LECTURE 10

General Purpose GPU

Miquel Pericas
EDA284/DIT361 - VT 2020

What's cooking

1. Lectures
o Today: Practice session #2 (8:30h-10h)
o Today: GPGPU (10h-12h)
o Tuesday Feb 25th (9h-12h) Message Passing Hardware
o Wednesday Feb 26th (8h-10h) Synchronization

2. Lab session
o Next Friday (8h-12h @ ED3507), GEMS + Vector

3. Project Status
o Feb 26th: deadline for first round of peer feedback

Chip Multiprocessors

Clusters

Lectures 7 - 11 Overview

LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

LECTURE 11
Message Passing Hardware

Lecture 10: Outline

Motivation for GPGPU
SIMT Programming Model
Two-stage compilation
GPU Microarchitecture

GPU Memory System

4

N 4 S

i..v’ e // // : _‘,_ ——— ’,..;" -
Slides partially Based on:
GPU Computing Architecture

\ HiIPEAC Summer School, July 2015
\ Tor M. Aamodt

aamodt@ece.ubc.ca

University of British Columbia

DIA" Tegra X1

Why use a GPU for computing?

* GPU uses larger fraction of silicon for computation than CPU.

* At peak performance GPU uses order of magnitude less energy per
operation than CPU.

Rewrite Application

—

Order of Magnitude More

Energy Efficient
| However.... l
I Application must perform well [

What is a GPU? What is GPGPU?

* GPU = Graphics Processing Unit
— Accelerator for raster based graphics (OpenGL, DirectX)
— Highly programmable (Turing complete)
— Commodity hardware
— 100’s of ALUs; 10’s of 1000s of concurrent threads

e History of GPGPU computing
— GPGPU = General-purpose GPU: Use GPU for General Purpose

— First attempts: express programs using OpenGL, DirectX...

— Brook, Sh (2002) add stream extensions to C language to
remove graphics hardware details

— GPU Accelerator (2006) added data-parallel arrays
— Nvidia Compute Unified Device Architecture (CUDA, 2007)
— OpenCL (2009), OpenACC (2011), OpenMP 4.x+ (2013)

GPU Compute Programming Model

CPU GPU

How is this system programmed (today)?

CPU+GPU Programming Model

 CPU "Off-load” parallel kernels to GPU

CPU . CPU |- - [CPU .
spawn spawn
GPU GPU

— Time

— Transfer data to GPU memory
— GPU HW spawns threads

— Need to transfer result data back to CPU main
memory

CUDA/OpenCL Threading Model

CPU spawns fork-join style “grid” of parallel

..... h
gkertnerlids :
thread block 0 thread block 1 thread block N
L R L O L T O I A E T T

Spawns more threads than GPU can run (some may wait)

Organize threads into “blocks” (up to 1024 threads per block)
Threads can communicate/synchronize with other threads in block
Threads/Blocks have an identifier (can be 1, 2 or 3 dimensional)
Each kernel spawns a “grid” containing 1 or more thread blocks.

Motivation: Write parallel software once and run on future
hardware 10

SIMT Execution Model

Single-Instruction Multiple-Thread (SIMT)

Programmer sees MIMD threads (scalar)
in SPMD (single-program multiple-data)
programming model

GPU bundles threads into warps

(wavefronts) and runs them in lockstep
on SIMD hardware

An NVIDIA warp groups 32 consecutive
threads together (AMD wavefronts group
64 threads together)

Aside: the term warp originates from the
textile industry

AP
% .

e

{ -
» T
< S e

~

Ly
NG
e
.l‘-.
5

N

-

.

u

e

%
e
LR 7

-
L] -"'| :
W In‘ NN\

Nt

ol

-\

o

.

