
LECTURE 10

General Purpose GPU

Miquel Pericàs
EDA284/DIT361 - VT 2020

1

What's cooking

1. Lectures
○ Today: Practice session #2 (8:30h-10h)
○ Today: GPGPU (10h-12h)
○ Tuesday Feb 25th (9h-12h) Message Passing Hardware
○ Wednesday Feb 26th (8h-10h) Synchronization

2. Lab session
○ Next Friday (8h-12h @ ED3507), GEM5 + Vector

3. Project Status
○ Feb 26th: deadline for first round of peer feedback

2

2

LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

Lectures 7 - 11 Overview

LECTURE 11
Message Passing Hardware

C
hi

p
M

ul
tip

ro
ce

ss
or

s
C

lu
st

er
s

3

3

Lecture 10: Outline

● Motivation for GPGPU

● SIMT Programming Model

● Two-stage compilation

● GPU Microarchitecture

● GPU Memory System

4

5

HiPEAC Summer School, July 2015

Tor M. Aamodt

aamodt@ece.ubc.ca

 University of British Columbia

Slides partially Based on:
GPU Computing Architecture

Why use a GPU for computing?

• GPU uses larger fraction of silicon for computation than CPU.

• At peak performance GPU uses order of magnitude less energy per
operation than CPU.

CPU
2nJ/op

GPU
200pJ/op

Rewrite Application

Order of Magnitude More
Energy Efficient

However….
Application must perform well

6

What is a GPU? What is GPGPU?

• GPU = Graphics Processing Unit
– Accelerator for raster based graphics (OpenGL, DirectX)
– Highly programmable (Turing complete)
– Commodity hardware
– 100’s of ALUs; 10’s of 1000s of concurrent threads

• History of GPGPU computing

– GPGPU = General-purpose GPU: Use GPU for General Purpose

– First attempts: express programs using OpenGL, DirectX...

– Brook, Sh (2002) add stream extensions to C language to
remove graphics hardware details

– GPU Accelerator (2006) added data-parallel arrays

– Nvidia Compute Unified Device Architecture (CUDA, 2007)

– OpenCL (2009), OpenACC (2011), OpenMP 4.x+ (2013)
7

GPU Compute Programming Model

 CPU GPU

How is this system programmed (today)?

8

• CPU “Off-load” parallel kernels to GPU

– Transfer data to GPU memory
– GPU HW spawns threads
– Need to transfer result data back to CPU main

memory

CPU+GPU Programming Model

CPU
spawn

done

GPU

CPU

Time

CPU
spawn

GPU

9

CUDA/OpenCL Threading Model

• Spawns more threads than GPU can run (some may wait)

• Organize threads into “blocks” (up to 1024 threads per block)

• Threads can communicate/synchronize with other threads in block

• Threads/Blocks have an identifier (can be 1, 2 or 3 dimensional)

• Each kernel spawns a “grid” containing 1 or more thread blocks.

• Motivation: Write parallel software once and run on future
hardware

kernel()

thread block 0 thread block 1 thread block N

CPU spawns fork-join style “grid” of parallel
threads

thread grid

10

SIMT Execution Model

• Single-Instruction Multiple-Thread (SIMT)

• Programmer sees MIMD threads (scalar)
in SPMD (single-program multiple-data)
programming model

• GPU bundles threads into warps
(wavefronts) and runs them in lockstep
on SIMD hardware

• An NVIDIA warp groups 32 consecutive
threads together (AMD wavefronts group
64 threads together)

• Aside: the term warp originates from the
textile industry

[https://en.wikipedia.org/wiki/Warp_and_weft]

11

CUDA Syntax Extensions

• Declaration specifiers
__global__ void foo(...); // kernel entry point (runs on GPU)
__device__ void bar(...); // function callable from a GPU thread

• Syntax for kernel launch
foo<<<500, 128>>>(...); // 500 thread blocks, 128 threads each

• Built in variables for thread identification
dim3 threadIdx; dim3 blockIdx; dim3 blockDim;

1.12 12

Example: Original C Code
SAXPY stands for “Single-Precision A * X Plus Y”. It is a function in the

standard Basic Linear Algebra Subroutines (BLAS)library

void saxpy_serial(int n, float a, float *x, float *y)
{

for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

int main() {
 // omitted: allocate and initialize memory
 saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
 // omitted: using result
}

