LECTURE 12

Synchronization

Miquel Pericas
EDA284/DIT361 - VT 2020

What's cooking

1. Lectures
o Today (8h-10h) Synchronization
o Tuesday (3/3) next week (9h-12h): Coherence
o Friday (6/3) next week (10:30h-12h): Consistency

2. Lab session
o Friday (8h-12h @ ED3507), GEMS5 + Vector
o Lab Intro has been posted in Canvas

3. Project Status
o Deadline for first round of peer feedback is today

Overview of Lectures 12-14

Goal: Study the correct and reliable communication
of values in shared-memory multiprocessors

e Synchronization (L12) 26/2

e Strict coherence (L13) 3/3
e Plain coherence (L13) 3/3
e Sequential consistency (L14) 3/3 or 6/3

e Memory consistency models (L14) 6/3

AGENDA

Synchronization: Why?

Components of synchronization events
Hardware-based Synchronization
Software-based Synchronization

Support for synchronization in High Level Languages

Shared-memory Communication

e Implicitly via memory

Shared Memory

e STORE

o Processors share some memory
o Communication is implicit through loads and stores
m need to synchronize

m need to know how the hardware interleaves accesses from different
processors

LOAD

No assumption on the relative speed of processors.
Programs must be correct independently of speed

Why “Mutual Exclusion”

e assume the following statements are executed by 2 threads, T1 and T2, on sum
11 12

Sum <- Sum+1
Sum <- Sum+1

e PROGRAMMER’S EXPECTATION: final result independent of the order of
execution of the statements (Sum < Sum + 2)

e BUT: program statements are not executed atomically

e compiled code on a RISC ISA will result in several instructions
e a possible interleaving of execution is:

11 T2
rl <- Sum

o rl <- Sum

£ N

= rl <-rl1 +1 ?\P\

rl <-rl1 + 1
Sum <- ril
Y Sum <- ri

e at the end the result is that sum is incremented by 1 (NOT 2)

Mutual Exclusion

* We must have a way to make program statements appear atomic

 Critical sections

« provided by lock and unlock primitives framing the statement(s)
» modifications are “released” atomically at the end of the critical section

e So the code should be:

T1 T2

lock(La) lock(La) /acquire lock
A < A+1l A < A+l

unlock(La) unlock(La) /release lock

e The question then becomes: how do we implement correct/reliable a lock?

Dekker’s Algorithm for Locking

Note: Simplified version (without “turn”)
o Full version: https://en.wikipedia.org/wiki/Dekker%27s algorithm

Two variables 'A' and 'B' to indicate intention to enter critical section
Assume A and B are both 0 initially

T1 T2
A:=1 B:=1 /acquire
while(B=1); while(A=1);
<critical section> <critical section>
A:=0 B:=0 /release

At most one process can be in the critical section at any one time.
Deadlock if both threads enter the while() at same time.

o We will consider that this is ok for the time being...
Complex (to solve deadlock and synchronize more than 2 threads)

https://en.wikipedia.org/wiki/Dekker%27s_algorithm

Barrier Synchronization

Global synchronization among all threads
ALL threads must reach the barrier before ANY thread is allowed to
execute beyond the barrier

P1 P2
BAR := BAR+1; BAR := BAR +1;
while (BAR < 2); while (BAR < 2);

Note: need a critical section to increment BAR!

o no need of a critical section to read BAR in the while statement

In practice more complex because barrier count must be reset for the next
iteration...

Exercise: can you come up with a barrier that does not require locks?

Point-to-point Synchronization

One thread (producer) signals another thread (consumer) that it has reached a
certain point in execution

T1 T2
A=1;
FLAG = 1; /release
while (FLAG=0); /acquire
print A

Note: no need for critical sections to update and read FLAG

Signal sent by T2 to T1 through FLAG (Producer/Consumer synchronization)

10

Components of a Synchronization Event

 Acquire Method

« Acquire accesses rights to the synchronization variable (to enter critical
section, go past synchronization event).

* Needs waiting method if a different thread already holds the rights
* Release Method

* Enable other processors to acquire the right to the synchronization
* Waiting Algorithm

* Blocking

» Busy waiting

11

Waiting Algorithms

e Blocking (*)
o Waiting processes are descheduled by O/S
o High overhead
o Allows processor to work on something else
o Common method with O/S semaphores

e Busy Waiting (e.g. spinlock)
o Waiting processes repeatedly test a location until it changes value
o Low overhead but holds the processor
o May generate high memory/network traffic

(*) This notion of blocking is unrelated to blocking/non-blocking communication. It is more closely related to the
concept of synchronous communication

12

Busy-Waiting

Busy-waiting keeps the processor resources occupied

In hardware multithreaded cores it can be treated as a long latency
event.

