LECTURE 13

Coherence and Atomicity

Miquel Pericas
EDA284/DIT361 - VT 2020

What's cooking

1. Lectures
o Today (9h-12h): Coherence and Sequential Consistency
o Friday (6/3, 10:30h-12h): Memory Consistency Models
o Tuesday (10/3): The European Processor Initiative (Guest Lecturers:
Sonia Rani Gupta, Bhavishya Goel)

2. Project Status
o Tomorrow deadline for revised version

3. Problem Session
o Friday 9h-10:30h: Chip Multiprocessors, GPGPU
o Tuesday (10/3): Message Passing, Synchronization
m problems will be published soon

Overview of Lectures 12-14

Goal: Study the correct and reliable communication
of values in shared-memory multiprocessors

e Synchronization (L12) 26/2

e Strict coherence (L13) 3/3
e Plain coherence (L13) 3/3

e Sequential consistency (L14, part 1) 3/3

e Memory consistency models (L14, part 2) 6/3

AGENDA

Why is coherence so hard?

Strict coherence and store atomicity
Plain coherence

Limitations of plain coherence

Sequential Consistency

Memory coherence: what is the problem

event_4

event_5 X=2

X=?

X=0
el X=0
e2
e3 main memory

event lifetimes X=0
Problem: multiple copies of the same data
Uniprocessor definition: Load must always return value of last store with
same address in thread order
No such thing as “multi-thread” order in multiprocessors

Assume that events 1, 2, 3, 4 and 5 are globally ordered:
o Do not overlap in time, or
o Are atomic (take zero time)

Processors P1 and P2 “see” different values of X after event 3

Coherence: why it is so hard

event_4
X=?

event_5
X=?

X=0 - ovant 2
X=0
main memory

e After event 3, the caches contain different copies. Is this still coherent?

e (Can the loads in events 4 and 5 return O or 17? Is it coherent?

e Need formal definition for coherence

A strong definition: Strict coherence

“A memory system is coherent if the value returned on a Load instruction is
always the value given by the latest Store instruction with the same

address”
o Same as definition for uniprocessors
o No multi-thread order — “latest” requires global temporal order of stores

Difficult to extend as such to multiprocessors
o Execution rate of threads is unpredictable, memory ops are overlapped
o No instantaneous communication between processors

Global order requires one of the following:
o Memory accesses to same address do not overlap in time (difficult to enforce)
o Stores are atomic so that all copies are updated instantaneously
o Store/load orders are enforced by accesses to other memory locations (see
L 14, memory consistency models)

Here we explore option #2: Store atomicity

Notation used throughout this lecture

thread thread
1/ number 1‘/ number
L*(A)ay S°(A)a;
/ Z \ value / Z \ value
load store
memor memor
addr'es?s' ddr'es?v.’
Load by thread T1 of Store of thread T1 to
address @A, loading address @A, storing

the value a, the value a,

Atomic memory accesses

Example: MSI invalidate with Atomic Protocol Transactions (APT)

CLK T1: T2: Comments:

tl: S'(A)a, Data not in C2 and

t2: L'(A)a, dirty in C1

t3: S'(A)a,

t4: L'(A)a

t5: —=——=—- e L?(A)a, -—==========-=-= APT: Read Miss in C2;
t6: L'(A)a A becomes Shared in C1

and C2; both threads

t7: L>(A)a, can read A= a,

t8: L'(A)a, no one can write

t9: == oo S*(A)a,~—---==-====---= APT:C1 is invalidated
t10: L>(A)a, and C2 becomes Dirty
t11: S'(A)a, —=-—mm—mmmm oo APT:Store miss in C1;
t13: S'(A)a, C2 is invalidated

MSI-invalidate with APTs results in a single global temporal
order of stores. Hence it is strictly coherent

Memory access atomicity in bus-based system

* In the early 1980s, processors were not pipelined, were connected by a single,
circuit-switched bus, no store buffer

