LECTURE 11

Message Passing Hardware

Miquel Pericas
EDA284/DIT361 - VT 2020

What's cooking

1. Lectures
o Today (9h-12h): GPGPU (part 2) + Message Passing Hardware
o Tomorrow Feb 26th (8h-10h) Synchronization

2. Lab session
o Friday (8h-12h @ ED3507), GEMS5 + Vector

3. Project Status
o Tomorrow: deadline for first round of peer feedback

Chip Multiprocessors

Clusters

Lectures 7 - 11 Overview

LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

LECTURE 11
Message Passing Hardware

Lecture 11: Outline

e Message Passing Programming
o Synchronous / Asynchronous

e Message Passing Hardware
o CPU based, DMA & Message Processors

e Example: Infiniband

o Infiniband Architecture
o Programming API (IB Verbs vs Sockets)

Message-Passing: Multicomputers

INTERCONNECTION NETWORK

NI NI NI

M C M C M C

® O ®

Processing nodes interconnected by a network

Communication carried out by message exchanges

Scales well

Hardware is inexpensive

Software is complex, mostly based on MPI (Message Passing Interface)
o This programming style is called “Message Passing”

Nowadays, processing nodes are often CMPs. Software becomes even more complex: “MPI
+ X”, where X is OpenMP, pthreads, TBB, etc..

EXAMPLE: MATRIX MULTIPLY + SUM

sequential program:

sum = 0;

for (i=0;i<N;i++)

for (j=0;j<N;j++)
C[i.ji1 = 0;
for (k=0;k<N;k++)
C[i.jl = C[i,jl + Ali,KI"BLk,jI;

sum += CJi,j];

0O NOoO O A WOWDN =

}
e multiply matrices A[N,N] by B[N,N] and store result in C[N,N]
e add all elements of C[,] and store in variable 'sum’

How to parallelize this on a message passing computer?

Example: Matrix Multiply + Sum

MESSAGE-PASSING PROGRAM

myN = N/nproc;
if(pid = 0){
for(i=1; i<nproc; i++){
k=1*N/nproc;
SEND(&A[k][0], myNxNxsizeof(float),i, IN1);
SEND(&B[0][0], N*Nxsizeof(float), i, IN2);
} else {
RECV(&A[0]1[0], myNxNxsizeof(float),0,IN1);
RECV(&B[0][0], N*N*sizeof(float), ©,IN2);
}
mysum = 0;
for (i=0, i<myN, i++)
for (j=0, j<N, j+)
for (k=0,k<N, k++)
cfi,j] = cl[i,j] + A[i,k]I*B [k,j]l:
mysum += C[i,j]:

}

if (pid = 0){
sum = mysum;
for(i=1;i<nproc;i++){
RECV(&mysum, sizeof(float),i,SUM);
sum +=mysum;
}
for(i=1; i<nproc;i++){
k=i*N/nproc;
RECV(&C[k][0], myN*N*sizeof(float),i,RES);
}
} else{
SEND(&mysum, sizeof (float),0, SUM);
SEND(&C[0][0], myN*N*sizeof(float),0,RES),
}

Assume matrices A and B initially in one computational node, the master node (PID=0)
Strategy: (1) Copy full matrix 'B' and rows of matrix 'A' to compute nodes, (2) accumulate sum,

and (3) copy back rows of matrix 'C'

Synchronous Message-Passing

CODE FOR THREAD T1: CODE FOR THREAD T2:
A = 10; B = 5;
SEND(&A,sizeof(A),T2,SEND_A); RECV(&B,sizeof(B),T1,SEND_A);
A = A+1; B=B+1,;
RECV(&C,sizeof(C),T2,SEND_B); SEND(&B,sizeof(B),T1,SEND_B);
printf(C);

EACH SEND/RECV HAS 4 OPERANDS:
« Starting address in memory
» Size of message
« Destination/Source thread id
« Tag connecting sends and receives

