

# LECTURE 11

# Message Passing Hardware

Miquel Pericàs  
EDA284/DIT361 - VT 2020

# What's cooking

## 1. Lectures

- Today (9h-12h): **GPGPU (part 2) + Message Passing Hardware**
- Tomorrow Feb 26th (8h-10h) **Synchronization**

## 2. Lab session

- Friday (8h-12h @ ED3507), GEM5 + Vector

## 3. Project Status

- Tomorrow: deadline for first round of peer feedback

# Lectures 7 - 11 Overview

Chip Multiprocessors

## LECTURE 7

Core Multithreading

## LECTURE 8

Chip Multiprocessing

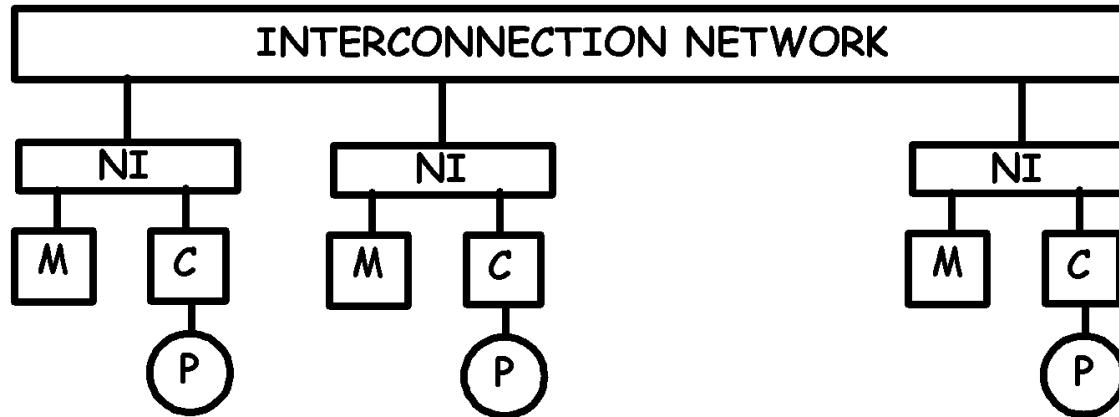
## LECTURE 9

On-chip Networks

## LECTURE 10

GPGPU architecture

Clusters


## LECTURE 11

Message Passing Hardware

# Lecture 11: Outline

- **Message Passing Programming**
  - Synchronous / Asynchronous
- **Message Passing Hardware**
  - CPU based, DMA & Message Processors
- **Example: Infiniband**
  - Infiniband Architecture
  - Programming API (IB Verbs vs Sockets)

# Message-Passing: Multicomputers



- Processing nodes interconnected by a network
- Communication carried out by message exchanges
- Scales well
- Hardware is inexpensive
- Software is complex, mostly based on MPI (Message Passing Interface)
  - This programming style is called “Message Passing”
- Nowadays, processing nodes are often CMPs. Software becomes even more complex: “MPI + X”, where X is OpenMP, pthreads, TBB, etc..

# EXAMPLE: MATRIX MULTIPLY + SUM

sequential program:

```
1         sum = 0;  
2         for (i=0;i<N;i++)  
3             for (j=0;j<N;j++){  
4                 C[i,j] = 0;  
5                 for (k=0;k<N;k++)  
6                     C[i,j] = C[i,j] + A[i,k]*B[k,j];  
7                 sum += C[i,j];  
8             }
```

- multiply matrices  $A[N,N]$  by  $B[N,N]$  and store result in  $C[N,N]$
- add all elements of  $C[ , ]$  and store in variable 'sum'

$$N \begin{bmatrix} \textcolor{red}{x} \textcolor{blue}{x} \\ C \end{bmatrix} = \begin{bmatrix} \textcolor{blue}{\text{---}} \\ A \end{bmatrix} \times \begin{bmatrix} \textcolor{red}{|} \textcolor{blue}{|} \\ B \end{bmatrix}$$

How to parallelize this on a message passing computer?

# Example: Matrix Multiply + Sum

## MESSAGE-PASSING PROGRAM

```
myN = N/nproc;
if(pid == 0){
    for(i=1; i<nproc; i++){
        k=i*N/nproc;
        SEND(&A[k][0], myN*N*sizeof(float),i, IN1);
        SEND(&B[0][0], N*N*sizeof(float), i, IN2);
    } else {
        RECV(&A[0][0], myN*N*sizeof(float),0,IN1);
        RECV(&B[0][0], N*N*sizeof(float), 0,IN2);
    }
    mysum = 0;
    for (i=0, i<myN, i++)
        for (j=0, j<N, j++)
            C[i,j] = 0;
            for (k=0,k<N, k++)
                C[i,j] = C[i,j] + A[i,k]*B [k,j];
    mysum += C[i,j];
}
```

```
if (pid == 0){
    sum = mysum;
    for(i=1;i<nproc;i++){
        RECV(&mysum, sizeof(float),i,SUM);
        sum +=mysum;
    }
    for(i=1; i<nproc;i++){
        k=i*N/nproc;
        RECV(&C[k][0], myN*N*sizeof(float),i,RES);
    }
} else{
    SEND(&mysum, sizeof (float),0, SUM);
    SEND(&C[0][0], myN*N*sizeof(float),0,RES),
}
```

Assume matrices A and B initially in one computational node, the master node (PID=0)

Strategy: (1) Copy full matrix 'B' and rows of matrix 'A' to compute nodes, (2) accumulate sum, and (3) copy back rows of matrix 'C'

