
LECTURE 11

Message Passing Hardware

Miquel Pericàs
EDA284/DIT361 - VT 2020 

1



What's cooking

1. Lectures 
○ Today (9h-12h): GPGPU (part 2) +  Message Passing Hardware
○ Tomorrow Feb 26th (8h-10h) Synchronization

2. Lab session 
○ Friday (8h-12h @ ED3507), GEM5 + Vector

3. Project Status
○ Tomorrow: deadline for first round of peer feedback

2

2



LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

Lectures 7 - 11 Overview

LECTURE 11
Message Passing Hardware

C
hi

p 
M

ul
tip

ro
ce

ss
or

s
C

lu
st

er
s

3



Lecture 11: Outline
● Message Passing Programming

○ Synchronous / Asynchronous

● Message Passing Hardware
○ CPU based, DMA & Message Processors

● Example: Infiniband 
○ Infiniband Architecture
○ Programming API (IB Verbs vs Sockets)

4



Message-Passing: Multicomputers 

● Processing nodes interconnected by a network
● Communication carried out by message exchanges
● Scales well
● Hardware is inexpensive
● Software is complex, mostly based on MPI (Message Passing Interface)

○ This programming style is called “Message Passing”

● Nowadays, processing nodes are often CMPs. Software becomes even more complex: “MPI 
+ X”, where X is OpenMP, pthreads, TBB, etc.. 

5



EXAMPLE: MATRIX MULTIPLY + SUM

sequential program:
1  sum = 0;
2  for (i=0;i<N;i++)      
3    for (j=0;j<N;j++){
4      C[i,j] = 0;
5      for (k=0;k<N;k++)
6         C[i,j] = C[i,j] + A[i,k]*B[k,j];
7         sum += C[i,j];
8      }
● multiply matrices A[N,N] by B[N,N] and store result in C[N,N]
● add all elements of C[ , ] and store in variable 'sum'

6
How to parallelize this on a message passing computer?



Example: Matrix Multiply + Sum

MESSAGE-PASSING PROGRAM

Assume matrices A and B initially in one computational node, the master node (PID=0)
Strategy: (1) Copy full matrix 'B' and rows of matrix 'A' to compute nodes, (2) accumulate sum, 
and (3) copy back rows of matrix 'C'

myN = N/nproc;
if(pid += 0){
  for(i=1; i<nproc; i++){
    k=i*N/nproc;
    SEND(&A[k][0], myN*N*sizeof(float),i, IN1);
    SEND(&B[0][0], N*N*sizeof(float),  i, IN2);
} else {
    RECV(&A[0][0], myN*N*sizeof(float),0,IN1);
    RECV(&B[0][0], N*N*sizeof(float),  0,IN2);
}
mysum = 0;
for (i=0, i<myN, i++)
  for (j=0, j<N, j++)
    C[i,j] = 0;
    for (k=0,k<N, k++)
      C[i,j] = C[i,j] + A[i,k]*B [k,j]:
  mysum += C[i,j]:
}

if (pid += O){
  sum = mysum;
  for(i=1;i<nproc;i++){
    RECV(&mysum, sizeof(float),i,SUM);
    sum +=mysum;
  }
  for(i=1; i<nproc;i++){
    k=i*N/nproc;
    RECV(&C[k][0], myN*N*sizeof(float),i,RES);
  }
} else{
  SEND(&mysum, sizeof (float),0, SUM);
  SEND(&C[0][0], myN*N*sizeof(float),0,RES),
}

7



Synchronous Message-Passing

• CODE FOR THREAD T1:                     CODE FOR THREAD T2:
A = 10;                       B = 5;
SEND(&A,sizeof(A),T2,SEND_A);  RECV(&B,sizeof(B),T1,SEND_A);
A = A+1;                      B=B+1;
RECV(&C,sizeof(C),T2,SEND_B);  SEND(&B,sizeof(B),T1,SEND_B);
printf(C);

• EACH SEND/RECV HAS 4 OPERANDS:
• Starting address in memory
• Size of message
• Destination/Source thread id
• Tag connecting sends and receives

8



Synchronous Message-Passing

• CODE FOR THREAD T1:                     CODE FOR THREAD T2:
       A = 10;                       B = 5;

SEND(&A,sizeof(A),T2,SEND_A);  RECV(&B,sizeof(B),T1,SEND_A);
A = A+1;                      B=B+1;
RECV(&C,sizeof(C),T2,SEND_B);  SEND(&B,sizeof(B),T1,SEND_B);
printf(C);

• In synchronous M-P sender blocks until recv is started and receiver 
blocks until first message bytes are sent 