Synchronous Message-Passing

CODE FOR THREAD T1: CODE FOR THREAD T2:

A = 10; B = 5;
SEND(&A,sizeof(A),T2,SEND_A); RECV(6&B,sizeof(B),T1,SEND_A);
A = A+1; B=B+1;
RECV(6&C,sizeof(C),T2,SEND_B)3 SEND(6&B,sizeof(B),T1,SEND_B);
printf(C);

In synchronous M-P sender blocks until recv is started and receiver
blocks until first message bytes are sent

— Communication implies Synchronization

— Note: this is usually much more than waiting for message propagation

Question: what is the value printed under synchronous M-P?
— Value 10 is received in B by T2; B is incremented by 1
— Then the new value of B (11) Is sent and received by T1 Into C
— And Thread 1 Prints “11”

Synchronous Message-Passing

ADVANTAGE:

. communication enforces synchronization
. simpler to reason about the outcome of a program

DISADVANTAGES:
. prone to deadlock
. blocks threads (no overlap of communication with computation)

DEADLOCK Example

Code for thread T1: Code for thread T2:
A = 10; B = 5;
SEND(&A,sizeof(A),T2,SEND_A); SEND(&B,sizeof(B),T1,SEND_B);
RECV(&C,sizeof(C),T2,SEND_B); RECV(&D,sizeof(D),T1,SEND_A);

To eliminate the deadlock: swap the send/recv pair in T2 or employ asynchronous
message-passing

10

Asynchronous Message-Passing

CODE FOR THREAD T1: CODE FOR THREAD T2:
A = 10; B = 5;
ASEND(&A,sizeof(A),T2,SEND_A); ASEND(&B,sizeof(B),T1,SEND_B);
<Unrelated computation;> <Unrelated computation;>
SRECV(&B,sizeof(B),T2,SEND_B); SRECV(&A,sizeof(B),T1,SEND_A);
Thread T1 Thread T2

ASEND(&A,..SEND_A) ,ASEND(&B,.SEND_B)
LOCAL COMPUTATION IS

(Unrelated) OVERLAPPED WITH SENDING
SRECV(&A, ..SEND_A)

Wait DEADLOCK IS BROKEN BECAUSE
THREADS DON'T WAIT AT SEND

(Unrelated)

(Continue)

Time (Continue)

* Blocking vs Non-blocking asynchronous message passing
+ BLOCKING: resume only when area of memory has been buffered (send) and when message
has been copied to user space (recv)
+ NON-BLOCKING: resume early, unsafe to reuse buffer space. Probe functions can be used to
check whether data has been copied (e.g. MPT_Wait())

11

Message-Passing Protocols

Synchronous M-P

Three-phase protocol Two-phase protocol
(A) SENDER INITIATED (B) RECEIVER-INITIATED
Sender Receiver Sender Receiver

Reguest to send

opy Inf

Messagg fransfer ocal spa
’

Time

Y4
Y4

» Case (A): Match table keeps track of the status of all RECVs previously executed with
the receiver process identity and the tag.

« Case (B): Match table at the sender. Keeps track of the status of all SENDs

HW support for message passing protocols

e General interconnect networks provide primitive network transactions to
implement M-P protocols. Additional HW targets:

o reduce message transfer latency, particularly important for synchronous M-P
m (also benefits asynchronous M-P, but to a smaller degree)
o offload computation processors from network tasks

e Data must be copied from/to memory to/from network interface (NI)
o without HW support: sender copies data to system memory, and then from system memory to
network interface + vice-versa. Processor may not keep up with injection rate!
o DMA (Direct Memory Access) can speed up message transfers and offload the processor
m DMA engine performs the copies in the background, offloading processor
m DMA s programmed by the processor; specify start address and size

Processor-executed
RECV()

Memory Network interface
User System f
area |4 Grea In | |Out

7 Y AN \

N\
|© (2] \\ ©
DMA
\
DMA to offload processor 13

—(+)

