
LECTURE 12

Synchronization

Miquel Pericàs
EDA284/DIT361 - VT 2020

1

What's cooking

1. Lectures
○ Today (8h-10h) Synchronization
○ Tuesday (3/3) next week (9h-12h): Coherence
○ Friday (6/3) next week (10:30h-12h): Consistency

2. Lab session
○ Friday (8h-12h @ ED3507), GEM5 + Vector
○ Lab Intro has been posted in Canvas

3. Project Status
○ Deadline for first round of peer feedback is today

2

2

Overview of Lectures 12-14

● Synchronization (L12) 26/2

● Strict coherence (L13) 3/3

● Plain coherence (L13) 3/3

● Sequential consistency (L14) 3/3 or 6/3

● Memory consistency models (L14) 6/3

Goal: Study the correct and reliable communication
of values in shared-memory multiprocessors

3

AGENDA

● Synchronization: Why?

● Components of synchronization events

● Hardware-based Synchronization

● Software-based Synchronization

● Support for synchronization in High Level Languages

4

Shared-memory Communication

● Implicitly via memory

○ Processors share some memory
○ Communication is implicit through loads and stores

■ need to synchronize
■ need to know how the hardware interleaves accesses from different

processors

No assumption on the relative speed of processors.
Programs must be correct independently of speed

5

● BUT: program statements are not executed atomically

● compiled code on a RISC ISA will result in several instructions
● a possible interleaving of execution is:

T1 T2
r1 <- Sum

 r1 <- Sum
r1 <- r1 + 1

 r1 <- r1 + 1
Sum <- r1

 Sum <- r1

Why “Mutual Exclusion”
● assume the following statements are executed by 2 threads, T1 and T2, on sum

T1 T2
Sum <- Sum+1

 Sum <- Sum+1

● PROGRAMMER’S EXPECTATION: final result independent of the order of
execution of the statements (Sum ← Sum + 2)

RAWTi
m

e

● at the end the result is that sum is incremented by 1 (NOT 2)
6

Mutual Exclusion

• We must have a way to make program statements appear atomic

• Critical sections
• provided by lock and unlock primitives framing the statement(s)
• modifications are “released” atomically at the end of the critical section

• So the code should be:
T1 T2
lock(La) lock(La) /acquire lock
A /- A+1 A /- A+1
unlock(La) unlock(La) /release lock

● The question then becomes: how do we implement correct/reliable a lock?
7

Dekker’s Algorithm for Locking

● Note: Simplified version (without “turn”)
○ Full version: https://en.wikipedia.org/wiki/Dekker%27s_algorithm

● Two variables 'A' and 'B' to indicate intention to enter critical section
● Assume A and B are both 0 initially

 T1 T2
 A/=1 B/=1 /acquire
 while(B/=1); while(A/=1);
 <critical section> <critical section>
 A/=0 B/=0 /release

● At most one process can be in the critical section at any one time.
● Deadlock if both threads enter the while() at same time.

○ We will consider that this is ok for the time being...
● Complex (to solve deadlock and synchronize more than 2 threads)

Not a general solution to the synchronization problem

8

https://en.wikipedia.org/wiki/Dekker%27s_algorithm

Barrier Synchronization
● Global synchronization among all threads
● ALL threads must reach the barrier before ANY thread is allowed to

execute beyond the barrier

P1 P2
++. ++.
BAR /= BAR+1; BAR /= BAR +1;
while (BAR < 2); while (BAR < 2);

● Note: need a critical section to increment BAR!
○ no need of a critical section to read BAR in the while statement

● In practice more complex because barrier count must be reset for the next
iteration...

● Exercise: can you come up with a barrier that does not require locks?