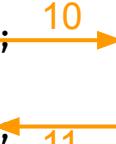
# Synchronous Message-Passing

- **CODE FOR THREAD T1:**

```
A = 10;  
SEND(&A,sizeof(A),T2,SEND_A);  
A = A+1;  
RECV(&C,sizeof(C),T2,SEND_B);  
printf(C);
```

- **CODE FOR THREAD T2:**

```
B = 5;  
RECV(&B,sizeof(B),T1,SEND_A);  
B=B+1;  
SEND(&B,sizeof(B),T1,SEND_B);
```


- **EACH SEND/RECV HAS 4 OPERANDS:**

- Starting address in memory
- Size of message
- Destination/Source thread id
- Tag connecting sends and receives

# Synchronous Message-Passing

- **CODE FOR THREAD T1:**

```
A = 10;  
SEND(&A,sizeof(A),T2,SEND_A);  
A = A+1;  
RECV(&C,sizeof(C),T2,SEND_B);  
printf(C);
```



- **CODE FOR THREAD T2:**

```
B = 5;  
RECV(&B,sizeof(B),T1,SEND_A);  
B=B+1;  
SEND(&B,sizeof(B),T1,SEND_B);
```

- In synchronous M-P sender blocks until `recv` is started and receiver blocks until first message bytes are sent
  - Communication implies Synchronization
  - Note: this is usually much more than waiting for message propagation
- Question: what is the value printed under synchronous M-P?
  - Value 10 is received in B by T2; B is incremented by 1
  - Then the new value of B (11) is sent and received by T1 into C
  - And Thread 1 Prints "11"

# Synchronous Message-Passing

## ADVANTAGE:

- communication enforces synchronization
- simpler to reason about the outcome of a program

## DISADVANTAGES:

- prone to deadlock
- blocks threads (no overlap of communication with computation)

## DEADLOCK Example

### Code for thread T1:

```
A = 10;  
SEND(&A, sizeof(A), T2, SEND_A);  
RECV(&C, sizeof(C), T2, SEND_B);
```

### Code for thread T2:

```
B = 5;  
SEND(&B, sizeof(B), T1, SEND_B);  
RECV(&D, sizeof(D), T1, SEND_A);
```

**To eliminate the deadlock:** swap the send/recv pair in T2 or employ asynchronous message-passing

# Asynchronous Message-Passing

## CODE FOR THREAD T1:

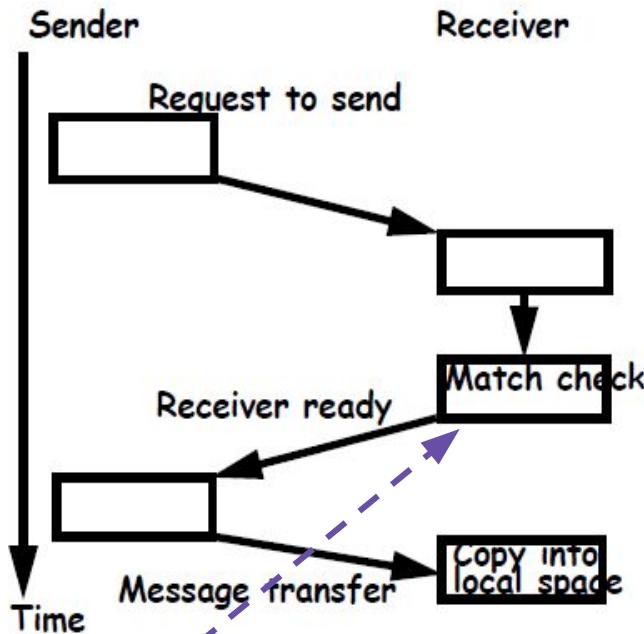
```
A = 10;  
ASEND(&A, sizeof(A), T2, SEND_A);  
    <Unrelated computation;>  
SRECV(&B, sizeof(B), T2, SEND_B);
```

## CODE FOR THREAD T2:

```
B = 5;  
ASEND(&B, sizeof(B), T1, SEND_B);  
    <Unrelated computation;>  
SRECV(&A, sizeof(B), T1, SEND_A);
```

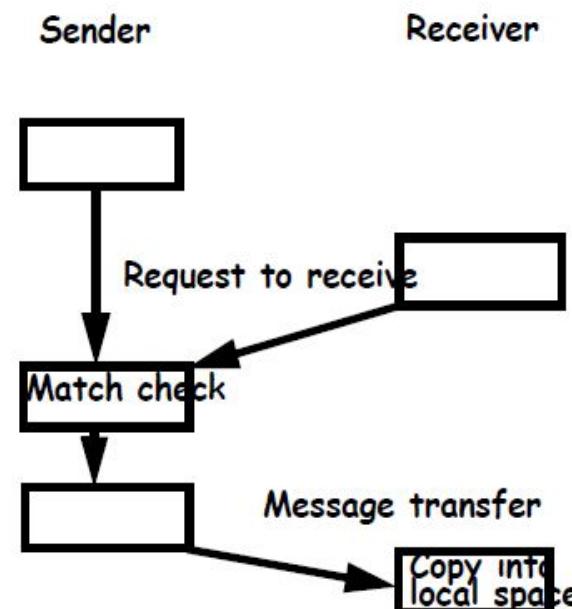


- **Blocking vs Non-blocking asynchronous message passing**


- BLOCKING: resume only when area of memory has been buffered (send) and when message has been copied to user space (recv)
- NON-BLOCKING: resume early, unsafe to reuse buffer space. Probe functions can be used to check whether data has been copied (e.g. MPI\_Wait())