HW support for message passing protocols

e Support for "user-level” vs "system-level” messages
O Source/destination in user memory vs system memory

O Basic message passing systems drive DMA engine from O/S
m This is needed for protection between users
m Message is first copied into system space and then into user space (receive)
m Message is copied from user space to system space (send)
o Optimization: Tag user-level messages so that they are picked up and delivered directly in user
memory space (called "zero-copy")

e Beyond DMA: Dedicated message

processors Memory Network interface
o Use a special processor to process User System y ot
messages on both ends + other higher-level aren ey red In |[Out
functions (matching, packet forming, sending
acks etc)

o Relieves the compute O/S from doing it
o Preferred approach for HPC interconnects
e Potentially, a core or thread in a CMP can also

perform this function P MP
Computation

Processor

could be a core or
Message _ - thread ina CMP

Processor 14

What are the capabilities of HPC Networks?

e Intelligent Network Interface Cards

e Support entire protocol processing completely in hardware
(hardware protocol offload engines)
e Provide a rich communication interface to applications
— User-level communication capability
— Gets rid of intermediate data buffering requirements
e No software signaling between communication layers

— All layers are implemented on a dedicated hardware unit, and not on a
shared host CPU

Tutorial: InfiniBand, Omni-Path, and High-speed Ethernet for Dummies, Dhabaleswar K. (DK) Panda, Hari Subramoni. IT4 Innovations '18.
Slides: http://www.cse.ohio-state.edu/~pandal/it4i-ib-hse.pdf

15

Example: Infiniband

P. MacArthur, Q. Liu, R. D. Russell, F. Mizero, M. Veeraraghavan and J. M. Dennis, "An Integrated Tutorial on InfiniBand, Verbs, and MPI," in IEEE 16
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2894-2926, Fourth quarter 2017. doi: 10.1109/COMST.2017.2746083

Why InfiniBand (IB)?

Scientific HPC apps today run on supercomputing platforms with 1000s of

communicating cores
o Need high performance interconnect to support high bandwidth and low latency
requirements

InfiniBand (IB) is a packet-switched networking technology defined by the
InfiniBand Trade Association (IBTA) as a high bandwidth, low latency
interconnect for data center and HPC clusters.

Currently used in 28% of the top 500 supercomputers (as of November 2019)

TOP 10 Interconnect Technologies: in Top500!

Count System Share (%) Rmax (TFlops) Rpeak (TFlops) Cores
1 Gigabit Ethernet 259 51.8 430,575 897,359 16,913,772
2 Infiniband 140 28 662,896 1,013,372 15,946,634
3 Omnipath 50 10 181,500 285.493 4,704,264
4 Custom Interconnect 45 9 356,933 924,811 24,991,220
5 Proprietary Network 5 1 13.009 16,406 508,496
6 Myrinet 1 0.2 1,975 6,595 89,600

17

Infiniband Architecture

InfiniBand Architecture of a single subnet with end nodes (typically
computers), switches, a Subnet Manager (SM), and optionally a router

connecting various subnets.

End nodes attach to the subnet via Host Channel Adapters (HCAs), which are
comparable to Ethernet Network Interface Cards (NICs). Each HCA supports

one or more physical ports.

S

(’/End :
\hode /
——

Switch

(End
.node /
b 4

V2.

(’ End
EL \

Switch \

Switch

AT

=
e

Switch

y.
End
\ node /
3 v//

:

Host Channel Adapter

e In InfiniBand clusters, the hardware NIC is replaced by a hardware Host

Channel Adapter (HCA):
o provides InfiniBand transport and network layers (comparable to TCP and IP SW)
o provides link and physical layers (comparable to Ethernet hardware layers).
o Hardware protocol offload engine

e Used by processing and I/O units to

connect to fabric

e Consume & generate IB packets

* Programmable DMA engines with

protection features

e May have multiple ports

— Independent buffering channeled through

Virtual Lanes

19

Queue Pairs

Transport layer communication is done between a Queue Pair (QP) in each
communicating HCA port.