− Communication implies Synchronization
− Note: this is usually much more than waiting for message propagation

• Question: what is the value printed under synchronous M-P?
− Value 10 is received in B by T2; B is incremented by 1
− Then the new value of B (11) Is sent and received by T1 Into C
− And Thread 1 Prints “11” 

10

11

9



Synchronous Message-Passing

ADVANTAGE: 
● communication enforces synchronization 
● simpler to reason about the outcome of a program

DISADVANTAGES:
● prone to deadlock
● blocks threads (no overlap of communication with computation)

10

DEADLOCK Example
Code for thread T1:     Code for thread T2:

A = 10;        B = 5;
SEND(&A,sizeof(A),T2,SEND_A);    SEND(&B,sizeof(B),T1,SEND_B);
RECV(&C,sizeof(C),T2,SEND_B); RECV(&D,sizeof(D),T1,SEND_A);

To eliminate the deadlock: swap the send/recv pair in T2 or employ asynchronous 
message-passing 



Asynchronous Message-Passing
  CODE FOR THREAD T1:     CODE FOR THREAD T2:

A = 10;       B = 5;
ASEND(&A,sizeof(A),T2,SEND_A);   ASEND(&B,sizeof(B),T1,SEND_B);

  <Unrelated computation;>     <Unrelated computation;>
SRECV(&B,sizeof(B),T2,SEND_B);   SRECV(&A,sizeof(B),T1,SEND_A);

11

• Blocking vs Non-blocking asynchronous message passing
• BLOCKING: resume only when area of memory has been buffered (send) and when message 

has been copied to user space (recv) 
• NON-BLOCKING: resume early, unsafe to reuse buffer space. Probe functions can be used to 

check whether data has been copied (e.g. MPI_Wait()) 



Message-Passing Protocols

• Case (A): Match table keeps track of the status of all RECVs previously executed with 
the receiver process identity and the tag. 

• Case (B): Match table at the sender. Keeps track of the status of all SENDs 
12

Three-phase protocol Two-phase protocol

Synchronous M-P



HW support for message passing protocols 
● General interconnect networks provide primitive network transactions to 

implement M-P protocols. Additional HW targets:
○ reduce message transfer latency, particularly important for synchronous M-P 

■ (also benefits asynchronous M-P, but to a smaller degree)
○ offload computation processors from network tasks

Processor-executed
RECV()

DMA to offload processor 13

● Data must be copied from/to memory to/from network interface (NI)
○ without HW support: sender copies data to system memory, and then from system memory to 

network interface + vice-versa. Processor may not keep up with injection rate! 
○ DMA (Direct Memory Access) can speed up message transfers and offload the processor

■ DMA engine performs the copies in the background, offloading processor
■ DMA is programmed by the processor; specify start address and size



HW support for message passing protocols 
● Support for "user-level" vs "system-level" messages 

○ Source/destination in user memory vs system memory
○ Basic message passing systems drive DMA engine from O/S

■ This is needed for protection between users
■ Message is first copied into system space and then into user space (receive)
■ Message is copied from user space to system space (send)

○ Optimization: Tag user-level messages so that they are picked up and delivered directly in user 
memory space (called "zero-copy")

Message 
Processor

Computation
Processor could be a core or 

thread in a CMP
14

● Beyond DMA: Dedicated message 
processors

○ Use a special processor to process 
messages on both ends + other higher-level 
functions (matching, packet forming, sending 
acks etc)

○ Relieves the compute O/S from doing it
○ Preferred approach for HPC interconnects

● Potentially, a core or thread in a CMP can also 
perform this function



15Tutorial: InfiniBand, Omni-Path, and High-speed Ethernet for Dummies, Dhabaleswar K. (DK) Panda, Hari Subramoni. IT4 Innovations ’18. 
Slides: http://www.cse.ohio-state.edu/~panda/it4i-ib-hse.pdf

What are the capabilities of HPC Networks? 



Example: Infiniband

P. MacArthur, Q. Liu, R. D. Russell, F. Mizero, M. Veeraraghavan and J. M. Dennis, "An Integrated Tutorial on InfiniBand, Verbs, and MPI," in IEEE 
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2894-2926, Fourth quarter 2017. doi: 10.1109/COMST.2017.2746083

16



in Top500!

Why InfiniBand (IB)?
● Scientific HPC apps today run on supercomputing platforms with 1000s of 

communicating cores
○ Need high performance interconnect to support high bandwidth and low latency 

requirements

● InfiniBand (IB) is a packet-switched networking technology defined by the 
InfiniBand Trade Association (IBTA) as a high bandwidth, low latency 
interconnect for data center and HPC clusters. 