13

CUDA Code

__global__ void saxpy(int n, float a, float *x, float *y) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if(i<n) y[i]=a*x[i]+y[i];
}

int main() {
 // omitted: allocate and initialize memory
 int nblocks = (n + 255) / 256;

 cudaMalloc((void**) &d_x, n);
 cudaMalloc((void**) &d_y, n);
 cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice);
 cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice);
 saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
 cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost);
 // omitted: using result
}

h_x, h_y: host addresses
d_x, d_y: device addresses

Runs on GPU

14

OpenCL Code
__kernel void saxpy(int n, float a, __global float *x, __global float *y) {
 int i = get_global_id(0);
 if(i<n) y[i]=a*x[i]+y[i];
}

int main() {
 // omitted: allocate and initialize memory on host, variable declarations

 int nblocks = (n + 255) / 256;
 int blocksize = 256;

 clGetPlatformIDs(1, &cpPlatform, NULL);
 clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL);
 cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1);
 cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1);
 dx = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * n, NULL, &ciErr1);
 dy = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(cl_float) * n, NULL, &ciErr1);

 // omitted: loading program into char string cSourceCL
 cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength,

&ciErr1);
 clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
 ckKernel = clCreateKernel(cpProgram, “saxpy_serial”, &ciErr1);

 clSetKernelArg(ckKernel, 0, sizeof(cl_int), (void*)&n);
 clSetKernelArg(ckKernel, 1, sizeof(cl_float), (void*)&a);
 clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&dx);
 clSetKernelArg(ckKernel, 3, sizeof(cl_mem), (void*)&dy);

 clEnqueueWriteBuffer(cqCommandQueue, dx, CL_FALSE, 0, sizeof(cl_float) * n, x, 0, NULL, NULL);
 clEnqueueWriteBuffer(cqCommandQueue, dy, CL_FALSE, 0, sizeof(cl_float) * n, y, 0, NULL, NULL);
 clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &nblocks, & blocksize, 0, NULL, NULL);
 clEnqueueReadBuffer(cqCommandQueue, dy, CL_TRUE, 0, sizeof(cl_float) * n, y, 0, NULL, NULL);

 // omitted: using result
}

Runs on GPU

15

OpenMP 4.0 & SYCL Example
// OpenMP: directive-based parallel programming model
void saxpy_openmp(int n, float a, float *x, float *y)
{
 #pragma omp target teams distribute parallel for
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

Runs on GPU

16

// SYCL: single-source domain specific embedded language (DSEL)
// based on pure C++11
void saxpy_sycl(int n, float a, float *x, float *y)
{
 …

 cgh.parallel_for(range<1>(n),
 [=](id<1> idx){ y[i] = a * x[i] + y[i]; });

 …
}

Runs on GPU

SIMT Execution Model
• Challenge: How to handle branch operations when different

threads in a warp follow a different path through program? This is
called branch divergence: e.g. { if(i < n) … }

• Solution: Serialize different paths.

Time

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D T3 T4

E T1 T2 T3 T4

A: v = foo[threadIdx.x];

B: if (v < 10)

C: v = 0;

 else

D: v = 10;

E: w = bar[threadIdx.x]+v;

foo[] = {4,8,12,16};

17

• A predicate register is used to track active/inactive threads

• Simple, but downside is reduced performance during divergence

18

Why SIMT and not "pure" SIMD?
1. Simplifies programming:

thread-centric programming
style without explicit
parallelization

2. Intermediate representation
independent of the back-end:
provides portability to other
devices.

Both approaches
overcome limitations of
the pure SIMD approach

Note: runtime-specialization means that no backwards
compatibility needs to be provided by the actual GPU ISA!

● High-level virtual instruction set architecture for GPU

○ PTX = Parallel Thread Execution ISA (by Nvidia)

● similar to a RISC ISA (eg ARM, MIPS, SPARC, or ALPHA)

● shares similarity to intermediate representations used within
optimizing compilers, e.g. limitless set of virtual registers

● before running PTX code, need to compile PTX down to the
actual GPU ISA (called SASS, “Streaming ASSembler”)

● PTX to SASS compilation accomplished either by GPU driver or
ptxas assembler (part of NVIDIA’s CUDA Toolkit)

● AMD follows similar approach, the virtual ISA is HSAIL
(Heterogeneous System Architecture Intermediate Language)

What is PTX? How does it work?

19

20

CUDA SAXPY and PTX
__global__ void saxpy(int n,

float a, float *x, float *y)
{
 int i =
 blockIdx.x*blockDim.x+

threadIdx.x;

 if(i<n) y[i]=a*x[i]+y[i];
}

SAXPY CUDA kernel

check predicate (i<n)
jump if (i >= n)

y[i]=a*x[i]+y[i];

load parameters
into registers

blockIdx.x*blockDim.x +
threadIdx.x;

SAXPY PTX kernel

"virtual" predicate register

declare registers

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

Just-in-Time Compilation

● The PTX code is compiled further to
binary code by device driver ahead of
execution:

○ "just-in-time compilation" (JIT)

● JIT increases application load time, but
application can benefit from new
compiler improvements.

● Also: application can run on devices
that did not exist at the time the
application was compiled!

○ remember: GPUs do not ensure
backward compatibility

● When device driver JIT-compiles some
PTX code, it automatically caches a
copy of the generated binary to reduce
future application load time.