9

Point-to-point Synchronization

• One thread (producer) signals another thread (consumer) that it has reached a
certain point in execution

 T1 T2
 A = 1;

 FLAG = 1; /release
 while (FLAG/=0); /acquire

print A

• Note: no need for critical sections to update and read FLAG
• Signal sent by T2 to T1 through FLAG (Producer/Consumer synchronization)

10

Components of a Synchronization Event

• Acquire Method
• Acquire accesses rights to the synchronization variable (to enter critical

section, go past synchronization event).
• Needs waiting method if a different thread already holds the rights

• Release Method
• Enable other processors to acquire the right to the synchronization

• Waiting Algorithm
• Blocking
• Busy waiting

11

Waiting Algorithms

● Blocking (*)
○ Waiting processes are descheduled by O/S
○ High overhead
○ Allows processor to work on something else
○ Common method with O/S semaphores

● Busy Waiting (e.g. spinlock)
○ Waiting processes repeatedly test a location until it changes value
○ Low overhead but holds the processor
○ May generate high memory/network traffic

(*) This notion of blocking is unrelated to blocking/non-blocking communication. It is more closely related to the
concept of synchronous communication

12

Busy-Waiting

● Busy-waiting keeps the processor resources occupied
● In hardware multithreaded cores it can be treated as a long latency

event.
● Options:

○ switch to other thread
○ lower the thread’s priority
○ use special instructions to reduce resource waste (e.g. PAUSE

instruction in x86)
● Busy-waiting is better when

○ Scheduling overhead is larger than expected wait time
○ No other task to run
○ synchronization within the OS kernel

● HYBRID method: busy-wait for X attempts, then switch to blocking

13

Intel64 PAUSE instruction

Point-to-point synchronization:

while(eax /= a) { }

Intel® 64 and IA-32 Architectures Optimization Reference Manual. June 2016

14

How can we implement
scalable locking schemes?

15

Option 1: Hardware-based Synchronization
• Hardware Locks

• separate lock lines on the bus: holder of a lock assert the line
• lock registers

• set of shared registers

• Hardware Barrier
• dedicated bus line using open-collector connection

• each thread tries to pull open collector down
• succeed only if all threads have reached barrier

• shared counting register

• Inflexible
• not good for general purpose use
• hardwired waiting algorithm
• fixed number of synchronization resources

• Example: Hardware Barriers to support Message Passing Systems
• Fujitsu SPARC64 Xifx & A64FX have HW barrier (“inter-core barrier”) (2018)
• IBM Blue Gene/P Barrier Network (2007)

16

(Incorrect) Option 2: Simple Software Locks
Lock: LW R2, lock

 BNEZ R2, Lock
 SW R1, lock /R1 = 1

 RET

Unlock: SW R0, lock /R0 = 0
 RET

• PROBLEM: lock is not atomic--two threads can gain the lock at the

same time

how can we guarantee that
these operations execute
atomically?

• SOLUTION: need new atomic read/write instructions
• atomically read the value of the location and set it to another value
• return success or failure

17

Option 3: Software-based Synchronization with
Atomic operations

• ISA support: most modern machines provide some form of atomic
read-modify-write (R/M/W)

• IBM 370: atomic compare-and-swap, test-and-set (1973)
• x86: any memory read-modify-write instruction can be prefixed with a lock

(note that some instructions are implicitly prefixed)
• SPARC: atomic swap
• MIPS, PowerPC, RISC-V, ARM: support from pairs of instructions

• Load-locked, Store-conditional (also called: Load-linked)

these basic mechanisms are used to build software locks

18

Atomic Software Locks
SIMPLEST ONE: TEST_AND_SET (T&S)

 T&S R1, var
Operation:
● read var in R1
● write 1 in var
● Assume var is used to store a lock:

○ success if value read in R1 is 0 (lock=0 means lock was not taken)
○ failure if it is 1 (lock=1 means lock was already taken)

MUST BE ATOMIC

Using T&S to implement a lock:
Lock: T&S R1, lock_var

BNEZ R1, Lock

RET

Unlock: SW R0, lock_var

 RET 19

Atomic Software Locks

● other common R/M/W atomic operations:
○ SWAP R1, MEM_LOC

■ exchange the content of R1 and MEM_LOC
○ FETCH&OP

■ example: F&A (R1, MEM_LOC, const), where const is a small value.
■ fetch MEM_LOC in R1, then add const to mem_loc