Options:

o switch to other thread

o lower the thread’s priority

o use special instructions to reduce resource waste (e.g. PAUSE
instruction in x86)

Busy-waiting is better when

o Scheduling overhead is larger than expected wait time
o No other task to run

o synchronization within the OS kernel

HYBRID method: busy-wait for X attempts, then switch to blocking

13

Intel64 PAUSE instruction

13.5.3 Spin-Wait Loops

Use the PAUSE instruction in all spin wait loops. The PAUSE instruction de-pipelines the spin-wait loop to
prevent it from consuming execution resources excessively and consuming power needlessly.

When executing a spin-wait loop, the processor can suffer a severe performance penalty when exiting
the loop because it detects a possible memory order violation and flushes the core processor's pipeline.

The PAUSE instruction provides a hint to the processor that the code sequence is a spin-wait loop. The
processor uses this hint to avoid the memory order violation and prevent the pipeline flush. However, you

should try to keep spin-wait loops with PAUSE short.

Example 3-4. Use of PAUSE Instruction

lock: cmpeax, a
jne loop
; Code in critical section: Point-to-point synchronization:
loop: pause
cmp eax, a while(eax = a) { }
jne loop
jmp lock

Intel® 64 and IA-32 Architectures Optimization Reference Manual. June 2016

14

How can we implement
scalable locking schemes?

15

Option 1: Hardware-based Synchronization

Hardware Locks
» separate lock lines on the bus: holder of a lock assert the line

* lock registers
 set of shared registers

Hardware Barrier

» dedicated bus line using open-collector connection
« each thread tries to pull open collector down
» succeed only if all threads have reached barrier

« shared counting register

Inflexible
» not good for general purpose use
« hardwired waiting algorithm
+ fixed number of synchronization resources

Example: Hardware Barriers to support Message Passing Systems
» Fujitsu SPARC64 Xifx & A64FX have HW barrier (“inter-core barrier”) (2018)
« |IBM Blue Gene/P Barrier Network (2007)

16

(Incorrect) Option 2: Simple Software Locks

Lock: LW R2, lock
BNEZ R2, Lock
SW R1, lock /R1

RET

Unlock: SW RO, lock /RO
RET

how can we guarantee that
these operations execute
latomically?

e PROBLEM: lock is not atomic--two threads can gain the lock at the

same time

e SOLUTION: need new atomic read/write instructions
« atomically read the value of the location and set it to another value

* return success or failure

17

Option 3: Software-based Synchronization with
Atomic operations

e |ISA support: most modern machines provide some form of atomic
read-modify-write (R/M/W)

e IBM 370: atomic compare-and-swap, test-and-set (1973)

e x86: any memory read-modify-write instruction can be prefixed with a lock
(note that some instructions are implicitly prefixed)

« SPARC: atomic swap

 MIPS, PowerPC, RISC-V, ARM: support from pairs of instructions
» Load-locked, Store-conditional (also called: Load-linked)

these basic mechanisms are used to build software locks

18

Atomic Software Locks
SIMPLEST ONE: TEST _AND_SET (T&S)

T&S R1, var
Operation:
e readvarinR1
e write 1invar
e Assume var is used to store a lock:
o success if value read in R1 is 0 (lock=0 means lock was not taken)
o failureifitis 1 (lock=1 means lock was already taken)

MUST BE ATOMIC

Using T&S to implement a lock:

Lock: T&S R1, lock var
BNEZ R1, Lock
RET

Unlock: SW RO, lock var
RET

19

Atomic Software Locks

e other common R/M/W atomic operations:

o SWAP R1, MEM_LOC
m exchange the content of R1 and MEM_LOC
o FETCH&OP

m example: F&A (R1, MEM_LOC, const), where const is a small value.
m fetch MEM _LOC in R1, then add const to mem_loc

o COMPARE&SWAP

m CAS (R1,R2, MEM _LOC)
m compare MEM _LOC to R1. If they are equal swap R2 and MEM_LOC

20

T&S Implementation

In MEMORY (non-cacheable lock):
e Memory controller enforces atomicity of RMW cycle
e Execute load followed by store of 1 and return the value of the load

In CACHE (cacheable lock, most common)
e protocol should be invalidate (eg MSl-invalidate).
e T&S treated as store
o cache must acquire modified copy (M) before attempting T&S
e T&S executed in cache by cache controller before the block can be flushed.