Teretire

-

o

~3

e

N
L
SRS
L vl
8=
N
3
5=
)
5

s

|

Vv

¥

N

S {

¥

¥,

-
1

N
i
b
- ‘il
i \!‘
%
(N

$
g
N
N

SN

-
N,
- 3 -

b

s

ot
S
R Tl okt
S

s
~
{ !
2 fﬁ;. = W
-IT‘T%. ¥
35N
&-w‘:
M N [N
i 'A‘,‘i‘; |\:! s NS
S
S5

\
N
¥
i
T
i
L

s N) N

‘\T B = : e
- ® o= -

% I K $ O \ »

-
s
-
“
W
-
W
=
=5
- W

%. l’"!l hE Lk B3 T '..",
i a i a i om

=
o~

-

-~

e

=

5
-

L]

-

Py
.‘ g

S

Chorrerd

R

18
WIS
| 's: R
2 diy
TN

Begie

ert
=

ot | ok
H)

.
ERE VA

[https://en.wikipedia.org/wiki/Warp_and_weft]

11

CUDA Syntax Extensions

» Declaration specifiers

__global__ void foo(...); // kernel entry point (runs on GPU)
__device__ void bar(...); // function callable from a GPU thread

« Syntax for kernel launch
foo<<<500, 128>>>(...); // 500 thread blocks, 128 threads each

 Built in variables for thread identification
dim3 threadldx; dim3 blockldx; dim3 blockDim;

1.12

12

Example: Original C Code

SAXPY stands for “Single-Precision A * X Plus Y”. It is a function in the
standard Basic Linear Algebra Subroutines (BLAS)library

void saxpy serial (int n, float a, float *x, float *y)

{

for (int 1 = 0; 1 < n; ++1)
yli] = a*x[1] + y[i]>;
}
int main() {

// omitted: allocate and initialize memory
saxpy serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
// omitted: using result

13

__global_ void saxpy(int n, float a, float *x, float *y) ({

CUDA Code

int i = blockIdx.x*blockDim.x + threadlIdx.x;
if(i<n) yl[il=a*x[1i]+y[i];

int main() {

// omitted: allocate and initialize memory
int nblocks = (n + 255) / 256;
cudaMalloc ((void**) &d x, ;
cudaMalloc ((void**) &d vy, ;

cudaMemcpy (d x,h x,n*sizeof (float), cudaMemcpyHostToDevice) ;
cudaMemcpy (d y,h y,n*sizeof (float), cudaMemcpyHostToDevice) ;
saxpy<<<nblocks, 256>>>(n, 2.0, d x, d vy);

cudaMemcpy (h y,d y,n*sizeof (float), cudaMemcpyDeviceToHost) ;
// omitted: using result

nj;
nj;
(
(

x, h y: host addresses
x, d y: device addresses

14

OpenCL Code

__kernel void saxpy(int n, float a, _ _global float *x, _ global float *y) ({
int 1 = get global 1id(0);
if (i<n) ylil=a*x[i]+y[il; !

int main() {
// omitted: allocate and initialize memory on host, variable declarations

int nblocks = (n + 255) / 256;
int blocksize = 256;

clGetPlatformIDs (1, &cpPlatform, NULL);

clGetDevicelDs (cpPlatform, CL DEVICE TYPE GPU, 1, &cdDevice, NULL);

cxGPUContext = clCreateContext (0, 1, &cdDevice, NULL, NULL, &ciErrl);

cgCommandQueue = clCreateCommandQueue (cxGPUContext, cdDevice, 0, &cikErrl);

dx = clCreateBuffer (cxGPUContext, CL MEM READ ONLY, sizeof(cl float) * n, NULL, &ciErrl);
dy = clCreateBuffer (cxGPUContext, CL MEM READ WRITE, sizeof(cl float) * n, NULL, &ciErrl);

