM requires special hardware to keep speculative values in the L1 caches and release 
the values atomically when a transaction commits. Support for locks is much simpler as it focuses 
on providing atomic read-modify-write for single cache lines, instead of read/write sets. 



Problem 5 (10p)

A design team needs to choose an appropriate cache coherence protocol to be used for a bus-based 
shared  memory multiprocessor  with  a  number  of  processor/private  cache  units  connected  by  a 
shared single-transaction bus. The team has narrowed down the design to two protocol choices: 
MSI-invalidate and MESI-invalidate. Given the higher complexity of MESI, the designers consider 
that  at  least  5%  better  performance  and  5% lower  traffic  need  to  be  achieved  to  justify  the 
implementation of the MESI protocol. In order to select the protocol the team needs to analyze the 
following representative sequence of accesses happening on the bus in the following order:

R1/X,  R3/Z,  R2/Y,  W1/X,  W2/Y,  W3/Z,  R1/Z,  R4/Z,  W2/Z,  R3/Z

where the notation Ri/X, Wi/X means a read and write from processor i to cache block X. The 
latency and traffic costs of different operations considering a block size B bytes are:

Operation Latency Bus Traffic

Read hit 1 N/A

Write hit 1 N/A

Request serviced by next level (BusRd,Flush) 50 6+B

Bus upgrade (BusUpgr) 10 10

Snoop action 5 N/A

Assumptions: 
1. A bus upgrade consists of transferring the request on the bus and making a snoop action in each 
cache (the latency of the latter is shown in the table)
2. There is no contention on the tag directory (duplicated tag directory)
3. X, Y and Z are not the same cache block
4. The block size B is 32 bytes
5. Read-exclusive requests (BusRdX) have the same latency and traffic as Read requests

The MSI state-transition diagram is shown below



To assess  the  performance of  both  protocols  the  team must  construct  a  table  with  the  latency 
(cycles) and bus traffic (bytes) needed to complete the aforementioned access sequence (shown 
below). Based on the aforementioned complexity-performance trade-off, which protocol will the 
design team ultimately choose?

Protocol Latency Traffic

MSI

MESI

Improvement

Solution to Problem 5

MSI Protocol:

R1/X (miss/mem) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
R3/Z (miss/mem) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
R2/Y (miss/mem) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
W1/X (hit/upgrade) → 5 cycles (snoop) + 10 cycles (BusUpgr) = 15 cycles / 10
W2/Y (hit/upgrade) → 5 cycles (snoop) + 10 cycles (BusUpgr) = 15 cycles / 10
W3/Z (hit/upgrade) → 5 cycles (snoop) + 10 cycles (BusUpgr) = 15 cycles / 10
R1/Z (miss/cache) → 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B 
R4/Z (miss/mem) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
W2/Z (miss/upgrade) → 5 cycles (snoop) + 50 cycles (BusRdX) = 55 cycles / 6+B
R3/Z (miss/cache) → 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B

Latency = 55  * 7 + 15*3 = 385 + 45 = 430 cycles
Traffic = (6+B)*7 + 10*3 = 72 + 7B
Given that B=32, the total traffic will be 296 bytes

MESI Protocol:

R1/X (I→E) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
R3/Z (I→E) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
R2/Y (I→E) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
W1/X (E→M) → 1 cycle /  0 bytes
W2/Y (E→M) → 1 cycle /  0 bytes
W3/Z (E→M) → 1 cycle /  0 bytes
R1/Z (I→S) → 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B 
R4/Z (I→S) → 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B 
W2/Z (I→M) → 5 cycles (snoop) + 50 cycles (BusRdX) = 55 cycles / 6+B
R3/Z (I→S) → 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B

Latency = 55 * 7 + 3 = 388 cycles
Traffic = (6+B)*7  = 42 + 7B
Given the B=32, the total traffic will be 266 bytes. 



Protocol Latency Traffic

MSI 430 cycles 296 bytes

MESI 388 cycles 266 bytes

Improvement ~10% ~10%

Given the complexity-performance criteria, the designers will ultimately choose the MESI protcol.



Problem 6

The MOESI protocol adds a new state called Owner (O). A designer has been given the task to 
implement the MOESI protocol by adding the necessary transitions on top of MESI. The designer 
has so far enumerated all the transitions and added them to the MESI diagram (as shown below), 
but not all coherence protocol actions have yet been determined.  

Your task is to:

(a) Describe the meaning of the state (O)wner, and show  one example in which it improves 
performance compared to MSI or MESI. 

(b) Add the missing protocol actions to the five transitions shown below  

 

O OO O O M

M O E O

O I



Solution to Problem 6

(O) adds the notion of ownership of a cache block. The states E and M are also (implicitly) owner. 
This state is used for ownership of blocks in the S (shared) state. Blocks in state O will supply a 
copy of the block when another cache requests it. Compared to MSI/MESI it:

1. enables sharing of dirty data and removes unnecessary writebacks
2. reduces  memory  bandwidth  in  CMPs  by  allowing  on-chip  caches  to  reply  to  BusRd 

requests.

The missing transitions are indicated in the following diagram for MOESI.