MEMORY — every T&S must reach main memory

CACHE — block containing the lock bounces back and forth between caches while
threads in different cores are busy-waiting on the lock

21

T&S Memory Traffic Problem

T&S

Lock: T&S R1, lock // PROBLEM: each thread writes '1l' each iteration.
BNEZ R1, Lock // Generates stream of invalidations! (MSI-invalidate)

RET
Fail and Retry
T1 T2 T3 T4 T5
T&S /
|—M T&S " BusRdX
Y T&S . BusRdX
=M T&S BusRdX
x T&S —M BusRdX
O T&S (=M " BusRdX
S5 =M T&S—— BusRdX
2 T&S =M BusRdX
=M BusRdX
T&S
—M 1T&S " BusRdX
r&S M BusRdX
SW 0,Ick M " BusRdX

|—M BusRdX

Reduce Frequency of Issuing T&S

e T&S

Lock: T&S R1, lock // PROBLEM: each thread writes '1' each iteration.
BNEZ R1, Lock // Generates stream of invalidations! (MSI-invalidate)
RET

T&S WITH BACKOFF
 increase the delay until the next trial after every failure
* e.g., exponential backoff

backoff by k x ¢'at the ith trial

e TEST AND TEST&SET LOCK
 test with ordinary loads
« when value changes to 0, try to obtain lock with T&S
« works well with cache. Think: T&S vs T&T&S with MSl-invalidate

Lock: LW R1, lock
BNEZ R1,Lock
T&S R1, lock
BNEZ R1,Lock
RET

Unlock: SW RO, lock
RET

23

Load-Linked and Store Conditional

Atomic RMW instructions are complex and do not fit well in a RISC
pipeline:

- Require atomic execution of two memory accesses (load + store)

- Solution: introduce pair of instructions: load-linked (LL) and
store-conditional (SC):

LL Rx, lock
SC R1,lock

e LOAD-LINKED or LOAD-LOCKED (LL)
« LL reads lock into register Rx
« STORE CONDITIONAL (SC)
* tries to store R1in lock:
» succeeds if no other thread has written into Lock since LL
« if SC succeeds the sequence LL-SC was atomic
 if SC fails, it does not write to memory; rather it sets R1 to 0
e SC CAN FAILIF
* it detects intervening writes to lock since LL
* it tries to get the bus, but another SC succeeds first

24

Advantages of Load-linked / Store-conditional

Two advantages:

e easier to implement in a pipeline (particularly for RISC ISAs)
e Flexibility

Eg: Implementation of T&S with LL + SC

T&S(Rx,lock): ADDI R1,R0,1
LL Rx,lock
SC R1, lock
BEQZ R1, T&S
RET

Fancier atomic ops can be implemented by adding code between LL and SC.:
e Kkeep it simple so that SC is likely to succeed

e avoid instructions that cannot be undone (eg, store, instructions causing exceptions)

25

Load-locked and Store Conditional

e EXAMPLE: CAS

CAS(Rx,Ry, X) ADD R2,Ry,R0O /save Ry

LL R1,X

BNE Rx,R1,return

SC R2,X /attempt to store Ry
BEQZ R2,CAS

ADD Ry,R1,R0 /return X in Ry

RET

e Implementation

©)

O

©)

LL-bit is set when LL is executed
bus interface snoops update or invalidate signals and resets LL-bit
SC tests LL-bit, and fails if reset

LL-bits can track individual cache lines, larger address blocks (e.g. ARM
8-2048 bytes), or one LL-bit for the whole memory!

26

How to implement a T&S lock in high level
languages (eg. C++)?

e Inline assembly is not portable, how can we write portable locks?
e Option: Write the lock as a regular C++ code?

bool lock = false;
#define LOCK ACQUIRE() { while(lock){}; lock=true; }
#define LOCK RELEASE() { lock=false; }

PROBLEM: acquire not atomic. Same as simple software locks

e Solution 1: Implement synchronization via library calls or assembly
pthread mutex lock() / pthread mutex unlock () // Blocking

e Solution 2: Extend the High Level Language with explicit synchronization
variables and methods

27

Support for atomics in C++

C++ Atomic operations library

Atomic operations library

The atomic library provides components for fine-grained atomic operations allowing for lockless concurrent
programming. Each atomic operation is indivisible with regards to any other atomic operation that involves the same
object. Atomic objects are free of data races.