// omitted: loading program into char string cSourceCL

cpProgram = clCreateProgramWithSource (cxGPUContext, 1, (const char **)&cSourceCL, &szKernellength,
&ciErrl) ;

clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);

ckKernel = clCreateKernel (cpProgram, “saxpy serial”, &ciErrl);
clSetKernelArg (ckKernel, 0, sizeof(cl int), (void*) &n) ;
clSetKernelArg (ckKernel, 1, sizeof(cl float), (void¥*)é&a);
clSetKernelArg (ckKernel, 2, sizeof (cl mem), (void*) &dx) ;
clSetKernelArg (ckKernel, 3, sizeof(cl mem), (void>*) &dy) ;

clEnqueueWriteBuffer (cgCommandQueue, dx, CL FALSE, 0, sizeof(cl float) * n, x, 0, NULL, NULL);
clEnqueueWriteBuffer (cqCommandQueue, dy, CL FALSE, 0, sizeof(cl float) * n, y, 0, NULL, NULL);
clEnqueueNDRangeKernel (cqCommandQueue, ckKernel, 1, NULL, &nblocks, & blocksize, 0, NULL, NULL);
clEnqueueReadBuffer (cgqCommandQueue, dy, CL TRUE, 0, sizeof(cl float) * n, y, 0, NULL, NULL);

// omitted: using result

OpenMP 4.0 & SYCL Example

// OpenMP: directive-based parallel programming model
void saxpy openmp (int n, float a, float *x, float *y)

{
. #pragma omp target teams distribute parallel for =
. for (int i = 0; i < n; ++i)
i yI[i] = a*x[i] + yI[il: Runs on GPU

} ___

// SYCL: single-source domain specific embedded language (DSEL)

// based on pure C++11
void saxpy sycl (int n, float a, float *x, float *y)

__

cgh.parallel for (range<l>(n),
[=] (1d<1> 1dx){ yl[1i] = a * x[1] + y[i]; });

SIMT Execution Model

e Challenge: How to handle branch operations when different
threads in a warp follow a different path through program? This is
called branch divergence: e.g. {if(i < n) .. }

e Solution: Serialize different paths.

foo[] = {4,8,12,16}; A

A: v = foo[threadIdx.x];
| | .
B: if (v < 10)
Time
C: v = 0; C
1

D:
E: w = bar[threadIldx.x]+v; E

* A predicate register is used to track active/inactive threads
e Simple, but downside is reduced performance during divergence

17

Why SIMT and not "pure” SIMD?

1. Simplifies programming:
thread-centric programming
style without explicit
parallelization

2. Intermediate representation
independent of the back-end:
provides portability to other
devices.

Both approaches
overcome limitations of
the pure SIMD approach

=

nVvIDIA

® Any source file containing C/C++ CUDA Generic
CUDA language Application

extensions must be
compiled with NVCC

® NVCC separates code
running on the host from
code running on the device

Compiling CUDA for NVIDIA GPUs

® Two-stage compilation:
1. Virtual ISA
® Parallel Thread eXecution
2. Device-specific binary
object

18

What is PTX? How does it work?

High-level virtual instruction set architecture for GPU
o PTX = Parallel Thread Execution ISA (by Nvidia)
similar to a RISC ISA (eg ARM, MIPS, SPARC, or ALPHA)

shares similarity to intermediate representations used within
optimizing compilers, e.g. limitless set of virtual registers

before running PTX code, need to compile PTX down to the
actual GPU ISA (called SASS, “Streaming ASSembler?)

PTX to SASS compilation accomplished either by GPU driver or
ptxas assembler (part of NVIDIA's CUDA Toolkit)

AMD follows similar approach, the virtual ISA is HSAIL
(Heterogeneous System Architecture Intermediate Language)

19

CUDA SAXPY and PTX

__global void saxpy(int n,
float a, float *x, float *vy)
{
int i =
blockIdx.x*blockDim. x+
threadIdx. x;
if (i<n) y[il=a*x[1i]+y[i];
}

SAXPY CUDA kernel

X

nvinia

Compiling CUDA for NVIDIA GPUs

C/C++ CUDA
Application

® Any source file containing
CUDA language
extensions must be
compiled with NVCC

® NVCC separates code
running on the host from
code running on the device

® Two-stage compilation:
1. Virtual ISA
® Parallel Thread eXecution
2. Device-specific binary
object

