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Problem 1 

The two main programming paradigms for parallel  computers are shared memory and message 
passing. In the course, the parallelization of a matrix multiplication (  A · B = C  ) was used to 
exemplify both paradigms. In this problem we want to analyze the performance of both approaches. 

Assume that the matrices are square and each consists of  N rows and columns. A typical way to 
decompose (parallelize) the problem over four cores is shown in the following figure:

This strategy can be used to parallelize the algorithm for both (a) shared memory and (b) message 
passing systems. The figure below shows two such systems. 
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The task is to discuss whether the five following statements are correct in the context of the two 
paradigms and the two shown systems. You should write  1-2 sentences for each statement and 
paradigm (i.e., total 10 answers). Just stating true or false will not be considered sufficient.

Unless otherwise specified, the following assumptions are to be considered:

• In both systems the DRAM, Bus and LAN support up to 32 GB/s of bandwidth. 
• Initially the matrices  A and  B are stored in the DRAM memory connected to core 1. The 

algorithm finalizes when matrix C is stored back in the memory of core 1.
• The matrix multiplication is parallelized into multiple threads, each consuming a constant 4 

GB/s of DRAM bandwidth on each core. 
• The DRAM capacity is not a limiting factor
• The cache coherence protocol used in the shared memory system (a) is MSI-invalidate

Statement A “In order to function correctly, it is necessary to explicitly copy both matrices A and B 
into the DRAM memory connected to each core.”

St. B “As long as the (Bus / LAN) interconnect bandwidth is larger than 16 GB/s, the execution 
time is independent of the speed of the interconnect (Bus / LAN)” 

St. C “The execution time does not depend on the DRAM bandwidth, as long as the bandwidth 
exceeds 8 GB/s” 

St. D “As the matrix size N increases, the speed-up compared to a single core approaches 4x”  

St. E “Neither of the two parallelization paradigms requires Operating System support.” 

Please justify your answers. Simply answering Correct or False will not be considered not enough. 

Answers to Problem 1

Statement (A) 
(a): For the Shared memory system no copies are necessary as all cores have access
(b): Copies are necessary in this case, but the matrix A does not need to be copied in full, only the 
rows belonging to each core

Statement (B)
(a) This is correct, as the MxM kernel needs 4x 4GB/s to operate without contention
(b) Given that matrices need to be copied, the execution time will always depend on the LAN 
bandwidth

Statement (C)
(a) this is not correct, as the maximum memory bandwidth required is 4x 4GB/s = 16 GB/s
(b) this is correct, as only 4 GB/s are required for each node (each node executes a single MxM 
kernel) 

Statement (D)
(a) true, since the 4 cores are not able to saturate the system’s bandwidth
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(b)  true,  for  the  same reason and (a),  and also  because  the  relative amount  of  communication 
required  for  the  MxM  (proportional  to  N²)  becomes  negligible  compared  to  computation 
(proportional to N³) when N becomes large

Statement (E) 
(a)  incorrect,  as  there  is  always  a  need  to  create  threads,  which  requires  OS  support  (e.g.  
pthread_create)
(b)  incorrect.  In  addition  to  creation  of  processes  it  is  necessary  to  communicate  data,  which 
involves the OS

Problem 2

Consider a shared memory multiprocessor that consists of four processor/cache units and where
cache coherence is maintained by an MSI protocol. The table shows the access sequence taken by
the four processors to the same block but to different variables (A,B,C,D) in that block.

Nr Processor 1 Processor 2 Processor 3 Processor 4

1 RA

2 RB

3 RC

4 RD

5 WA

6 WB

7 WC

8 WD

9 RD

10 RD

11 WB

12 RA

The task is to classify each access as a hit, cold miss, true sharing miss, or false sharing miss.
Furthermore, which of the misses could be ignored and still guarantee that the execution is correct?
If each bus-upgrade costs 10 bytes, and a bus read request costs 38 bytes (32 for cache block + 6
bytes bus-header) what is the total essential traffic of these accesses?

Solution to Problem 2

1. Cold miss (38 Bytes)
2. Cold miss (38 Bytes)
3. Cold miss (38 Bytes)
4. Cold miss (38 Bytes)
5. Hit, Invalidates 2,3,4 (10 Bytes)
6. Miss, false sharing, can be ignored, invalidates 1 (0 Bytes essential traffic)
7. Miss, false sharing, can be ignored, invalidates 2 (0 Bytes essential traffic)
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8. Miss, false sharing, can be ignored, invalidates 3 (0 Bytes essential traffic)
9. Hit (0 Bytes)
10. Miss, True sharing (38 Bytes)
11. Miss, False sharing, invalidates 3,4 (0 Bytes essential traffic)
12. Miss, false sharing, (0 Bytes essential traffic)
Problem 3 

A design team needs to choose an appropriate cache coherence protocol to be used for a shared 
memory multiprocessor  with  a  number  of  processor/private  cache  units  connected  by a  shared 
single-transaction bus.  The team is considering three invalidation-based snoopy protocols:  MSI, 
MESI and MOESI. 