21

GPU Microarchitecture Overview

Single-Instruction, Multiple-Threads

GPU

Interconnection Network

SIMT Core Cluster

SIMT
Core

SIMT
Core

Memory
Partition

GDDR5

Memory
Partition

GDDR5

Memory
Partition

GDDR5 Off-chip
DRAM

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

22

aka "Streaming Multiprocessor" (SM)

GPU Microarchitecture Overview

GPU

Interconnection Network

SIMT Core Cluster

SIMT
Core

SIMT
Core

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5

Memory
Partition

GDDR3/GDDR5 Off-chip
DRAM

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

23

Inside a SIMT Core

• SIMT front end / SIMD backend
• Fine-grained multithreading

– Interleave warp execution to hide latency
– Register values of all threads stays in core
– Caches are small, but still effective. Why?

SIMT
Front End SIMD Datapath

Fetch
Decode

Schedule
Branch

Memory Subsystem Icnt.
NetworkSMem L1 D$ Tex $ Const$

Reg
File

24

SIMT Front End

Inside an “NVIDIA-style” SIMT Core

SIMD Datapath

AL
U
AL
U

I-Cache Decode

I-Buffer

Score
Board

Issue Operand
Collector

MEM

ALU

Fetch SIMT-Stack

Done (WID)

Valid[1:N]

Branch Target PC

Pred.Active
Mask

• Goal: maximise throughput
• Three decoupled warp schedulers
• Scoreboard
• Large register file
• Multiple (heterogeneous) SIMD functional units:

○ Special Function Unit (SFU), load/store unit, floating-point function unit, integer
function unit, or Tensor Cores (since Volta)

Scheduler 1

Scheduler 2

Scheduler 3

25 25

Fetch + Decode

• Arbitrate the I-cache
among warps
– Cache miss handled by

fetching again later
• Fetched instruction is

decoded and then stored in
the I-Buffer
– 1 or more entries / warp
– Only warp with vacant

entries are considered in
fetch

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB

PC 1

PC
2

PC 3

A
R
B

SelectionTo
 I-

C
ac

he

Valid[1:N]

I-Cache Decode

I-Buffer

Fetch
Valid[1:N]

26

Instruction Issue

● Select a warp and issue an instruction
from its I-Buffer for execution

● Scheduling: Greedy-Then-Oldest (GTO)
○ Schedule from a single warp until it stalls
○ Then pick the oldest warp

■ Reduces number of warps that core must
support to hide long exec latencies by
overlapping instructions within same thread.

○ In-order Scoreboard to avoid RAW/WAW/WAR

● GT200/later Fermi/Kepler:
Allow dual issue (superscalar)

● To avoid stalling pipeline might keep
instruction in I-buffer until know it can
complete (replay)

27

Fetching operands: Register File
• Large number of registers = 256KB on recent GPUs!
• Need “4 ports” (e.g., FMA 3-input, 1-output)

○ Greatly increases area! (area ∝ number of ports)
• Alternative: banked single ported register file. How to avoid

bank conflicts?

28

Banked Register File: Conflicts

Bank 0 Bank 1 Bank 2 Bank 3

R0 R1 R2 R3
R4 R5 R6 R7
R8 R9 R10 R11
… … … …

add.s32 R3, R1, R2; No Conflict

mul.s32 R3, R0, R4; Conflict at bank 0

29

30

Naive Banked Register File (Example)

● It takes six cycles for three instructions to finish reading their
source registers.

● During this time many of the banks are not accessed.

Operand Collector

• Issue instruction to collector unit.
• Collector unit similar to reservation station in Tomasulo’s algorithm.
• Stores source register identifiers.
• Arbiter selects operand accesses that do not conflict on a given cycle.
• Arbiter needs to also consider writeback (or need read+write port)

31 31

32

Operand Collector (Example)

● Multiple collector units: multiple instructions overlap reading of source
operands -> helps improve throughput when there are bank conflicts

GPU On-chip Memory

33

Each multiprocessor (SM) has four types of on-chip memory:

1. One set of local 32-bit registers per processor (= Register File)

2. A parallel data cache or shared memory that is shared by all scalar processor cores.

a. where shared memory space resides (__shared__)

3. A read-only constant cache that is shared by all scalar processor cores

a. speeds up reads from constant memory (read-only region of device memory)

4. A read-only texture cache that is shared by all scalar processor cores

a. speeds up reads from texture memory (read-only region of device memory)

b. SMs access texture cache via the texture unit

GPU External Memory
• Throughput-oriented architecture:

requires high BW
• Use high-BW DRAM (such as GDDR

or HBM)
• HW combines as many memory

address as possible to generate
fewer memory transactions
(coalescing)

34

Summary

● GPGPU: Motivation

● SIMT Programming Model

● Two-stage compilation

● GPU Microarchitecture

● GPU Memory System

35