FROM NOW ON THICK LINES MEANS
"ATOMIC ACCESSES”

« On a coherence transaction, processor blocks, cache gets access to the bus and
complete the transaction in remote caches atomically

» Coherence transactions did not overlap in time
« Thus the protocol worked exactly as its FSM

e The coherence transaction is performed atomically when
the bus is released

10

Today coherence transactions are non-atomic

Store Buffer
Possibility of
forwarding

store buffen(SB)

in/out buffers mean large delays

AT |+~
@ - 3
I — 11T

outbound reqséreplies

| Bus interface |

point-to-point packet-switched interconnect
many routes between two points
eadaptive routing
ordered vs. unordered networks
no order + very unpredictable transmission times

11

Memory access atomicity--sufficient condition

Coherence transactions cannot happen instantaneously
o Must make them look atomic to the software
o Well-known problem: database systems, critical section

Sufficient condition: make sure that only one value is accessible at
any one time

No thread can observe progressive changes. Effect becomes visible
to all threads in a single operation (“atomicity”)

Definition of Store Atomicity:

o Stores are atomic if different threads can never observe

more than one value of the same memory location at the
same time.

12

Memory access atomicity--sufficient condition

e Definitions: performed vs globally performed

o Aload is performed at the point in time when its value is bound and
cannot be recalled

o A store is performed with respect to thread i/ at the point in time when a
load of thread / cannot return a value prior to the store

o A store is globally performed when it is performed with respect to all
threads

o Aload is globally performed when it is performed and the store providing
the value is also globally performed

e SUFFICIENT condition for Store Atomicity
o a global order of stores to each address is enforced
o aload must be globally performed before its value can be used

m value is bound
m store is globally performed

This second condition means that no thread can observe a new
value while any other thread can still observe the old value

13

store atomicity in cc-NUMAs

In bus-based, global order of stores to same memory location is easily
implemented: only one transaction per address in flight.
In cc-NUMA: directory controller uses busy bit: ensure total order of stores!

Example. How to enforce globally performed (GP) loads in cc-NUMA.:

HOME TO (req’r) Tl1(Sh’d) T2(Sh’'d)

1=10)] ISR °(x)1

directory entry
locked

write miss in thread 0 in a cc-NUMA with MSl-invalidate ”

store atomicity and coherence

The directory locks entry from t1 to t3
Up until caches receive invalidation, T1 and T2 read latest GP values

For store atomicity, TO cannot return values from its own stores until t4 (nor give
them away)

o New copy becomes available atomically at t3
o Store is globally performed at t3

Can this be faster? Can the block be released to TO at t2?

o yes, but bytes in the block modified locally must be locked out for loads until t4, so that
local threads (e.g. multithreading or cores w/ shared caches) load GP values only.

HOME TO(req’'r) Tl1(Sh’d) T2(Sh’d)

=10)| IO O(x)1

15

Strict coherence (store atomicity) is restrictive.
Can it be relaxed?

e A system is coherent if it is equivalent to a system with a single copy of
each data element

e Formal model:

accesses to X

e Rules of the model:
o Single copy of each data
o Accesses one by one in thread order to each address
e A system is coherent if its memory accesses to each address can be

executed correctly in thread order in a system with one single copy of each
memory address

16

A weaker definition: Plain Coherence

“A system is (plain) coherent iff, for every execution and for any memory
location, it is possible to construct a serial order of all memory operations to
the location such that:

o memory operations of each thread to the location occur in thread order

o the value returned by a Load is the value of the latest Store to the location in the serial
order”

2o S*OO1 Lxpe Bz S%(X)3 L4 L}(x)4

SIX)0 Lo S%(X)2 %2 L4z S3(X)4 L4

NOTES:
o accesses by each thread must appear in thread order
o serial order is not necessarily same as temporal order

Since all accesses to every location are in thread order and every load returns the
value of the latest store in the serial order, one can schedule accesses to one
address one by one on the formal model and get the same values returned by all
loads

17

Forwarding Store Buffer

e An enlightening example of hardware which is PLAIN coherent but NOT store
atomic is that of a store buffer that can forward to loads

load store load store load store load store

Atomic cache protocol
transitions

e Stores are inserted in the store buffer and issued to cache later
e Loads are satisfied by store buffer (if same address), otherwise go to memory:
o Loads are not globally performed!