In  order  to  select  the  protocol,  the  team is  analyzing the  following representative  sequence  of 
accesses happening on the bus in the following order:

R1/X,  R2/X,  R2/Y,  W1/X,  W2/Y

where the notation Ri/X, Wi/X means a read and write from processor  i to cache block X. The 
latency and traffic costs of different operations considering a block size of B bytes are:

Operation Latency Bus Traffic

Read hit 1 N/A

Write hit 1 N/A

Request serviced by next level (BusRd,Flush) 100 6+B

Request serviced by different cache (BusRd/Flush) 20 6+B

Bus upgrade (BusUpgr) 10 10

Snoop action 5 N/A

Assumptions: 

1. A bus upgrade consists of transferring the request on the bus and making a snoop action in each 
cache (the latency of the latter is shown in the table)
2. There is no contention on the tag directory (duplicated tag directory)
3. X and Y are not the same cache block
4. The block size B is 32 bytes
5. Read-exclusive requests (BusRdX) have the same latency and traffic as Read requests

The MSI state-transition diagram is shown below
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To assess the performance of the three protocols the team must construct a table with the latency 
(cycles) and bus traffic (bytes) needed to complete the aforementioned access sequence (shown 
below). 

Protocol Latency (cycles) Traffic (bytes)

MSI

MESI

MOESI

Your task is as follows: 

(a) Describe in 1-2 sentences the meaning of the states ‘E’ and ‘O’. What problems do they address? 
(b) Show the protocol transitions in each cache for the lines X and Y
(c) Complete the table with latency and traffic values

Solutions to Problem 3

(a) States E and O:
‘E’ means ‘exclusive’ . Cache has single copy, and memory is clean
‘O’ means ‘owner’. Cache has multiple copies, only one in state O. ‘Owner’ block replies to BusRd 
requests, enables sharing of dirty data.

(b) Protocol transitions 
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MSI MESI MOESI

Sequence Cache 1 Cache 2 Cache 1 Cache 2 Cache 1 Cache 2

R1/X I → S 
(BusRd)

I → E 
(BusRd)

I → E 
(BusRd)

R2/X I → S 
(BusRd)

E → S I → S 
(BusRd)

E → O 
(Flush)

I → S 
(BusRd) 

R2/Y I → S 
(BusRd)

I → E 
(BusRd)

I → E 
(BusRd) 

W1/X S → M 
(BusUpgr)

S → I S → M 
(BusUpgr)

S → I O → M 
(BusUpgr) 

S → I

W2/Y S → M 
(BusUpgr)

E → M E → M

(c) Latencies and traffic values

MSI MESI MOESI

Sequence Cache 1 Cache 2 Cache 1 Cache 2 Cache 1 Cache 2

R1/X 5 + 100 / 6+B 5 + 100 / 6+B 5 + 100 / 6+B

R2/X 5 + 100 / 6+B 5 + 100 / 6+B 5 + 20 / 6+B

R2/Y 5 + 100 / 6+B 5 + 100 / 6+B 5 + 100 / 6+B

W1/X 5 + 10 / 10 5 + 10 / 10 5 + 10 / 10

W2/Y 5 + 10 / 10 1 / 0 1 / 0

Total 345 / 38 + 3xB (96) 
345 cycles / 134 bytes 

310 +21 = 331 / 28 + 
3xB (96) = 124 bytes
331 cycles / 124 bytes

230 + 26 = 256 / 124 
bytes
256 cycles / 124 bytes

Protocol Latency (cycles) Traffic (bytes)

MSI 345 134

MESI 331 124

MOESI 256 124



EDA284/DIT361 Parallel Computer Architecture Page 7 (12)

Problem 4 

Consider a future 8-way CMP on which you can power off some cores to allow the rest to operate at 
a higher frequency. You can use either 1, 2, 4, or 8 cores at the respective frequencies:

when only one core is running it operates at 0.3ns clock cycle
when two cores are running they operate at 0.4ns clock cycle
when 4 cores are running they operate at 0.5ns clock cycle,
when all 8 cores are running they operate at 1ns clock cycle,

Consider a partially parallel application which has a serial part that is 1000 Instructions and a  
parallel part that can be parallelized at will which is 2000 Instructions.
Parallelizing however requires you to create threads in the serial part of the application and 100 
Instructions are added for every thread you create.
The serial and parallel part of the applications all run one instruction per cycle regardless of the 
frequency.