# Message-Passing Protocols

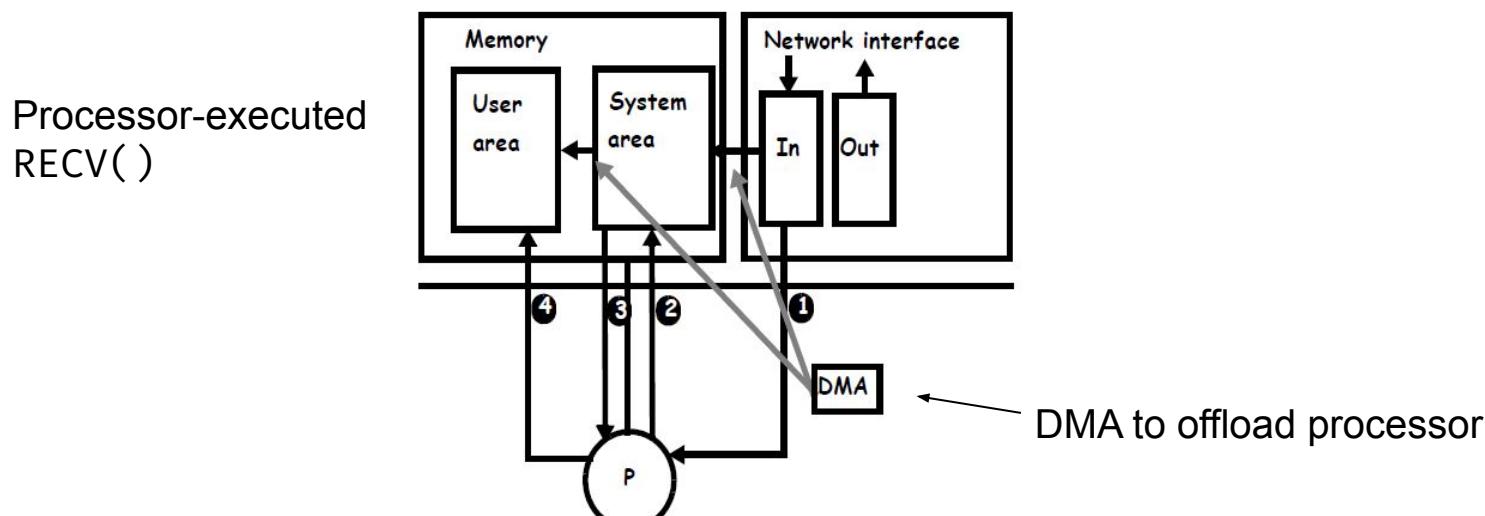
## Synchronous M-P


### Three-phase protocol

#### (A) SENDER INITIATED

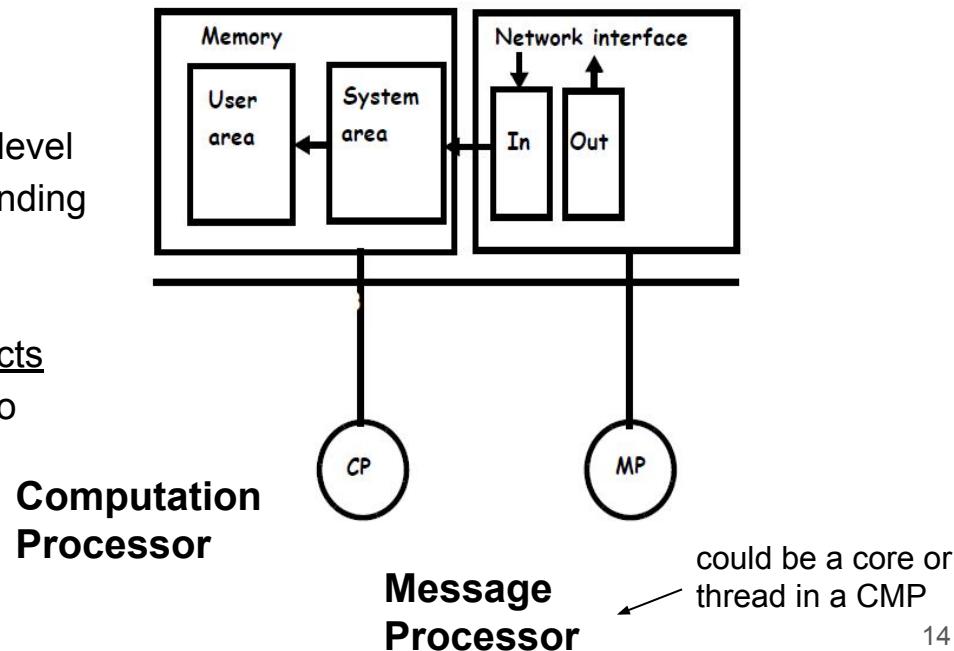


### Two-phase protocol


#### (B) RECEIVER-INITIATED



- **Case (A):** Match table keeps track of the status of all RECVs previously executed with the receiver process identity and the tag.
- **Case (B):** Match table at the sender. Keeps track of the status of all SENDs


# HW support for message passing protocols

- General interconnect networks provide primitive network transactions to implement M-P protocols. Additional HW targets:
  - reduce message transfer latency, particularly important for synchronous M-P
    - (also benefits asynchronous M-P, but to a smaller degree)
  - offload computation processors from network tasks
- Data must be copied from/to memory to/from network interface (NI)
  - without HW support: sender copies data to system memory, and then from system memory to network interface + vice-versa. Processor may not keep up with injection rate!
  - DMA (Direct Memory Access) can speed up message transfers and offload the processor
    - DMA engine performs the copies in the background, offloading processor
    - DMA is programmed by the processor; specify start address and size