Defined in header <atomic>

Atomic types

atomic class template and specializations for bool, integral,
atomic (C++11) and pointer types
(class template)

provides atomic operations on non-atomic objects

atomic_ref (c++20) (class template)

Operations on atomic types

checks if the atomic type's operations are lock-free
(function template)

atomically replaces the value of the atomic object with a
non-atomic argument
(function template)

atomic_is lock free(c++11)

atomic_store (C++11)
atomic_store explicit (c++11)

atomic_load (C++11) atomically obtains the value stored in an atomic object
atomic_load_explicit (C++11) (function template)
atomic_exchange (C++11) atomically replaces the value of the atomic object with non-

atomic argument and returns the old value of the atomic
(function template)

atomic_compare_exchange weak (C++11) atomically compares the value of the atomic object with non-
atomic_compare_exchange_weak explicit (c++11) atomic argument and performs atomic exchange if equal or
(
(

atomic_exchange explicit (c++11)

atomic_compare_exchange strong c++11) atomic load if not
atomic compare exchange strong explicit (c++11) (functiontemplate)

28

USING C++11 ATOMICS (x86_64)

// C++ allows to declare basic atomic data types via atomic<type>
#include <atomic>
int atomic_exchange(std::atomic<bool> *1) {

return 1l->exchange(true);

}
#define LOCK_ACQUIRE(l) while(atomic_exchange(lock))

std::atomic<bool>: :exchange(bool, std::memory order):
push rbp
mov rbp, rsp

bp-24], rdi - '
mov QWORD PTR [rbp-24], rdl Compiler generates code to use the X86 atomic xchg
mov eax, esl

mov DWORD PTR [rbp-32], edx instruction. note that xchg with a memory operand
mov BYTE PTR [rbp-28], al has an implicit lock

mov rdx, QWORD PTR [rbp-24]

movzx eax, BYTE PTR [rbp-28]

mov QWORD PTR [rbp-8], rdx

mov BYTE PTR [rbp-9], al

and BYTE PTR [rbp-9], 1

mov eax, DWORD PTR [rbp-32]

mov DWORD PTR [rbp-16], eax

movzx eax, BYTE PTR [rbp-9]

mov rdx, QWORD PTR [rbp-8]

xchg al, BYTE PTR [rdx] <- Atomic exchange of 'al' and [rdx] memory value
test al, al

setne al

nop

pop rbp
ret

// Assembler Dump (using compiler explorer: https://godbolt.org/) 29

https://godbolt.org/

USING C++11 ATOMICS (ARM64)

// C++ allows to declare basic atomic data types via atomic<type>
#include <atomic>
int atomic_exchange(std::atomic<bool> *1) {

return 1l->exchange(true);

}
#tdefine LOCK_ACQUIRE(1l) while(atomic_exchange(lock))

std::atomic<bool>: :exchange(bool, std::memory order):
sub sp, sp, #32
str x0, [sp, 8]

jibw”z”’[ﬁ;‘]” '] Since ARM64 has no atomic exchange instruction, the

1dr x0, [sp, 8] compiler generates an equivalent sequence using
str x0, [sp, 24] load-linked store-conditional!

ldrb wo, [sp, 7]

strb wo, [sp, 23] . .
1dr we, [sp] C++ hence provides portable atomics that can be used

str we, [sp, 16] to construct locks and lock-free data structures
ldr x0, [sp, 24]

ldrb w1, [sp, 23]

.L4:

ldaxrb w2, [x0] <- Load-acquire exclusive register byte.

stlxrb w3, wil, [x0] <- Store-release exclusive register byte, returning status.
cbnz w3, .L4

and wo, w2, 255
cmp wo, ©

cset wo, ne

and wo, wo, 255
add sp, sp, 32
ret

// Assembler Dump (using compiler explorer: https://godbolt.org/)

30

https://godbolt.org/

SUMMARY

Synchronization: Why

Components Of Synchronization Event
Hardware Based Synchronization
Software Based Synchronization

o Atomic Read-modify-write

o Load-linked / Store-conditional

Synchronization In High Level Languages

31