○ COMPARE&SWAP
■ CAS (R1, R2, MEM_LOC)
■ compare MEM_LOC to R1. If they are equal swap R2 and MEM_LOC

20

T&S Implementation
In MEMORY (non-cacheable lock):
● Memory controller enforces atomicity of RMW cycle
● Execute load followed by store of 1 and return the value of the load

In CACHE (cacheable lock, most common)
● protocol should be invalidate (eg MSI-invalidate).
● T&S treated as store

○ cache must acquire modified copy (M) before attempting T&S
● T&S executed in cache by cache controller before the block can be flushed.

Problem: both memory and cache variants generate large
amount of memory traffic when implementing locks

MEMORY → every T&S must reach main memory
CACHE → block containing the lock bounces back and forth between caches while
threads in different cores are busy-waiting on the lock

21

T&S Memory Traffic Problem

• T&S
 Lock: T&S R1, lock // PROBLEM: each thread writes '1' each iteration.
 BNEZ R1, Lock // Generates stream of invalidations! (MSI-invalidate)
 RET

T2 T3 T4 T5T1

T&S
I→M T&S

I→M T&S
I→MT&S

I→MT&S
I→M T&S

I→MT&S
I→M

T&S
I→M T&S

I→MT&S
I→M

T&S
I→M

SW 0,lck
I→M

ho
ld

s
lo

ck

BusRdX
BusRdX
BusRdX
BusRdX

BusRdX
BusRdX
BusRdX
BusRdX

BusRdX
BusRdX
BusRdX
BusRdX

Fail and Retry

22

Reduce Frequency of Issuing T&S
• T&S
Lock: T&S R1, lock // PROBLEM: each thread writes '1' each iteration.
 BNEZ R1, Lock // Generates stream of invalidations! (MSI-invalidate)
 RET

● T&S WITH BACKOFF
• increase the delay until the next trial after every failure
• e.g., exponential backoff

● backoff by k x ci at the ith trial

• TEST AND TEST&SET LOCK
• test with ordinary loads
• when value changes to 0, try to obtain lock with T&S
• works well with cache. Think: T&S vs T&T&S with MSI-invalidate

Lock: LW R1,lock

 BNEZ R1,Lock
 T&S R1,lock
 BNEZ R1,Lock

 RET

Unlock: SW R0,lock
 RET

23

Load-Linked and Store Conditional
Atomic RMW instructions are complex and do not fit well in a RISC
pipeline:

− Require atomic execution of two memory accesses (load + store)
− Solution: introduce pair of instructions: load-linked (LL) and

store-conditional (SC):
● LL Rx,lock
● SC R1,lock

• LOAD-LINKED or LOAD-LOCKED (LL)

• LL reads lock into register Rx
• STORE CONDITIONAL (SC)

• tries to store R1 in lock:
• succeeds if no other thread has written into lock since LL
• if SC succeeds the sequence LL-SC was atomic
• if SC fails, it does not write to memory; rather it sets R1 to 0

• SC CAN FAIL IF
• it detects intervening writes to lock since LL
• it tries to get the bus, but another SC succeeds first

24

Advantages of Load-linked / Store-conditional

Two advantages:
● easier to implement in a pipeline (particularly for RISC ISAs)
● Flexibility

Eg: Implementation of T&S with LL + SC

T&S(Rx,lock): ADDI R1,R0,1
 LL Rx,lock
 SC R1,lock
 BEQZ R1, T&S
 RET

Fancier atomic ops can be implemented by adding code between LL and SC:
● keep it simple so that SC is likely to succeed
● avoid instructions that cannot be undone (eg, store, instructions causing exceptions)

25

Load-locked and Store Conditional

● EXAMPLE: CAS

CAS(Rx,Ry,X) ADD R2,Ry,R0 /save Ry
 LL R1,X
 BNE Rx,R1,return

 SC R2,X /attempt to store Ry
 BEQZ R2,CAS

 ADD Ry,R1,R0 /return X in Ry
 RET

● Implementation
○ LL-bit is set when LL is executed

○ bus interface snoops update or invalidate signals and resets LL-bit

○ SC tests LL-bit, and fails if reset

○ LL-bits can track individual cache lines, larger address blocks (e.g. ARM
8-2048 bytes), or one LL-bit for the whole memory!