Important: store buffers are not part of cache coherence!

18

Forwarding Store Buffers

Stores are kept and combined in the Store Buffer & written to memory during WriteBack (WB), at
which point they generate an atomic protocol transaction (APT)

T1 T2 T3 CACHE STATES Comments
cl c2 c3

O [re—— L3 (a) ag---- NIC NIC SHA Miss in C3; APT1
t1 [st(a)a; NIC NIC SHA
t2 s (2) a, NIC NIC SHA
t3 |zt (a)a, NIC NIC SHA
t4 s?(n) ag NIC NIC SHA
£5 L3 (a)a, NIC NIC SHA
t6 | st (n)a, NIC NIC SHA
£7 L2 (A) a; NIC NIC SHA
t8 [zl (a)a, NIC NIC SHA
t9 1.2 (a) a3 NIC NIC SHA
t1d wBl (a)agf--———---—-————— MOD NIC INV Miss in C1l; APT2
tll Lo (B)ag- ————————————————————————— MOD NIC INV Hit in C1
£12 s?(n)as DTY NIC INV
£13-——————————— we? (A)ag-——————-——————~- INV DTY INV Miss in C2; APT3
t14 LY (a)ag-——-—————————— - SHA SHA INV Miss in C1; APT4
t15 L3 (a)a, SHA SHA INV
T WB> (A) a,-— INV INV MOD Miss in C3; APTS
£17 LY (a)ap———————————m - SHA INV SHA Miss in C1l; APT6
Y S R B R R 0 S L3(a)a,---- SHA INV SHA Hit in C3
£19-——————————— B2 () dig—r SHA SHA SHA Miss in C2; APT7
£20 32 (a) ag SHA SHA SHA
£21 ¥.2(n) ag SHA SHZ 3HA
£22-——————————— wB? (A)ag-————————————~- INV MOD INV Upgrade in C2; APTS

Stores are not atomic. Loads from different
processors return different values at the same time

Forwarding Store Buffers

e Aggressive Store Buffer management

o Stores overwrite previous values to same address (one single value in SB per address)
o Stores forward values to loads

e Despite lack of store atomicity, system is still coherent
e We first show the order of accesses to caches (GP Accesses)

o INIT— L*A)a,— WB'(A)a,— L'(A)a,— WB*(A)a,— L'(A)a,— WB?*A)a,— L'(A)a,—
L3(A)a,— L*(A)a,— WB*(A)a,
e We then expand all WBs by local LW/SW’s
o L%A)a,S'(A)a,L'(A)a, S'(A)a,L'(A)a, L'(A)a, S*(A)a, L*(A)a, L*(A)a, S%(A)a,L'(A)a
S°(A)a, L*(A)a, L3(A)a, L'(A)a, L}(A)a, L*(A)a, S*(A)a,L*(A)a
e This results in the following orders:
Temporal order: a,— a,— a,— a,—a,— a,— a;

5
6

Coherence order: a,— a,— a,— a,— a.— a,— a,
P1 observes a,— a
P2 observes a,— a
P3 observes a,— a

— aS—> a2
— az—> a6

N o0 M~ O

Threads skip values in coherence order because they do not observe them through Loads!