A Queue Pair consists of:

o Send Queue (SQ), used to send outgoing messages
o Receive Queue (RQ), used to receive incoming messages

User applications create, use, and tear down queue pairs via the verbs API.
o A*queue” is analogous to a First-In First-Out (FIFO) waiting line — items must
leave the queue in the same order that they enter it.

20

Infiniband Physical Layer

TABLE 11
STANDARD INFINIBAND SPEEDS, AND THEIR PER-LANE SIGNALING AND
THEORETICAL DATA RATES IN GIGABITS PER SECOND (GBPS). ALL
PER-LANE SIGNALING RATES ARE MULTIPLES OF (0.15625 GBPS [35]

Signaling Data
Name Rate Encoding Rate
Single Data Rate (SDR) 2.5 8b/10b 2
Double Data Rate (DDR) 5 8b/10b 4
Quad Data Rate (QDR) 10 8b/10b 8
Fourteen Data Rate (FDR) 14.0625 64b/66b 13.64
Extended Data Rate (EDR) | 25.78125 64b/66b 25

Note that achieving these speeds requires that both the Peripheral Component
Interconnect express (PCle) bus and the host memory also support them!
Each link contains 1, 4, 8, or 12 lanes, with 4 lanes being the most common,
leading to a data rate of 4 x 2 = 8 Gbps (1GB/s) across an SDR link.

21

Infiniband Bandwidth and Latency

NDR
Bandwidth EDR 160/200Gb/
FDR&FDR10 ' °7°
QDR 56Gbls
SDR bk 40Gbl/s <1
20Gb/s —

10Gb/s
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Same Software Interface
3 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

S5usec

2.5usec
1.3usec

0.7usec

0.5usec

Late n Cy <0.5usec

22

Infiniband Stack: MPI, Verbs and HW

Host Channel Adapter (HCA)

User

e provides Verbs interface (API) that ~ SPace

User Application

MPI Library

OFA Verbs API

directly accesses the HCA
e HPC applications usually access
the Verbs interface via MPI

Kernel
Space

Example: List all HCAs (RDMA devices)

struct ibv_device **device_list;
int num_devices;

Kernel

Verbs
Stack

" N

int i;

device_list = ibv_get device_list(&num_devices);

if (!device_list) {
fprintf(stderr, "Error, ibv_get_device_list() failed\n"); HCA
exit(1);

}

for (i = 0; i < num_devices; ++ i)

IB Transport API

IB Transport

IB Network

IB Link

IB PHY

printf("RDMA device[%Ad]: name=%s\n", i, ibv_get_device _name(device_list[i]));

ibv_free_device_list(device_list);

https://www.csm.ornl.gov/workshops/openshmem2013/documents/presentations_and_tutorials/Tutorials/Verbs%20programming%20tutorial-final.pdf

23

POSIX Sockets and IB Verbs

e The sockets API has been the traditional high-level interface to networking
o introduced in 1983 as part of the Berkeley Software Distribution (BSD) of the Unix operating
system. It has evolved since then, and forms the basis for the POSIX Sockets API standard

e The verbs APl is an interface introduced by the OpenlIB Alliance in 2005 as
the interface to InfiniBand technology.

Main differences and main IB performance features:

1. Sockets provide a stream of bytes. Verbs provide only messages (better
match to MPI programming style)

2. Sockets rely upon software buffering in the end nodes. Verbs do not use
buffering in the end nodes (i.e. "zero-copy")

3. Sockets require kernel intervention during data transfers. Verbs do not, as the
user program deals directly with the HCA. (i.e. "kernel-bypass")

4. Sockets can utilize any user-space memory for data transfers. Verbs can also
utilize any user-space memory for data transfers, but they require that the
application reqisters this memory prior to initiating the transfer.