26

How to implement a T&S lock in high level
languages (eg. C++)?

● Inline assembly is not portable, how can we write portable locks?
● Option: Write the lock as a regular C++ code?

bool lock = false;
#define LOCK_ACQUIRE() { while(lock){}; lock=true; }
#define LOCK_RELEASE() { lock=false; }

PROBLEM: acquire not atomic. Same as simple software locks

● Solution 1: Implement synchronization via library calls or assembly
pthread_mutex_lock() / pthread_mutex_unlock() // Blocking

● Solution 2: Extend the High Level Language with explicit synchronization
variables and methods

27

Support for atomics in C++

28

USING C++11 ATOMICS (x86_64)
// C++ allows to declare basic atomic data types via atomic<type>

#include <atomic>

int atomic_exchange(std::atomic<bool> *l) {

 return l->exchange(true);

}

#define LOCK_ACQUIRE(l) while(atomic_exchange(lock))

std::atomic<bool>::exchange(bool, std::memory_order):

push rbp

mov rbp, rsp

mov QWORD PTR [rbp-24], rdi

mov eax, esi

mov DWORD PTR [rbp-32], edx

mov BYTE PTR [rbp-28], al

mov rdx, QWORD PTR [rbp-24]

movzx eax, BYTE PTR [rbp-28]

mov QWORD PTR [rbp-8], rdx

mov BYTE PTR [rbp-9], al

and BYTE PTR [rbp-9], 1

mov eax, DWORD PTR [rbp-32]

mov DWORD PTR [rbp-16], eax

movzx eax, BYTE PTR [rbp-9]

mov rdx, QWORD PTR [rbp-8]

xchg al, BYTE PTR [rdx] <- Atomic exchange of 'al' and [rdx] memory value

test al, al

setne al

nop

pop rbp

ret

Compiler generates code to use the X86 atomic xchg
instruction. note that xchg with a memory operand
has an implicit lock

// Assembler Dump (using compiler explorer: https://godbolt.org/) 29

https://godbolt.org/

USING C++11 ATOMICS (ARM64)
// C++ allows to declare basic atomic data types via atomic<type>

#include <atomic>

int atomic_exchange(std::atomic<bool> *l) {

 return l->exchange(true);

}

#define LOCK_ACQUIRE(l) while(atomic_exchange(lock))

std::atomic<bool>::exchange(bool, std::memory_order):

sub sp, sp, #32

str x0, [sp, 8]

strb w1, [sp, 7]

str w2, [sp]

ldr x0, [sp, 8]

str x0, [sp, 24]

ldrb w0, [sp, 7]

strb w0, [sp, 23]

ldr w0, [sp]

str w0, [sp, 16]

ldr x0, [sp, 24]

ldrb w1, [sp, 23]

.L4:

ldaxrb w2, [x0] <- Load-acquire exclusive register byte.
stlxrb w3, w1, [x0] <- Store-release exclusive register byte, returning status.
cbnz w3, .L4

and w0, w2, 255

cmp w0, 0

cset w0, ne

and w0, w0, 255

add sp, sp, 32

ret

Since ARM64 has no atomic exchange instruction, the
compiler generates an equivalent sequence using
load-linked store-conditional!

C++ hence provides portable atomics that can be used
to construct locks and lock-free data structures

// Assembler Dump (using compiler explorer: https://godbolt.org/) 30

https://godbolt.org/

SUMMARY

● Synchronization: Why

● Components Of Synchronization Event

● Hardware Based Synchronization

● Software Based Synchronization

○ Atomic Read-modify-write

○ Load-linked / Store-conditional

● Synchronization In High Level Languages

31