Hence system is Plain coherent o

Forwarding Store Buffers

T1 T2 T3 CACHE STATES Comments
c1 c2 c3

£0-——————————m———————— L3 (a) ap---- NIC NIC SHA Miss in C3; APT1
t1 sl(a)a; NIC NIC SHA
t2 s*(a)a, NIC NIC SHA
£3 T (a)a, NIC NIC SHA
t4 s2(n)ay NIC NIC SHA
t5 L3 (a)a, NIC NIC SHA
t6 sl(a)a, NIC NIC SHA
t7 L2 (n)ay NIC NIC SHA
£8 Il (A)a, NIC NIC SHA
t9 L2 (a) a3 NIC NIC SHA
£10 WBl (A)ag——————-——————————————————— MOD NIC INV Miss in Cl; APT2
t11 L1 (a)ag————————— - MOD NIC INV Hit in C1
£12 s?(n)as DTY NIC INV
£13-——————————— wB2 (A)ag-—————————————— INV DTY INV Miss in C2; APT3
t14 LY (a)ag-————————————————— - SHA SHA INV Miss in Cl; APT4
t15 L3 (a)a, SHA SHA INV
£16-—————————————————————— WB> (a) a,-— INV INV MOD Miss in C3; APTS
£17 LY (a)ag————————— - SHA INV SHA Miss in Cl; APT6
£18 ————————m——— L3(a)a,---- SHA INV SHA Hit in C3
£19-——————————— L2 (a) ag---———————————- SHA SHA SHA Miss in C2; APT7
£20 32 (n) ag SHA SHA SHA
£21 12(R) ag SHA SHA 3HA
22— = WB2 (A) aps=smssmammnass INV MOD INV Upgrade in C2; APTS

e Order of accesses to caches:
. Il\21IT—> L3(A)ag—> WB'(A)a i L'(A)a i WBz(A)a5—> L1(A)a5—> WB3(A)a2—> L1(A)a2—> L3(A)a2—>
L (A)a2—> WB (A)a6
« We then expand all WBs by local LW/SW’s:
. L3(A)aO S1(A)a1 L1(A)a1 S'(A)a 4 L'(A)a 4 L'(A)a A SZ(A)a3 L2(A)a3 L2(A)a3 SZ(A)a5 L1(A)a5 S3(A)a

L3(A)a, L*(A)a, L'(A)a, L3 (A)a, L(A)a, S*(A)a, L*(A)a ’

Privacy Principle

* “Privacy Principle”: a thread may access its own private
values which are not propagated to other threads without
violating coherence

 Reason is no other thread can observe the values, so it’s
easy to insert the accesses to them in a global order

22

the problem with plain coherence

Coherence is not composable with other possible orders
» Load-load or load-store on different locations

Example
INIT A=aq:B=b,:
T1
sl(A)a, lsz(la)b1
CLI(A)al 1 L?(B)b,)
L!(B)bg L2(A)ag

According to plain coherence, this execution is coherent for A or B
individually.

But: if the loads in both threads must be ordered, then it is not possible to
find a global order of all accesses while maintaining coherence

When a global order does not exist, reasoning about executions is much
more complex.

The above execution is not possible with store atomicity,

since store atomicity orders accesses in real time
23

Are Coherence and Store Atomicity sufficient?

e Is the following code coherent? And Store Atomic?
INIT A=0,B=0;

T1 T2
Si(A)1 S%(B)1
L1(B)0 L°(A)0

e Yes, itis both coherent (because only two accesses each address) and
store atomic (all loads are performed on GP values)
e Is the following code coherent and store atomic?

INIT A=0,B=0;

T1 T2

Sst(A)1 S%(B)1
BARRIER(bari) BARRIER(bari)
L'(B)0 L2(A)0

e Yes.Butis it correct?
e Not what the programmer expects!

Coherence and store atomicity deal only with single memory locations.
Not enough for program correctness

Motivation for memory consistency models!

24

Summary so far

why is coherence so hard

strict coherence

store atomicity

plain coherence

forwarding store buffers and generalizations
Limitations of plain coherence and store atomicity

next: memory consistency models

25