Specialized
PTX to Target
Compiler

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

T)
D

.visible .entry Z5saxpyifPfS (

.param .u32 Z5saxpyifPfS param 0,
.param .f32 Z5saxpyifPfS param 1,
.param .u64 Z5saxpyifPfS param 2,
.param .u64 Z5saxpyifPfS param 3

s - ‘virtual" predicate register

.reg .pred %p<2>;
.reg .f32 %f<5>;
.reg .b32 %r<6>;
.reg .b64 %rd<8>;

declare registers

1d.param.u32 %r2, [Z5saxpyifPfS param 0];
1d.param. 32 %fl, [Z5saxpyifPfS param 1]
ld.param.u64 %rdl, [Z5saxpyifPfS param 2];
ld.param.u64 %rd2, [Z5saxpyifPfS param 3];
mov.u32 %r3, %ctaid.x;

mov.u32 %r4, %ntid.x;

mov.u32 %r5, %tid.x;
mad.lo.s32 %rl, %rd, %r3, %r5;

setp.ge.s32 %pl, %rl, %r2; <«— check predicate (i<n)
@spl bra BBO 2; -— Jump |f (I S= n)

cvta.to.global.u64 %rd3, %rd2; -\\
cvta.to.global.u64 %rd4, %rdl;
mul.wide.s32 %rd5, %rl, 4;

add.s64 %rd6, %rd4, %rd5;
1d.global.f32 %f2, [%rd6];

add.s64 %rd7, %rd3, %rd5;
1d.global.f32 %f3, [%rd7];
fma.rn.f32 %f4, %f2, %fl, %f3;
st.global.f32 [%rd7], %f4; —//

load parameters
into registers

blockIdx.x*blockDim.x +
threadIdx.x;

> ylil=a*x[i]+y[i]

BBO 2:
ret;

}

4

SAXPY PTX kernel

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

|

nvinia

® Any source file containing CIC++ CUDA Generic
CUDA language Application
extensions must be

compiled with NVCC

® NVCC separates code
running on the host from

Compiling CUDA for NVIDIA GPUs

Just-in-Time Compilation

e The PTX code is compiled further to codelfhiuny on the dexice
binary code by device driver ahead of ® Two stage compilation: Specialized
. PTX to Target
execution:] e Complie

® Parallel Thread eXecution
e " 2. Device-specific binary
o "just-in-time compilation” (JIT) object

e JIT increases application load time, but
application can benefit from new VGG |
compiler improvements. x.cu (device code)

|

e Also: application can run on devices
{ Stage 1 }
(PTX Generation)

that did not exist at the time the
application was compiled!

virtual compute architecture

o remember: GPUs do not ensure
backward compatibility T ouoAruntme

e When device driver JIT-compiles some
PTX code, it automatically caches a
copy of the generated binary to reduce
future application load time.

Stage 2
(Cubin Generation)

x.cubin

real sm architecture

21

GPU Microarchitecture Overview

aka "Streaming Multiprocessor" (SM)

SIMT Core Cluster

SIMT Core Cluster

Single-Instruction, Multiple-Threads

SIMT Core Cluster

)
I
I
I
I
: SIMT SIMT SIMT SIMT SIMT SIMT
l Core Core Core Core Core Core
I
I
! I I
! Interconnection Network
I
: ; ; ;
I Memory Memory Memory
: Partition Partition 0ee Partition
Rk Bt §ommm e oo
GDDR5 GDDR5 Off-chip GDDR5
DRAM

22

GPU Microarchitecture Overview

SIMT Core Cluster

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

s e» e» e G G) G G GEP GEP GEP GEP GEP GEP GED GEP GEP GEP GEP GEP GEP GEDP GEP GEP GEP GEP GEP GEP GEDP GEP GEP GEDP GEP GEP GED GED GEP GED GED GED D e ey

23

Inside a SIMT Core

I
SIMT R
Front End | Fﬁz —p| SIMD Datapath
Fetch
Decode t v
Schedule Memory Subsystem
Branch SMem||L1 D$ T€X$ COHST$

Icnt.
Network

* SIMT front end / SIMD backend
* Fine-grained multithreading

— Interleave warp execution to hide latency

— Register values of all threads stays in core
— Caches are small, but still effective. Why?