# HW support for message passing protocols

- **Support for "user-level" vs "system-level" messages**
  - Source/destination in user memory vs system memory
  - Basic message passing systems drive DMA engine from O/S
    - This is needed for protection between users
    - Message is first copied into system space and then into user space (receive)
    - Message is copied from user space to system space (send)
  - Optimization: Tag user-level messages so that they are picked up and delivered directly in user memory space (called "zero-copy")
- **Beyond DMA: Dedicated message processors**
  - Use a special processor to process messages on both ends + other higher-level functions (matching, packet forming, sending acks etc)
  - Relieves the compute O/S from doing it
  - Preferred approach for HPC interconnects
- Potentially, a core or thread in a CMP can also perform this function

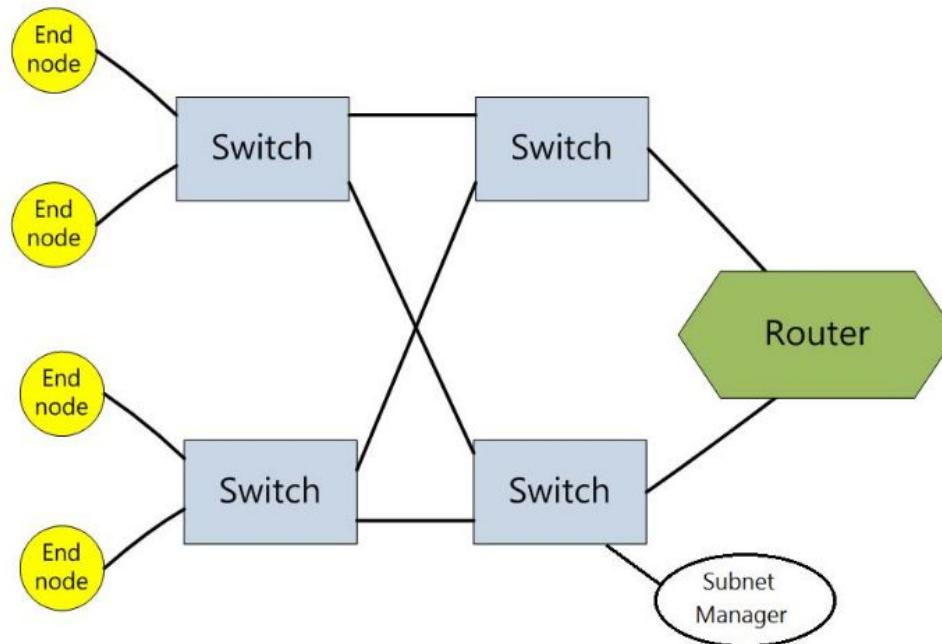


# What are the capabilities of HPC Networks?

- Intelligent Network Interface Cards
- Support entire protocol processing completely in hardware (hardware protocol offload engines)
- Provide a rich communication interface to applications
  - *User-level communication capability*
  - Gets rid of intermediate data buffering requirements
- No software signaling between communication layers
  - All layers are implemented on a **dedicated** hardware unit, and not on a **shared** host CPU

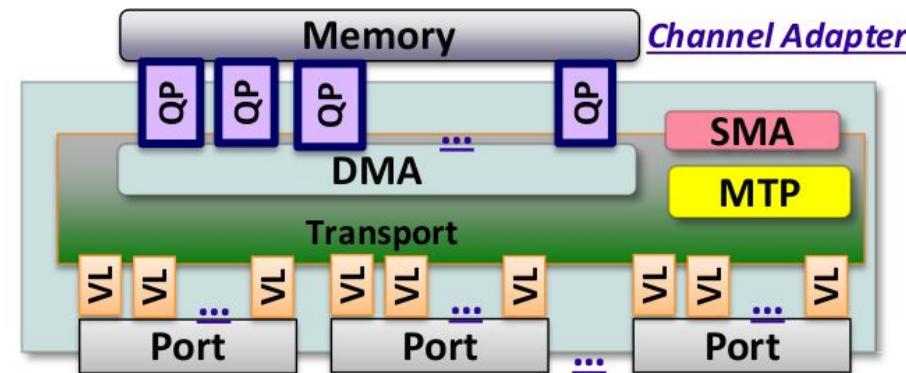
# Example: Infiniband

# Why InfiniBand (IB)?


- Scientific HPC apps today run on supercomputing platforms with **1000s of communicating cores**
  - Need high performance interconnect to support high bandwidth and low latency requirements
- InfiniBand (IB) is a packet-switched networking technology defined by the InfiniBand Trade Association (IBTA) as a *high bandwidth, low latency* interconnect for **data center and HPC clusters**.
- Currently used in 28% of the top 500 supercomputers (as of November 2019)

TOP 10 Interconnect Technologies: in Top500!

|   |                     | Count | System Share (%) | Rmax (TFlops) | Rpeak (TFlops) | Cores      |
|---|---------------------|-------|------------------|---------------|----------------|------------|
| 1 | Gigabit Ethernet    | 259   | 51.8             | 430,575       | 897,359        | 16,913,772 |
| 2 | Infiniband          | 140   | 28               | 662,896       | 1,013,372      | 15,946,634 |
| 3 | Omnipath            | 50    | 10               | 181,500       | 285,493        | 4,704,264  |
| 4 | Custom Interconnect | 45    | 9                | 356,933       | 524,811        | 24,991,220 |
| 5 | Proprietary Network | 5     | 1                | 13,009        | 16,406         | 508,496    |
| 6 | Myrinet             | 1     | 0.2              | 1,975         | 6,595          | 89,600     |


# Infiniband Architecture

- InfiniBand Architecture of a single subnet with end nodes (typically computers), switches, a Subnet Manager (SM), and optionally a router connecting various subnets.
- End nodes attach to the subnet via Host Channel Adapters (HCAs), which are comparable to Ethernet Network Interface Cards (NICs). Each HCA supports one or more physical ports.