(a) Calculate the runtime of the application for the above processor when using 1,2,4,8 cores at their 
respective frequency without reconfiguring the processor while the application is running.
Which configuration is better?

(b) What if you could reconfigure the processor to run the serial part with one core at 0.3 ns clock 
cycle and then configure it to 2 or 4 or 8 cores for the parallel part. What is the runtime for each 
case? Always consider that creating each thread takes 100 Instructions that are added to the serial 
part (and run on the single core at 0.3ns clock cycle).

Solution to problem 4:

(a)
1-Core: 1000 Instr serial + 2000 Instr parallel = 3000 Instr at 0.3 ns = 900ns
2-Core: 1000 Instr serial + (1000 Instr parallel) + 200 Instr to create 2 threads = 2200 Instr at 0.40 
ns  = 880ns
4-Core: 1000 Instr serial + (500 Instr parallel) + 400 Instr to create 4 threads = 1900 Instr at 0.5ns =  
950ns
8-Core: 1000 Instr serial + (250 Instr parallel) + 800 Instr to create 8 threads = 2050 Instr at 1ns = 
2050ns
→ 2 Core is the best configuration

(b)
Serial part is always 1000 Instr at 0.3ns = 300ns
The parallel part :
2-Core: 200 Instr to create the threads at 03.ns + (1000 Instr parallel at 0.4) = 60ns + 400ns = 460ns
4-Core: 400 Instr to create the threads at 03.ns + (500 Instr parallel at 0.5) = 120ns + 250ns = 370ns
8-Core: 800 Instr to create the threads at 03.ns + (250 Instr parallel at 1) = 240ns + 250ns = 490ns

So the total runtime for the reconfigurable processor is
2-Core: 300ns + 460ns = 710ns
4-Core: 300ns + 370ns = 670ns
8-Core: 300ns + 490ns = 790ns
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Problem 5

Two common spinlocks relying on atomic synchronization primitives are the Test-and-Set-based 
spinlock and the Test-and-Test-and-Set spinlock. The code for the two spinlocks are shown below.

Action/Label Lock #1 (Test-and-Set) Lock #2 (Test-and-test-and-set)

Lock: T&S R1, _lock
BNEZ R1, Lock

LW R1, _lock
BNEZ R1, Lock
T&S R1, _lock
BNEZ R1, Lock

Unlock: SW R0, _lock SW R0, _lock

Assume an MSI-invalidate snoopy cache coherent protocol is used to keep the caches of a shared 
memory multiprocessor consisting of four processors coherent. 

In the execution under consideration, all threads are trying to modify a shared data structure via a 
single global lock. When one thread obtains access to a lock, it keeps the lock for a long time before 
releasing it. 

(a) Describe the sequence of MSI protocol transitions that will occur for both Lock #1 and Lock #2. 
(b) Explain which spinlock behaves better in this scenario and why? 
(c)  If  the  cache  coherence  protocol  were  MESI  or  MOESI,  are  there  any  differences  in  the 
behavior?
(d) Assume now that different threads access the same data structure only with very low likelihood. 
What other solutions exist to address the problem of highly contented critical sections? Please list 
two such solutions. 

Solution to problem 5

(a) Sequence of MSI protocol transitions

Lock #1

For each T&S, the local cache transitions from I → M, while one other cache will transition from M 
→ I. This sequence continues until no threads attempt to access the shared data structure. 

Lock #2

Initially, the local cache transitions from I → S when executing the LW instruction, leaving other 
caches unmodified. Eventually all caches will transition from I → S, and all coherence traffic stops. 
The loop is broken when the lock is released. Some threads will then attempt to execute T&S, 
which will result in a S → M transition, invalidating all other caches. The whole sequence then 
repeats while core continue to wait for the critical section.  

(b) The spinlock based on Lock #2 behaves better because it avoids unnecessary traffic resulting 
from continuous invalidations of all other caches. 

(c) MESI and MOESI protocols:
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For Lock #1 there are no differences.
For Lock #2 and MESI, one cache will initially transition I → E before transitioning E → S or I → 
S. This difference is negligible. 
For Lock #2 and MOESI, one caches will, in addition, share the value of the lock among all other 
caches by exploiting the ‘O’ value. The overall impact of this optimization is unlikely to have a high 
impact.  

