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What's cooking

1. Lectures 
○ Today: Practice session #2 (8:30h-10h) 
○ Today: GPGPU (10h-12h)
○ Tuesday Feb 25th (9h-12h) Message Passing Hardware
○ Wednesday Feb 26th (8h-10h) Synchronization

2. Lab session 
○ Next Friday (8h-12h @ ED3507), GEM5 + Vector

3. Project Status
○ Feb 26th: deadline for first round of peer feedback
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LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

Lectures 7 - 11 Overview

LECTURE 11
Message Passing Hardware

C
hi

p 
M

ul
tip

ro
ce

ss
or

s
C

lu
st

er
s

3

3



Lecture 10: Outline

● Motivation for GPGPU

● SIMT Programming Model

● Two-stage compilation

● GPU Microarchitecture 

● GPU Memory System
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Why use a GPU for computing?

• GPU uses larger fraction of silicon for computation than CPU.  

• At peak performance GPU uses order of magnitude less energy per 
operation than CPU.

CPU
2nJ/op

GPU
200pJ/op

Rewrite Application

Order of Magnitude More 
Energy Efficient

However….
Application must perform well
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What is a GPU? What is GPGPU? 

• GPU = Graphics Processing Unit
– Accelerator for raster based graphics (OpenGL, DirectX)
– Highly programmable (Turing complete) 
– Commodity hardware 
– 100’s of ALUs;  10’s of 1000s of concurrent threads

• History of GPGPU computing

– GPGPU = General-purpose GPU: Use GPU for General Purpose

– First attempts: express programs using OpenGL, DirectX...

– Brook, Sh (2002) add stream extensions to C language to 
remove graphics hardware details

– GPU Accelerator (2006) added data-parallel arrays

– Nvidia Compute Unified Device Architecture (CUDA, 2007)

– OpenCL (2009), OpenACC (2011), OpenMP 4.x+ (2013)
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GPU Compute Programming Model

   CPU                                              GPU 

How is this system programmed (today)?

8



• CPU “Off-load” parallel kernels to GPU

– Transfer data to GPU memory
– GPU HW spawns threads 
– Need to transfer result data back to CPU main 

memory

CPU+GPU Programming Model

CPU
spawn

done

GPU

CPU

Time

CPU
spawn

GPU
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CUDA/OpenCL Threading Model

• Spawns more threads than GPU can run (some may wait)

• Organize threads into “blocks” (up to 1024 threads per block)

• Threads can communicate/synchronize with other threads in block

• Threads/Blocks have an identifier (can be 1, 2 or 3 dimensional)

• Each kernel spawns a “grid” containing 1 or more thread blocks.

• Motivation: Write parallel software once and run on future 
hardware

kernel( )

thread block 0 thread block 1 thread block N

CPU spawns fork-join style “grid” of parallel 
threads

thread grid
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SIMT Execution Model

• Single-Instruction Multiple-Thread (SIMT)

• Programmer sees MIMD threads (scalar) 
in SPMD (single-program multiple-data) 
programming model

• GPU bundles threads into warps 
(wavefronts) and runs them in lockstep 
on SIMD hardware

• An NVIDIA warp groups 32 consecutive 
threads together (AMD wavefronts group 
64 threads together)

• Aside: the term warp originates from the 
textile industry

[https://en.wikipedia.org/wiki/Warp_and_weft]
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CUDA Syntax Extensions

• Declaration specifiers
__global__ void foo(...);  // kernel entry point (runs on GPU)
__device__ void bar(...); // function callable from a GPU thread

• Syntax for kernel launch
foo<<<500, 128>>>(...); // 500 thread blocks, 128 threads each

• Built in variables for thread identification
dim3 threadIdx; dim3 blockIdx; dim3 blockDim;

1.12 12



Example: Original C Code
SAXPY stands for “Single-Precision A * X Plus Y”. It is a function in the 

standard Basic Linear Algebra Subroutines (BLAS)library

void saxpy_serial(int n, float a, float *x, float *y)  
{ 

for (int i = 0; i < n; ++i)
     y[i] = a*x[i] + y[i]; 
} 

int main() {
  // omitted: allocate and initialize memory
  saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
  // omitted: using result
} 
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CUDA Code

__global__ void saxpy(int n, float a, float *x, float *y) {
   int i = blockIdx.x*blockDim.x + threadIdx.x;
   if(i<n) y[i]=a*x[i]+y[i];
} 

int main() {
  // omitted: allocate and initialize memory
  int nblocks = (n + 255) / 256;

  cudaMalloc((void**) &d_x, n);
  cudaMalloc((void**) &d_y, n);
  cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice);
  cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice);
  saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
  cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost);
  // omitted: using result
}

h_x, h_y: host addresses
d_x, d_y: device addresses

Runs on GPU
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OpenCL Code
__kernel void saxpy(int n, float a, __global float *x, __global float *y) {
   int i = get_global_id(0);
   if(i<n) y[i]=a*x[i]+y[i];
}

int main() {
  // omitted: allocate and initialize memory on host, variable declarations

  int nblocks = (n + 255) / 256;
  int blocksize = 256;

  clGetPlatformIDs(1, &cpPlatform, NULL);
  clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
  cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
  cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1);
  dx = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * n, NULL, &ciErr1);
  dy = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(cl_float) * n, NULL, &ciErr1);