24

Inside an “NVIDIA-style” SIMT Core

SIMT Front End

Branch Target PC

Fetch SIMT-Stack
Valid[1:N] — I-Buffer "}vﬂis‘if o I
I-Cache »| Decode ¢ ’ gﬁleergrr::‘
> Score N
—>» Board

 Goal: maximise throughput

* Three decoupled warp schedulers

« Scoreboard

« Large register file

* Multiple (heterogeneous) SIMD functional units:

o Special Function Unit (SFU), load/store unit, floating-point function unit, integer
function unit, or Tensor Cores (since Volta)

Fetch + Decode

* Arbitrate the |-cache
among warps
— Cache miss handled by
fetching again later
* Fetched instruction is

decoded and then stored in |
the |-Buffer

— 1 or more entries / warp

— Only warp with vacant

Score-

entries are considered in

Decode Board
N pc,
_'é- PC, Inst. W1
9 [Bj] PC, Ins‘r.WZ
§’ * 5 Inst. W3
F| |Selection I _ I
v L Issue
Valid[1:N] Issue “Arp
Fetch ,
¢ A Valid[1:N] I-Buffer
Y
I-Cache (| Decode

fetch

=)

26

Instruction Issue

e Select a warp and issue an instruction
from its |-Buffer for execution

e Scheduling: Greedy-Then-Oldest (GTO)

o Schedule from a single warp until it stalls

o Then pick the oldest warp
m Reduces number of warps that core must
support to hide long exec latencies by
overlapping instructions within same thread.
o In-order Scoreboard to avoid RAW/WAW/WAR

e (GT200/later Fermi/Kepler:
Allow dual issue (superscalar)

e To avoid stalling pipeline might keep
instruction in I-buffer until know it can
complete (replay)

Score-
Decode Board

27

Fetching operands: Register File

« Large number of registers = 256KB on recent GPUS!
* Need “4 ports” (e.g., FMA 3-input, 1-output)

o Greatly increases area! (area o< number of ports)
 Alternative: banked single ported register file. How to avoid

bank conflicts?

Score-
PC Decode Board Per-Warp R _Stack Bank Shared| [MSHR
PC, v . erl' arE econv. Stacks Conflict P Mem
2 viinst. Wijr PC|RPC|ActiveMask[1:W]
2 PC, v|Inst. W2|r : e TN “
£ - : PC|RPC|ActiveMask[1:W] Coalesc.|”| Cache [V 7§
S . v]|inst. W3jr PC|RPC|ActiveMask[1:W] 0
= . TOS = Const. 93
= To l To . Cache g
Fetch
Issue & v T [
. Issue Issue exture| | =
I Valid[1:N] . ARB o / > Gache 4—)_
/ Branch Farget PC L e A N, /
Fetch |« -~ ~_—1 Branch Unit e ——
. i ~ \\ ‘.‘/
¢ + Valld[1 N] I'BUffer /R\/(I'glg/ke red. . ALU -__//>
) '\‘ . <€
I-Cache »| Decode ¢ Issue —» RegFile 1
A Score T I MEM |—»
—>»_Board
Done (WID)
28

Banked Register File: Conflicts

Bank O Bank 1 Bank 2 Bank 3
RO R1 R2 R3
R4 R5 R6 R7
R8 R9 R10 R11
adds R3, R1l, R2; No Conflict

mul.s32 R3, RO, R4; ConflictatbankO

S ms)

29

Naive Banked Register File (Example)

ils mad r2,, r5,, r4,, ré6,
12% add E5i; ¥5ps Xy
Decode
Cycle |Warp Instruction
0 w3 1l mad ¥2.. 65, Fd. X6
l 1 w0 125 add Y5 54 Xk
4 wl 12 add X5 x5y xrl
Cycle >
1 2 3 4 5 6
Ofw3:1il:r4
=4 1ljw3:il:r5w0:i2:r1w0:i2:r5wl:i2:r1 SuNSEERIEEEE wl:i2: x5
pS 2w3:11:xr6 w3zil:r2
3
EU W3 WO

e |t takes six cycles for three instructions to finish reading their

source registers.

e During this time many of the banks are not accessed.