# Host Channel Adapter

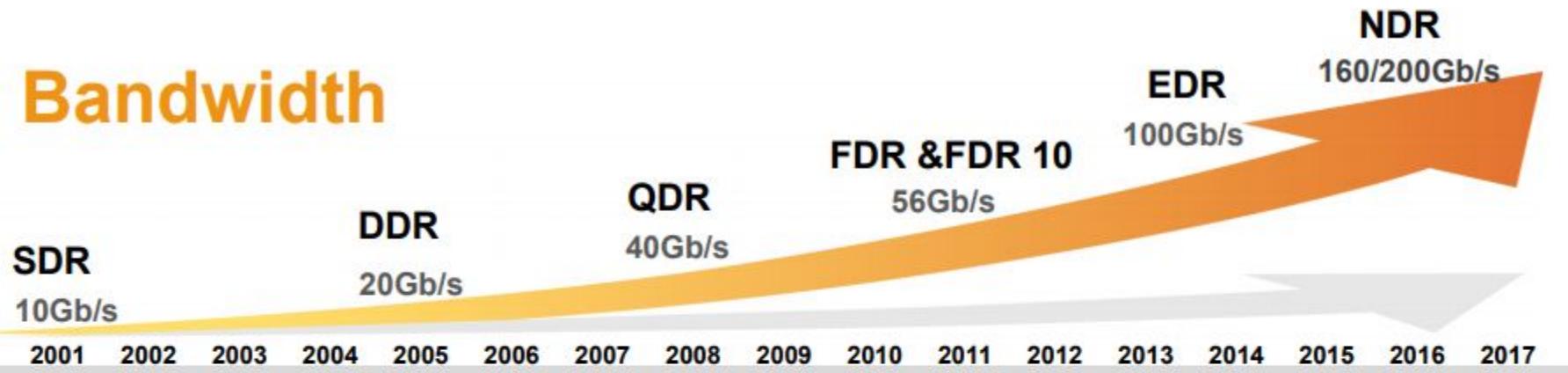
- In InfiniBand clusters, the hardware NIC is replaced by a hardware **Host Channel Adapter (HCA)**:
  - provides InfiniBand transport and network layers (comparable to TCP and IP SW)
  - provides link and physical layers (comparable to Ethernet hardware layers).
  - **Hardware protocol offload engine**
- Used by processing and I/O units to connect to fabric
- Consume & generate IB packets
- Programmable DMA engines with protection features
- May have multiple ports
  - Independent buffering channeled through Virtual Lanes



# Queue Pairs

- Transport layer communication is done between a Queue Pair (QP) in each communicating HCA port.
- A Queue Pair consists of:
  - **Send Queue (SQ)**, used to send outgoing messages
  - **Receive Queue (RQ)**, used to receive incoming messages
- User applications create, use, and tear down queue pairs via the **verbs API**.
  - A “queue” is analogous to a First-In First-Out (FIFO) waiting line – items must leave the queue in the same order that they enter it.

# Infiniband Physical Layer


TABLE II  
STANDARD INFINIBAND SPEEDS, AND THEIR PER-LANE SIGNALING AND THEORETICAL DATA RATES IN GIGABITS PER SECOND (GBPS). ALL PER-LANE SIGNALING RATES ARE MULTIPLES OF 0.15625 GBPS [35]

| Name                     | Signaling Rate | Encoding | Data Rate |
|--------------------------|----------------|----------|-----------|
| Single Data Rate (SDR)   | 2.5            | 8b/10b   | 2         |
| Double Data Rate (DDR)   | 5              | 8b/10b   | 4         |
| Quad Data Rate (QDR)     | 10             | 8b/10b   | 8         |
| Fourteen Data Rate (FDR) | 14.0625        | 64b/66b  | 13.64     |
| Extended Data Rate (EDR) | 25.78125       | 64b/66b  | 25        |

- Note that achieving these speeds requires that both the Peripheral Component Interconnect express (PCIe) bus and the host memory also support them!
- Each link contains 1, 4, 8, or 12 lanes, with **4 lanes being the most common**, leading to a data rate of  $4 \times 2 = 8$  Gbps (1GB/s) across an SDR link.