  // omitted: loading program into char string cSourceCL
  cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, 

&ciErr1);
  clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
  ckKernel = clCreateKernel(cpProgram, “saxpy_serial”, &ciErr1);
  
  clSetKernelArg(ckKernel, 0, sizeof(cl_int),   (void*)&n);
  clSetKernelArg(ckKernel, 1, sizeof(cl_float), (void*)&a);
  clSetKernelArg(ckKernel, 2, sizeof(cl_mem),   (void*)&dx);
  clSetKernelArg(ckKernel, 3, sizeof(cl_mem),   (void*)&dy);

  clEnqueueWriteBuffer(cqCommandQueue, dx, CL_FALSE, 0, sizeof(cl_float) * n, x, 0, NULL, NULL);
  clEnqueueWriteBuffer(cqCommandQueue, dy, CL_FALSE, 0, sizeof(cl_float) * n, y, 0, NULL, NULL);
  clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &nblocks, & blocksize, 0, NULL, NULL);
  clEnqueueReadBuffer(cqCommandQueue, dy, CL_TRUE, 0, sizeof(cl_float) * n,   y, 0, NULL, NULL);

  // omitted: using result
}

Runs on GPU
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OpenMP 4.0 & SYCL Example
// OpenMP: directive-based parallel programming model
void saxpy_openmp(int n, float a, float *x, float *y)  
{ 
   #pragma omp target teams distribute parallel for
   for (int i = 0; i < n; ++i) 
      y[i] = a*x[i] + y[i]; 
} 

Runs on GPU
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// SYCL: single-source domain specific embedded language (DSEL)
// based on pure C++11
void saxpy_sycl(int n, float a, float *x, float *y)  
{ 
  … 
   
  cgh.parallel_for(range<1>(n), 
  [=](id<1> idx){ y[i] = a * x[i] + y[i]; });
  
  … 
}

Runs on GPU



SIMT Execution Model
• Challenge:  How to handle branch operations when different 

threads in a warp follow a different path through program? This is 
called branch divergence: e.g.   { if(i < n) … } 

• Solution: Serialize different paths.

Time

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D T3 T4

E T1 T2 T3 T4

A: v = foo[threadIdx.x];

B: if (v < 10) 

C:    v = 0;

   else

D:    v = 10;

E: w = bar[threadIdx.x]+v;

foo[] = {4,8,12,16};
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• A predicate register is used to track active/inactive threads

• Simple, but downside is reduced performance during divergence
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Why SIMT and not "pure" SIMD?
1. Simplifies programming: 

thread-centric programming 
style without explicit 
parallelization

2. Intermediate representation 
independent of the back-end: 
provides portability to other 
devices. 

Both approaches 
overcome limitations of 
the pure SIMD approach

Note: runtime-specialization means that no backwards 
compatibility needs to be provided by the actual GPU ISA!



● High-level virtual instruction set architecture for GPU

○ PTX = Parallel Thread Execution ISA (by Nvidia)

● similar to a RISC ISA (eg ARM, MIPS, SPARC, or ALPHA)

● shares similarity to intermediate representations used within 
optimizing compilers, e.g. limitless set of virtual registers

● before running PTX code, need to compile PTX down to the 
actual GPU ISA (called SASS, “Streaming ASSembler”)

● PTX to SASS compilation accomplished either by GPU driver or  
ptxas assembler (part of NVIDIA’s CUDA Toolkit) 

● AMD follows similar approach, the virtual ISA is HSAIL 
(Heterogeneous System Architecture Intermediate Language) 

What is PTX? How does it work? 
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CUDA SAXPY and PTX
__global__ void saxpy(int n, 

float a, float *x, float *y) 
{
   int i = 
   blockIdx.x*blockDim.x+  

threadIdx.x;

   if(i<n) y[i]=a*x[i]+y[i];
}

SAXPY CUDA kernel

check predicate (i<n)
jump if (i >= n)

y[i]=a*x[i]+y[i];

load parameters 
into registers

blockIdx.x*blockDim.x + 
threadIdx.x;

SAXPY PTX kernel

"virtual" predicate register

declare registers

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html


Just-in-Time Compilation

● The PTX code is compiled further to 
binary code by device driver ahead of 
execution:

○  "just-in-time compilation" (JIT)

● JIT increases application load time, but 
application can benefit from new 
compiler improvements. 

● Also: application can run on devices 
that did not exist at the time the 
application was compiled!