5. Sockets operate synchronously, whereas verbs operate asynchronously

Memory Registration

Memory Registration

Before we do any communication:

All memory used for communication must

be registered

Process

1

2 Kernel

HCA/RNIC

Registration Request

* Send virtual address and length
Kernel handles virtual->physical
mapping and pins region into physical
memory

* Process cannot map memory that it
does not own (security !)

HCA caches the virtual to physical
mapping and issues a handle

* Includesan/ key andr_key

Handle is returned to application

25

TCP/IP vs Infiniband data transfer

Client Server Client Server
Setup Transfer Transfer Setup Setup Transfer Transfer Setup
bind rdma_ rdma._ rdma_pind
User | connect | send V] isten User User | rdma_connect| post_ post_ | rdmalisten | \;cqy
Ase accept A App send recy | rdma_accept App
PP cdpy chpy | PP |
Kernel Kernel Kernel Kernel
Stack T T Stack Stack T T Stack
\L v 2 \L \L 4 2 \L
NIC NIC HCA T HCA
Wire J’ Wire Wire 4’ Wire
Blue lines: control information Blue lines: control information

Green lines: control and data Green lines: control and data

Red lines: user data Red lines: user data

TCP/IP data transfer InfiniBand Data Transfer

26

The RDMA Data Transfer Model

Send (Channel Semantics)
e Just like the classic model
e Datais read in local side
o Can be gathered from multiple buffers
e Sent over the wire as a message

e Remote side specify where the message will be stored
o Can be scattered to multiple buffers

RDMA (Memory Semantics)

e Local side can write data directly to remote side memory
o Can be gathered locally from multiple buffers

e Local side can read data directly from remote side memory
o Can be scattered locally to multiple buffers

e Remote side isn’t aware to any activity
o No CPU involvement at remote side

27

Communication in the Channel Semantics
(Send/Receive Model)

@ e Memory \ Processor Processor Memory Mem)
Segment e pe—— ‘ ‘ ‘ ‘ EEEeEEEEEEEE Segment

Segment

=
Memory n
=] e (@eeo
Memory " Segment |
|
n
|

jo
=

il Post receive WQE
2. Post send WQE

QP
! . Processor is involved only to: cQ

-

3. Pull out completed CQEs from the CQ

I vl

InfiniBand Device @~ [&eeeeeeees SCCEEEEEEEEEELEED InfiniBand Device
Hardware ACK
Send WQE contains information about the send Receive WQE contains information on the receive buffer
buffer (multiple non-contiguous segments) (multiple non-contiguous segments); Incoming messages

have to be matched to a receive WQE to know where to

Channel semantics: similar to the well-known channel model of 1/0
The rdma_post_send and rdma_post_recv verbs are analogous to similar
send and recv functions in TCP because the user-level programs on both sides
in a data transfer must actively participate in the transfer: 28

Communication in the Memory Semantics (RDMA Model)

Memory \ Processor
Segment ‘ ‘
M EEEEEEERENEE
Memory]
Segment : . .
Memory]
Segment =
= apP
C Send

1.

o

InfiniBand Device @ = |[€ererennnnds
Hardware ACK

Send WQE contains information about the send
buffer (multiple segments) and the receive buffer
(single segment)

Recy Initiator processor is involved only to:
Post send WQE
Pull out completed CQE from the send CQ

No involvement from the target processor /

Processor

/ Memory

Segment

~

Memory

2/

InfiniBand Device

Memory semantics: Effectively the memory of the passive user becomes an
extension of the memory of the active user, since the active user can read and/or
write to that memory without the passive user being aware of it.

29

Summary

e Message Passing Programming
o Synchronous / Asynchronous

e Message Passing Hardware
o CPU based, DMA & Message Processors

e Example: Infiniband

o Infiniband Architecture
o Programming API (IB Verbs vs Sockets)

30