# Infiniband Bandwidth and Latency

## Bandwidth



5usec

2.5usec

1.3usec

0.7usec

0.5usec

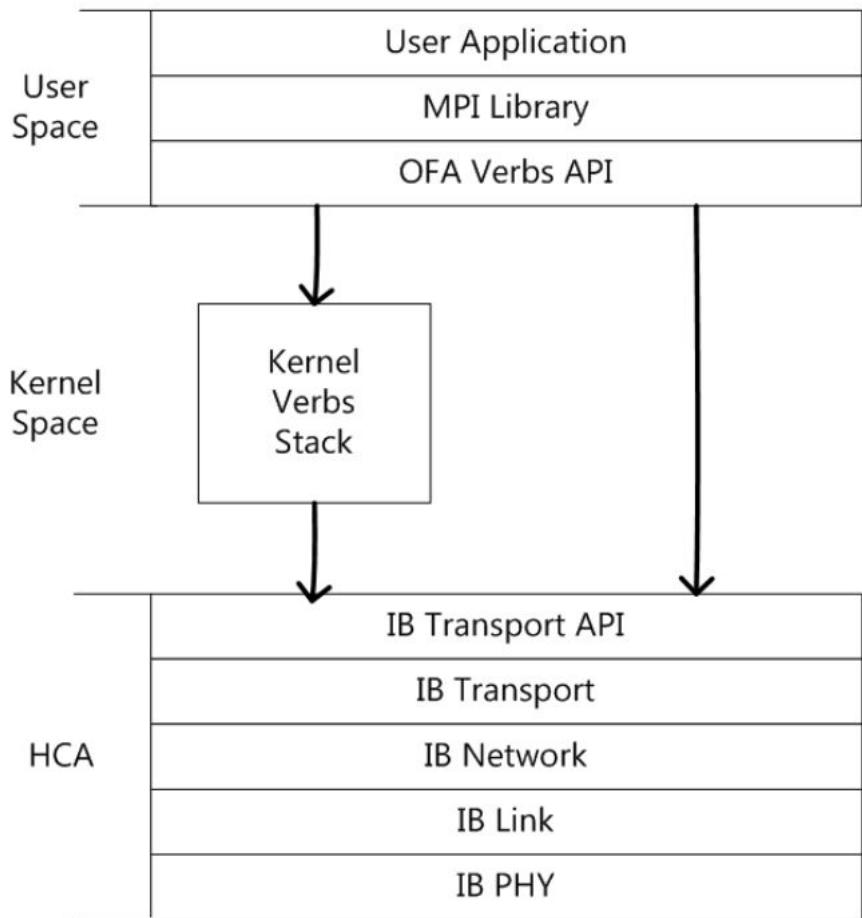
<0.5usec

## Latency

# Infiniband Stack: MPI, Verbs and HW

## Host Channel Adapter (HCA)

- provides Verbs interface (API) that directly accesses the HCA
- HPC applications usually access the Verbs interface via MPI


Example: List all HCAs (RDMA devices)

```
struct ibv_device **device_list;
int             num_devices;
int             i;

device_list = ibv_get_device_list(&num_devices);
if (!device_list) {
    fprintf(stderr, "Error, ibv_get_device_list() failed\n");
    exit(1);
}

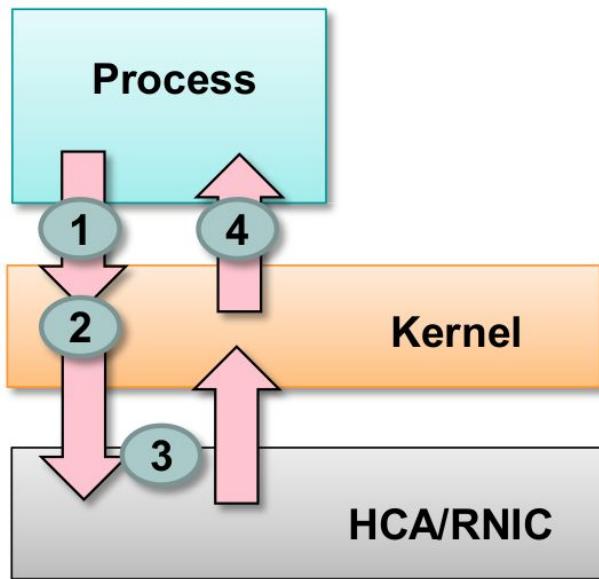
for (i = 0; i < num_devices; ++ i)
    printf("RDMA device[%d]: name=%s\n", i, ibv_get_device_name(device_list[i]));

ibv_free_device_list(device_list);
```



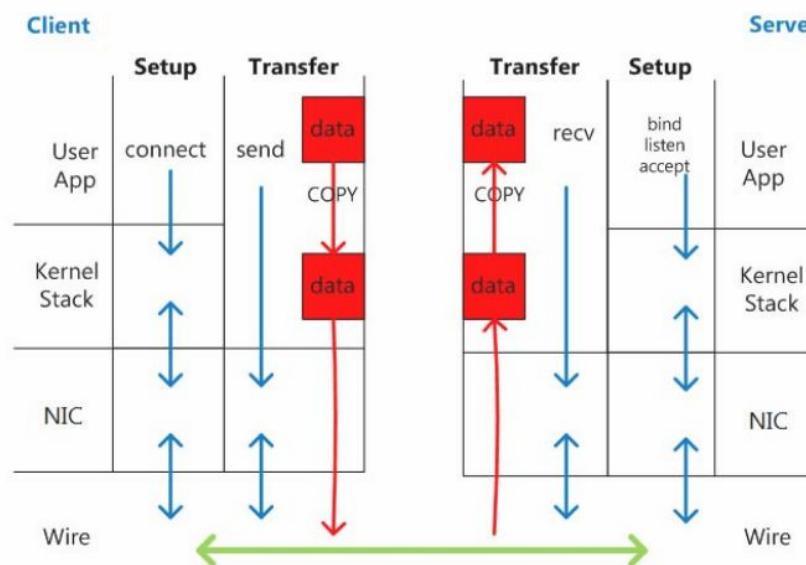
# POSIX Sockets and IB Verbs

- The **sockets API** has been the traditional high-level interface to networking
  - introduced in 1983 as part of the Berkeley Software Distribution (BSD) of the Unix operating system. It has evolved since then, and forms the basis for the **POSIX Sockets API** standard
- The **verbs API** is an interface introduced by the OpenIB Alliance in 2005 as the interface to InfiniBand technology.