○ remember: GPUs do not ensure 
backward compatibility

● When device driver JIT-compiles some 
PTX code, it automatically caches a 
copy of the generated binary to reduce 
future application load time. 
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GPU Microarchitecture Overview

Single-Instruction, Multiple-Threads

GPU

Interconnection Network

SIMT Core Cluster

SIMT
Core

SIMT
Core

Memory
Partition

GDDR5

Memory
Partition

GDDR5

Memory
Partition

GDDR5 Off-chip 
DRAM

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core
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aka "Streaming Multiprocessor" (SM)



GPU Microarchitecture Overview

GPU

Interconnection Network

SIMT Core Cluster

SIMT
Core

SIMT
Core

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5 Off-chip 
DRAM

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core
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Inside a SIMT Core

• SIMT front end / SIMD backend
• Fine-grained multithreading

– Interleave warp execution to hide latency
– Register values of all threads stays in core 
– Caches are small, but still effective. Why? 

SIMT
Front End SIMD Datapath

Fetch
Decode

Schedule
Branch

Memory Subsystem Icnt.
NetworkSMem L1 D$ Tex $ Const$

Reg
File
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SIMT Front End

Inside an “NVIDIA-style” SIMT Core

SIMD Datapath

AL
U
AL
U

I-Cache Decode

I-Buffer

Score
Board

Issue Operand
Collector

MEM

ALU

Fetch SIMT-Stack

Done (WID)

Valid[1:N]

Branch Target PC

Pred.Active
Mask

• Goal: maximise throughput
• Three decoupled warp schedulers
• Scoreboard
• Large register file
• Multiple (heterogeneous) SIMD functional units:

○ Special Function Unit (SFU), load/store unit, floating-point function unit, integer 
function unit, or Tensor Cores (since Volta) 

Scheduler 1

Scheduler 2

Scheduler 3

25 25



Fetch + Decode

• Arbitrate the I-cache 
among warps
– Cache miss handled by 

fetching again later
• Fetched instruction is 

decoded and then stored in 
the I-Buffer
– 1 or more entries / warp
– Only warp with vacant 

entries are considered in 
fetch

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB

PC 1

PC
2

PC 3

A
R
B

SelectionTo
 I-

C
ac

he

Valid[1:N]

I-Cache Decode

I-Buffer

Fetch
Valid[1:N]
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Instruction Issue

● Select a warp and issue an instruction 
from its I-Buffer for execution

● Scheduling: Greedy-Then-Oldest (GTO)
○ Schedule from a single warp until it stalls
○ Then pick the oldest warp

■ Reduces number of warps that core must 
support to hide long exec latencies by 
overlapping instructions within same thread.

○ In-order Scoreboard to avoid RAW/WAW/WAR

● GT200/later Fermi/Kepler: 
Allow dual issue (superscalar)

● To avoid stalling pipeline might keep 
instruction in I-buffer until know it can 
complete (replay)
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Fetching operands: Register File
• Large number of registers = 256KB on recent GPUs!
• Need “4 ports” (e.g., FMA 3-input, 1-output) 

○ Greatly increases area! (area ∝ number of ports)
• Alternative: banked single ported register file.  How to avoid 

bank conflicts?  
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Banked Register File: Conflicts

Bank 0 Bank 1 Bank 2 Bank 3

R0 R1 R2 R3
R4 R5 R6 R7
R8 R9 R10 R11
… … … …

add.s32 R3, R1, R2; No Conflict

mul.s32 R3, R0, R4; Conflict at bank 0
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Naive Banked Register File (Example)

● It takes six cycles for three instructions to finish reading their 
source registers.

● During this time many of the banks are not accessed.



Operand Collector

• Issue instruction to collector unit.  
• Collector unit similar to reservation station in Tomasulo’s algorithm.
• Stores source register identifiers.  
• Arbiter selects operand accesses that do not conflict on a given cycle.
• Arbiter needs to also consider writeback (or need read+write port)
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Operand Collector (Example)

● Multiple collector units: multiple instructions overlap reading of source 
operands -> helps improve throughput when there are bank conflicts 



GPU On-chip Memory
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Each multiprocessor (SM) has four types of on-chip memory:

1. One set of local 32-bit registers per processor (= Register File)

2. A parallel data cache or shared memory that is shared by all scalar processor cores. 

a. where shared memory space resides (__shared__) 

3. A read-only constant cache that is shared by all scalar processor cores

a. speeds up reads from constant memory (read-only region of device memory)

4. A read-only texture cache that is shared by all scalar processor cores

a. speeds up reads from texture memory (read-only region of device memory) 

b. SMs access texture cache via the texture unit



GPU External Memory
• Throughput-oriented architecture: 

requires high BW
• Use high-BW DRAM (such as GDDR 

or HBM)
• HW combines as many memory 

address as possible to generate 
fewer memory transactions 
(coalescing) 
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Summary

● GPGPU: Motivation

● SIMT Programming Model

● Two-stage compilation

● GPU Microarchitecture 

● GPU Memory System
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