● Currently used in 28% of the top 500 supercomputers (as of November 2019)

17



Infiniband Architecture
● InfiniBand Architecture of a single subnet with end nodes (typically 

computers), switches, a Subnet Manager (SM), and optionally a router 
connecting various subnets. 

● End nodes attach to the subnet via Host Channel Adapters (HCAs), which are 
comparable to Ethernet Network Interface Cards (NICs). Each HCA supports 
one or more physical ports.

18



19

● In InfiniBand clusters, the hardware NIC is replaced by a hardware Host 
Channel Adapter (HCA):
○ provides InfiniBand transport and network layers (comparable to TCP and IP SW) 
○ provides link and physical layers (comparable to Ethernet hardware layers).
○ Hardware protocol offload engine

Host Channel Adapter



Queue Pairs

● Transport layer communication is done between a Queue Pair (QP) in each 
communicating HCA port. 

● A Queue Pair consists of:
○ Send Queue (SQ), used to send outgoing messages
○ Receive Queue (RQ), used to receive incoming messages

● User applications create, use, and tear down queue pairs via the verbs API. 
○ A “queue” is analogous to a First-In First-Out (FIFO) waiting line – items must 

leave the queue in the same order that they enter it.

20



Infiniband Physical Layer

● Note that achieving these speeds requires that both the Peripheral Component 
Interconnect express (PCIe) bus and the host memory also support them!

● Each link contains 1, 4, 8, or 12 lanes, with 4 lanes being the most common, 
leading to a data rate of 4 × 2 = 8 Gbps (1GB/s) across an SDR link.

21



Infiniband Bandwidth and Latency

22



Infiniband Stack: MPI, Verbs and HW

23

Host Channel Adapter (HCA)

● provides Verbs interface (API) that 
directly accesses the HCA

● HPC applications usually access 
the Verbs interface via MPI

Example: List all HCAs (RDMA devices)

https://www.csm.ornl.gov/workshops/openshmem2013/documents/presentations_and_tutorials/Tutorials/Verbs%20programming%20tutorial-final.pdf



POSIX Sockets and IB Verbs
● The sockets API has been the traditional high-level interface to networking

○ introduced in 1983 as part of the Berkeley Software Distribution (BSD) of the Unix operating 
system. It has evolved since then, and forms the basis for the POSIX Sockets API standard

● The verbs API is an interface introduced by the OpenIB Alliance in 2005 as 
the interface to InfiniBand technology.

Main differences and main IB performance features: 

1. Sockets provide a stream of bytes. Verbs provide only messages (better 
match to MPI programming style) 

2. Sockets rely upon software buffering in the end nodes. Verbs do not use 
buffering in the end nodes (i.e. "zero-copy") 

3. Sockets require kernel intervention during data transfers. Verbs do not, as the 
user program deals directly with the HCA. (i.e. "kernel-bypass") 

4. Sockets can utilize any user-space memory for data transfers. Verbs can also 
utilize any user-space memory for data transfers, but they require that the 
application registers this memory prior to initiating the transfer.

5. Sockets operate synchronously, whereas verbs operate asynchronously 



Memory Registration

25



TCP/IP vs Infiniband data transfer

TCP/IP data transfer InfiniBand Data Transfer

26



The RDMA Data Transfer Model
Send (Channel Semantics)
● Just like the classic model
● Data is read in local side

○ Can be gathered from multiple buffers

● Sent over the wire as a message
● Remote side specify where the message will be stored

○ Can be scattered to multiple buffers

RDMA (Memory Semantics)
● Local side can write data directly to remote side memory

○ Can be gathered locally from multiple buffers

● Local side can read data directly from remote side memory
○ Can be scattered locally to multiple buffers

● Remote side isn’t aware to any activity
○ No CPU involvement at remote side

27



28

Channel semantics: similar to the well-known channel model of I/O
The rdma_post_send and rdma_post_recv verbs are analogous to similar 
send and recv functions in TCP because the user-level programs on both sides 

in a data transfer must actively participate in the transfer:



29

Memory semantics: Effectively the memory of the passive user becomes an 
extension of the memory of the active user, since the active user can read and/or 

write to that memory without the passive user being aware of it.



Summary

30

● Message Passing Programming
○ Synchronous / Asynchronous

● Message Passing Hardware
○ CPU based, DMA & Message Processors

● Example: Infiniband 
○ Infiniband Architecture
○ Programming API (IB Verbs vs Sockets)