 



Problem 7 (8p)

Consider a future 8-way CMP on which you can power off some cores to allow the rest to operate at 
a higher frequency. You can use either 1, 2, 4, or 8 cores at the respective frequencies:

• when only one core is running it operates at 0.3ns clock cycle
• when two cores are running they operate at 0.4ns clock cycle
• when 4 cores are running they operate at 0.6ns clock cycle,
• when all 8 cores are running they operate at 1ns clock cycle,

Consider a partially parallel application consisting of a serial part of 100 Instructions and a  parallel 
part that can be parallelized at will which is 200 Instructions. Parallelizing however requires you to 
create threads in the serial part of the application and 10 Instructions are added for every thread you 
create. The serial and parallel part of the application all run one instruction per cycle regardless of 
the frequency.

(a) Calculate the runtime of the application for the above processor when using 1, 2, 4 or 8 cores at 
their  respective frequency  without reconfiguring the processor while the application is  running. 
Which configuration is better?

(b) What if you could reconfigure the processor to run the serial part with one core at 0.3 ns clock 
cycle and then configure it to 2 or 4 or 8 cores for the parallel part? What is the runtime for each 
case? Consider for all cases that creating each thread takes 10 Instructions that are added to the 
serial part (and run on the single core at 0.3ns clock cycle).

Solution to problem 7

(a)
1-Core: 100 Instr serial + 200 Instr parallel = 300 Instr at 0.3 ns = 90ns
2-Core: 100 Instr serial + (100 Instr parallel) + 20 Instr to create 2 threads = 220 Instr at 0.4 ns  =  
88ns
4-Core: 100 Instr serial + (50 Instr parallel) + 40 Instr to create 4 threads = 190 Instr at 0.6ns = 114 
ns
8-Core: 100 Instr serial + (25 Instr parallel) + 80 Instr to create 8 threads = 205 Instr at 1ns = 205ns
→ 2 Core is the best configuration

(b)
Serial part is always 100 Instr at 0.3ns = 30ns
The parallel part :
2-Core: 20 Instr to create the threads at 03.ns + (100 Instr parallel at 0.4) = 6ns + 40ns = 46ns
4-Core: 40 Instr to create the threads at 03.ns + (50 Instr parallel at 0.6) = 12ns + 30ns = 42ns
8-Core: 80 Instr to create the threads at 03.ns + (25 Instr parallel at 1) = 24ns + 25ns = 49ns

So the total runtime for the reconfigurable processor is
2-Core: 30ns + 46ns = 71ns
4-Core: 30ns + 42ns = 67ns
8-Core: 30ns + 49ns = 79ns
→ 4-Core is the best



Problem 8 (6p)

We consider a scalable implementation of a shared memory multiprocessor using a set of nodes 
such that each contains a processor, a private cache, and a portion of the memory. Cache coherence 
is maintained using a directory cache protocol. The following costs apply:

• The block size is 64 bytes.
• The time it takes to process a directory request is 20 cycles. 
• The time it takes to install a new entry in a directory is also 20 cycles.
• A remote read request takes 10 Cycles and induces 8 bytes of traffic
• A flush of a cache line from one node to another costs 40 Cycles and 8 + 64 Bytes
• Ignore the time it takes to read/write to a cache.

Also:

• The home node is the one that holds the directory entry for a cache line.
• The requesting node is the node that produces a cache miss for a cache line.
• The remote node is the one that holds the dirty copy of a cache line when the cache line is 

dirty.

Your task is to describe the sequence of steps, as well as the number of cycles and traffic, needed to 
handle a cache miss for the following scenarios:

(a) The home node is the same as the requesting node and the memory copy is clean.

(b) The home node is the same as the requesting node and the memory copy is dirty

(c) The home node is different from the requesting node and the memory copy is clean

(d) The home node is different from the requesting node, the memory copy is dirty and the remote 
node is is the same as the home node

Home/requesting
Node

Clean CL

Home/requesting
Node

Remote
Node

Dirty CL

Requesting
Node

Home
Node

Clean CL



(e) The home node is different from the requesting node, the memory copy is dirty and the remote  
node is different from the home node

Solutions to Problem 8

(a)
1. Lookup home node dir (20 Cycles)

(b) 
1. Lookup local dir (20 Cycles)
2. Remote read from home/requesting node to remote node (10 Cycles, 8 Bytes)
3. Directory lookup in remote node (20 Cycles)
4. Flush cacheline from remote node to home/requesting node (40 Cycles, 8 + 64 Bytes)
5. Install on home/requesting node directory (20 Cycles)

(c)
1. Remote read from requesting to home (10 Cycles, 8 Bytes)
2. Lookup home node directory (20 Cycles)
3. Flush cacheline from home node to requesting node (40 Cycles, 8 + 64 Bytes)
4. Install on requesting node directory (20 Cycles)

(d)
1. Remote read from requesting node to home/remote (10 Cycles, 8 Bytes)
2. Lookup home/remote node directory (20 Cycles)
3. Flush cacheline from home/remote node to requesting node (40 Cycles, 8 + 64 Bytes)
4. Install on requesting node directory (20 Cycles)

(e)
1. Remote read from requesting node to home node (10 Cycles, 8 Bytes)
2. Directory lookup in home node  (20 Cycles)
3. Remote read from home node to remote node (10 Cycles, 8 Bytes)
4. Directory lookup in remote node  (20 Cycles)
5. Flush cacheline from remote to home node (40 Cycles, 8 + 64 Bytes)
6. Install on home node directory (20 Cycles)
7. Flush cacheline from home to requesting node (40 Cycles, 8 + 64 Bytes)
8. Install on requesting node directory (20 Cycles)
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