## Main differences and main IB performance features:

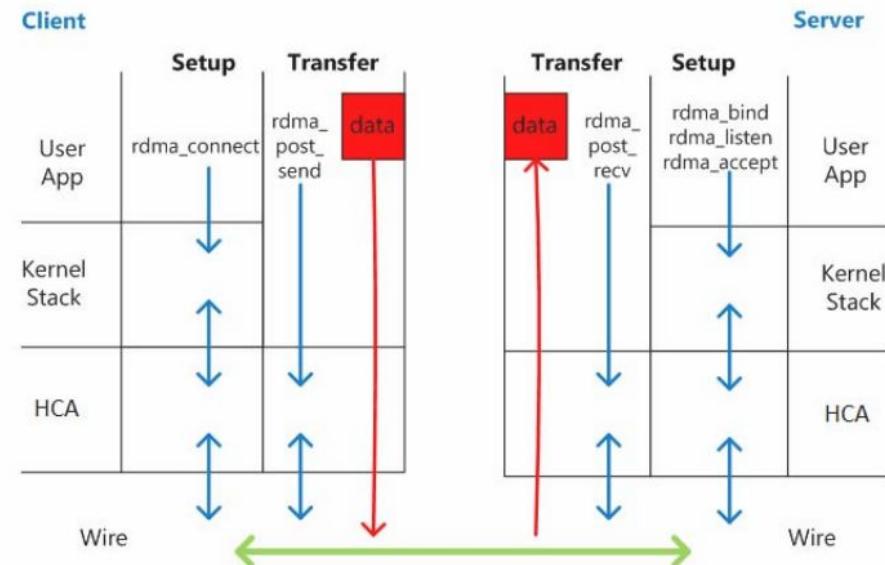
1. Sockets provide a stream of bytes. Verbs provide **only messages** (better match to MPI programming style)
2. Sockets rely upon software buffering in the end nodes. Verbs do **not use buffering in the end nodes** (i.e. "zero-copy")
3. Sockets require kernel intervention during data transfers. Verbs do not, as the **user program deals directly with the HCA**. (i.e. "kernel-bypass")
4. Sockets can utilize any user-space memory for data transfers. Verbs can also utilize any user-space memory for data transfers, but they require that the application registers this memory prior to initiating the transfer.
5. Sockets operate synchronously, whereas **verbs operate asynchronously**

# Memory Registration


## Memory Registration

Before we do any communication:  
All memory used for communication must  
be registered




1. Registration Request
  - Send virtual address and length
2. Kernel handles virtual->physical mapping and pins region into physical memory
  - Process cannot map memory that it does not own (security !)
3. HCA caches the virtual to physical mapping and issues a handle
  - Includes an *l\_key* and *r\_key*
4. Handle is returned to application

# TCP/IP vs Infiniband data transfer



Blue lines: control information  
Green lines: control and data  
Red lines: user data