30

Operand Collector

(from instruction decode stage)
| |—> issue
¢ w0 mad
3] ———— 1>
—» -- Bank QO -- 4?» P ———
Lol ———— 9
I w3 add E
218, 3, ... 0}
—> [[+ Bank 1 e | [g 1 ey
, (0] S I e —
Arbitrator l — S—
i Wl add >
. .o .o . 1r2)110,0,.., O —» .
Bank 2 i PTE g 1S P :
1 —
Bank 3 | w2 add :
— *+ ban o] 1r2[1[1,2, .., 6 >
pi IR H e me)
+ [——
Single-Ported SIMD
: . Crossbar Collector Units : ;
Register File Banks Execution Unit

Issue instruction to collector unit.

Collector unit similar to reservation station in Tomasulo’s algorithm.
Stores source register identifiers.

Arbiter selects operand accesses that do not conflict on a given cycle.
Arbiter needs to also consider writeback (or need read+write port)

Operand Collector (Example)

il: add rl, r2; 5 ‘
i2: mad ¥d; ¥3; ¥l; ¥l
Cycle | Warp Instruction
0| wl ilz add xl,, r2;, r5
1] w2 ils add ¥l ¥24; YDy
2 w3 ils add rlg, 24, Thj
3| woO i2: mad rd,,; 35 rly, Tl
Cycle >
i 2 3 4 5 6
0 w2:r2 w3:r5 w3:rl
= 1 w3:r2
53 2 wl:r5 wlzrl
3| wilzr2 w2:r5:w0:r3 . w0 :xr7
EU wl w2 w3

e Multiple collector units: multiple instructions overlap reading of source
operands -> helps improve throughput when there are bank conflicts

32

GPU On-chip Memory

Bank |, [Shared| [m
—>| Conflict ®| Mem

By

Access Data
—» Coalesc. > Cache o

cOr

»| Const.
Cache \ig

Memory Port ¢ @

Texture
Cache \ig

>

Each multiprocessor (SM) has four types of on-chip memory:

1. One set of local 32-bit registers per processor (= Register File)
2. A parallel data cache or shared memory that is shared by all scalar processor cores.
a. where shared memory space resides (shared)
3. Aread-only constant cache that is shared by all scalar processor cores
a. speeds up reads from constant memory (read-only region of device memory)
4. A read-only texture cache that is shared by all scalar processor cores

a. speeds up reads from texture memory (read-only region of device memory)
b. SMs access texture cache via the texture unit

GPU External Memory

« Throughput-oriented architecture:
requires high BW

= Bank _)Shared MSHR
Conflict [*| Mem t _
« Use high-BW DRAM (such as GDDR
Access N Data o
é—)Coalesc. Cache V7[5 or HBM)
0. .
U > 8onﬁt. " B « HW combines as many memory
acne .
§ address as possible to generate
> 'g;‘é‘;fei fewer memory transactions
(coalescing)
FO S O U I SO S GO g Q;z?’g Q;ob\' 06'» zfob’b é:}’h
T EELCEELELELEETLTLE N ol < oS N

6 0 1V o O 0

Figure 1.18: Coalesced uncoalesced memory requests. Left: all threads are accessing sequential mem-

ory addresses (coalesced); right: threads are accessing non-sequential memory addresses (uncoalesced):
courtesy of [72].

34

Summary

GPGPU: Motivation

SIMT Programming Model
Two-stage compilation
GPU Microarchitecture

GPU Memory System

35