(d)  Other possible solutions to alleviate the problem of contention:

If the data to be modified inside of the parallel section has a high probability of being independent, 
two possible solutions are: 

1. Using fine-grained locks instead of a single coarse-grained lock (improves performance at the 
cost of complexity and potential for deadlock)

2. Use Transactional Memory (requires extra support for tracing read and write sets)

 
Problem 6

A system architect has three choices for an on-chip interconnection network: a uni-directional ring 
(UR), a bi-directional ring (BR) and an NxN mesh network (NM). In addition, the architect has two 
choices for providing coherence between L1 caches: snoop-based (SB) or directory-based (DB). 
There are 16 cores on the chip. All cores have private L1 caches and they share a L2 cache that is 
divided in 16 banks, with one bank attached to each core. The latency to communicate between two 
cores connected directly by a link is 1 cycles. The router latency is one cycle per router that the 
packet goes through. For directory-based coherence the access time to the directory is 5 cycles. 
Assume that there is no contention in any link or the directory. 

a. Which combination of design choices provides the shortest latency to provide coherence? In this 
context, latency is considered to be the time it takes to reach all potential destination cores (not 
including acknowledgments). Consider the worst and average case for a coherence message to reach 
its destination(s) 

b. Now consider 256 cores and a directory access time of 15 cycles, which combination of design 
choices provides the shortest latency to provide coherence in this case? 

Please organize the results in a table as follows:

Case (a) 16 cores

Latency Coherence Type UR BR NM

Worst Case SB 15 8 6

Worst Case DB 5+15 5+8 5+6

Average SB 15 8 5

Average DB 5+8 5+4 5+3
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Case (b) 256 cores

Latency Coherence Type UR BR NM

Worst Case SB 255 128 30

Worst Case DB 15+255 15+128 15+30

Average SB 255 128 23

Average DB 15+8 15+4 15+15

Problem 7

In order to implement a multiprocessor system that behaves correctly, it is necessary to keep caches 
coherent and to implement a precise memory consistency model. 

Your task is to describe 

(a) What is the difference between coherence and consistency? (1-2 sentences) 

(b) Briefly describe the two memory consistency models known as Sequential consistency (SC) and 
Relaxed Memory Order (RMO)? What relaxations do they allow? 

(c)  Which  of  these  two  models  (SC  and  RMO)  is  more  restrictive  in  terms  of  hardware 
implementation? How do these models manage store buffers?

Solution to problem 7

(a) Both  coherence  and consistency describe  observable  orders  of  updates  to  shared  variables. 
However, while  coherence is specified on a per-memory location basis, consistency is specified 
with respect to all memory locations.

(b) Memory consistency models can be defined as enabling certain relaxations on orders of memory 
accesses performed by loads and stores. 

In SC, no orders can be relaxed, meaning that all threads observe the same orders. I.e:

RMO is a memory consistency model in which no orders are automatically enforced (except for the 
intra-thread  order).  Required  orderings  need  to  be  specified  via  specific  instructions  such  as 
memory barriers.  
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(c) SC imposes strong requirements on the orders in which operations can be performed, such as 
requiring all loads to be globally performed. This makes store buffers are ineffective, as all stores 
need to be globally performed before a load can execute.  On the other hand RMO enables many 
optimizations in the memory subsystem. Among others, it allows loads to bypass older stores (to a  
different address), hence enabling the usage of store buffers.

Problem 8

Core multithreading is a technique to improve the utilization of resources in modern processors 
whose performance is limited by long latency events such as cache misses. The goal of this problem 
is to describe the differences between the four models of multithreaded processors that have been 
introduced in class: (1) block multithreading, (2) interleaved multithreading, (3) barrel processors, 
and (4) simultaneous multithreading.

For each alternative, the task is to describe:
 

(a) the granularity of thread switches, i.e. when are threads switched? 
(b) in which types of pipeline (e.g. in-order, out-of-order) can the technique be implemented? 

What is the cost of a thread switch?
(c) what does the software need to provide to achieve best efficiency? 

Solution to Problem 8

(a) Granularity

Block Multithreading:   long latency events, e.g. L1 cache misses

Interleaved Multithreading: Single cycle

Barrel Processors: Single cycle

Simultaneous Multithreading: Usually  single  cycle,  but  multiple  threads  can 
potentially be fetched each cycle

(a) Pipeline

Block Multithreading: Both in-order and out-of-order. Pipeline must be flushed at each 
thread switch

Interleaved Multithreading: Only  in-order  pipelines.  There  is  no  cost  in  switching.  All 
threads are simultaneously active.

Barrel Processors: Only in-order pipelines. Similar to Interleaved MT, there is no 
cost in switching.

Simultaneous Multithreading: Extension of IM for out-of-order pipelines.  No cost in thread 
switching
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(a) Software

Block Multithreading: At least a few active threads (typically 2-4) to switch upon long 
latency events

Interleaved Multithreading: A higher number of threads (typically 4-8) to keep the pipeline 
busy and reduce pipeline bubbles

Barrel Processors: At least as many threads as pipeline stages. Barrel processors can 
only hole a single instruction from each thread in the pipeline.

Simultaneous Multithreading: A few threads (typically 2-4) to hide the L1 miss latencies
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