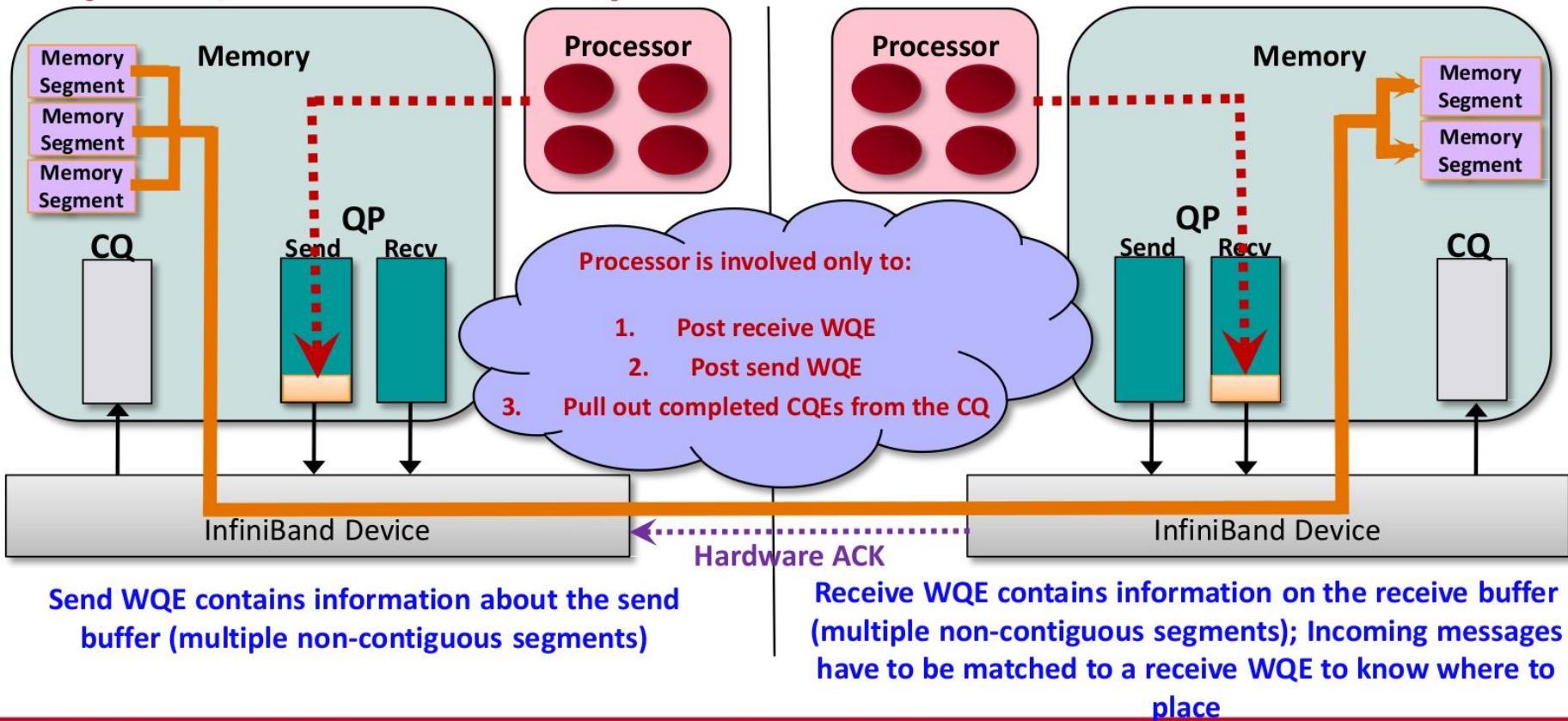
TCP/IP data transfer



Blue lines: control information  
Green lines: control and data  
Red lines: user data

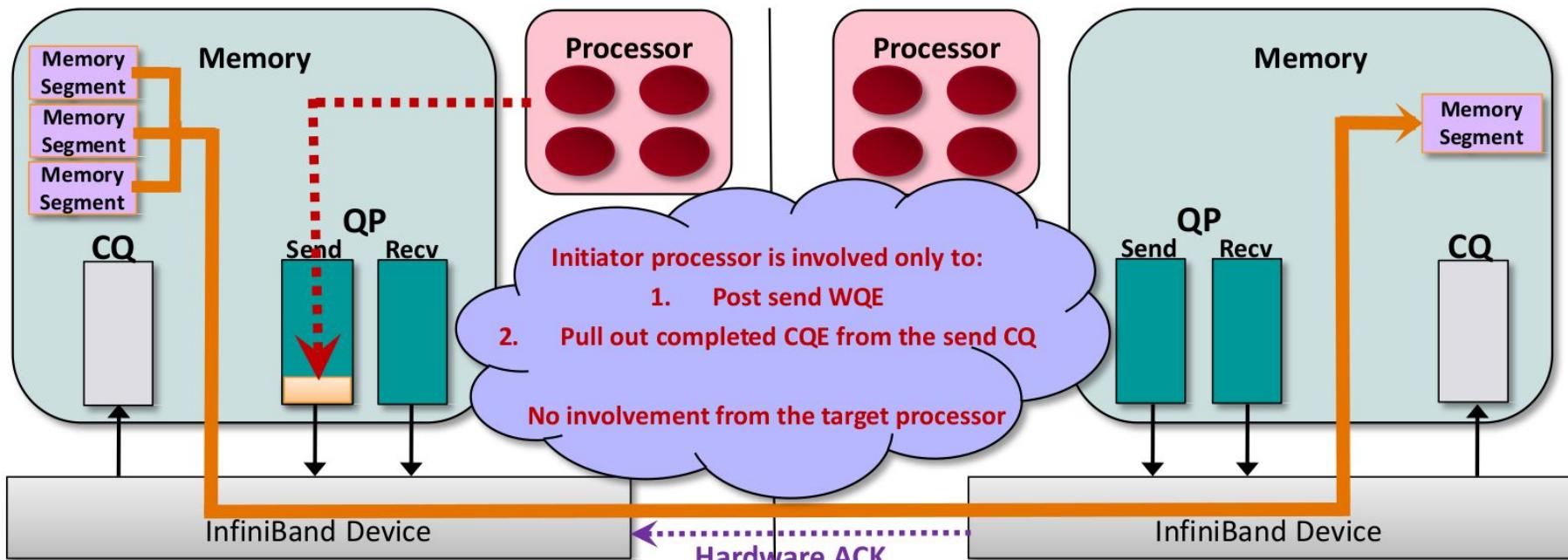
InfiniBand Data Transfer

# The RDMA Data Transfer Model


## Send (Channel Semantics)

- Just like the classic model
- Data is read in local side
  - Can be gathered from multiple buffers
- Sent over the wire as a message
- Remote side specify where the message will be stored
  - Can be scattered to multiple buffers

## RDMA (Memory Semantics)


- Local side can write data directly to remote side memory
  - Can be gathered locally from multiple buffers
- Local side can read data directly from remote side memory
  - Can be scattered locally to multiple buffers
- Remote side isn't aware to any activity
  - No CPU involvement at remote side

# Communication in the Channel Semantics (Send/Receive Model)



**Channel semantics:** similar to the well-known channel model of I/O  
The `rdma_post_send` and `rdma_post_recv` verbs are analogous to similar `send` and `recv` functions in TCP because the user-level programs on both sides in a data transfer must actively participate in the transfer:

# Communication in the Memory Semantics (RDMA Model)



**Memory semantics:** Effectively the memory of the passive user becomes an extension of the memory of the active user, since the active user can read and/or write to that memory without the passive user being aware of it.

# Summary

- **Message Passing Programming**
  - Synchronous / Asynchronous
- **Message Passing Hardware**
  - CPU based, DMA & Message Processors
- **Example: Infiniband**
  - Infiniband Architecture
  - Programming API (IB Verbs vs Sockets)