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What's cooking

1. Lectures 
○ Today (9h-12h): Coherence and Sequential Consistency
○ Friday (6/3, 10:30h-12h): Memory Consistency Models
○ Tuesday (10/3): The European Processor Initiative (Guest Lecturers: 

Sonia Rani Gupta, Bhavishya Goel)

2. Project Status
○ Tomorrow deadline for revised version

3. Problem Session
○ Friday 9h-10:30h: Chip Multiprocessors, GPGPU
○ Tuesday (10/3): Message Passing, Synchronization

■ problems will be published soon
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Overview of Lectures 12-14

● Synchronization (L12) 26/2

● Strict coherence (L13) 3/3

● Plain coherence (L13) 3/3 

● Sequential consistency (L14, part 1) 3/3

● Memory consistency models (L14, part 2) 6/3

Goal: Study the correct and reliable communication 
of values in shared-memory multiprocessors
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AGENDA

● Why is coherence so hard?

● Strict coherence and store atomicity

● Plain coherence

● Limitations of plain coherence

● Sequential Consistency
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Memory coherence: what is the problem 

● Problem: multiple copies of the same data
● Uniprocessor definition: Load must always return value of last store with 

same address in thread order
● No such thing as “multi-thread” order in multiprocessors
● Assume that events 1, 2, 3, 4 and 5 are globally ordered:

○ Do not overlap in time, or 
○ Are atomic (take zero time)

● Processors P1 and P2 “see” different values of X after event 3

e1
e2

e3

event lifetimes
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Coherence: why it is so hard

● After event 3, the caches contain different copies. Is this still coherent?

● Can the loads in events 4 and 5 return 0 or 1? Is it coherent?

● Need formal definition for coherence
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A strong definition: Strict coherence

● “A memory system is coherent if the value returned on a Load instruction is 
always the value given by the latest Store instruction with the same 
address” 
○ Same as definition for uniprocessors
○ No multi-thread order → “latest” requires global temporal order of stores

● Difficult to extend as such to multiprocessors
○ Execution rate of threads is unpredictable, memory ops are overlapped
○ No instantaneous communication between processors

● Global order requires one of the following:
○ Memory accesses to same address do not overlap in time (difficult to enforce)
○ Stores are atomic so that all copies are updated instantaneously
○ Store/load orders are enforced by accesses to other memory locations (see 

L14, memory consistency models)
● Here we explore option #2: Store atomicity
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Notation used throughout this lecture

Load by thread T1 of 
address @A, loading 

the value a1

Store of thread T1 to 
address @A, storing 

the value a2
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Atomic memory accesses

Example: MSI invalidate with Atomic Protocol Transactions (APT)

CLK T1:                       T2:  Comments:
t1: S1(A)a1                                           Data not in C2 and 
t2: L1(A)a1      dirty in C1
t3: S1(A)a2  
t4: L1(A)a2
t5: -------------------------- L2(A)a2 -------------- APT: Read Miss in C2;
t6: L1(A)a2 A becomes Shared in C1 

and C2; both threads
t7:                           L2(A)a2         can read A= a2 
t8: L1(A)a2              no one can write 
t9: -------------------------- S2(A)a3-------------- APT:C1 is invalidated
t10:                      L2(A)a3              and C2 becomes Dirty
t11:  S1(A)a4   --------------------------------------- APT:Store miss in C1;
t13:  S1(A)a5 C2 is invalidated
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MSI-invalidate with APTs results in a single global temporal 
order of stores. Hence it is strictly coherent



Memory access atomicity in bus-based system
• In the early 1980s, processors were not pipelined, were connected by a single, 

circuit-switched bus, no store buffer 

• On a coherence transaction, processor blocks, cache gets access to the bus and 
complete the transaction in remote caches atomically

• Coherence transactions did not overlap in time
• Thus the protocol worked exactly as its FSM

• The coherence transaction is performed atomically when 
the bus is released

Today we must deal with non-atomic transactions
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Today coherence transactions are non-atomic 

packet-switched
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Memory access atomicity--sufficient condition

● Coherence transactions cannot happen instantaneously
○ Must make them look atomic to the software
○ Well-known problem: database systems, critical section

● Sufficient condition: make sure that only one value is accessible at 
any one time

● No thread can observe progressive changes. Effect becomes visible 
to all threads in a single operation (“atomicity”)

● Definition of Store Atomicity: 
○ Stores are atomic if different threads can never observe 

more than one value of the same memory location at the 
same time. 
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Memory access atomicity--sufficient condition

● Definitions: performed vs globally performed
○ A load is performed at the point in time when its value is bound and 

cannot be recalled
○ A store is performed with respect to thread i at the point in time when a 

load of thread i cannot return a value prior to the store 
○ A store is globally performed when it is performed with respect to all 

threads
○ A load is globally performed when it is performed and the store providing 

the value is also globally performed
● SUFFICIENT condition for Store Atomicity

○ a global order of stores to each address is enforced
○ a load must be globally performed before its value can be used

■ value is bound
■ store is globally performed

This second condition means that no thread can observe a new 
value while any other thread can still observe the old value
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store atomicity in cc-NUMAs 

write miss in thread 0 in a cc-NUMA with MSI-invalidate

● In bus-based, global order of stores to same memory location is easily 
implemented: only one transaction per address in flight.

● In cc-NUMA: directory controller uses busy bit: ensure total order of stores!

● Example. How to enforce globally performed (GP) loads in cc-NUMA: 
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store atomicity and coherence

● The directory locks entry from t1 to t3
● Up until caches receive invalidation, T1 and T2 read latest GP values
● For store atomicity, T0 cannot return values from its own stores until t4 (nor give 

them away)
○ New copy becomes available atomically at t3
○ Store is globally performed at t3

● Can this be faster? Can the block be released to T0 at t2?
○ yes, but bytes in the block modified locally must be locked out for loads until t4, so that 

local threads (e.g. multithreading or cores w/ shared caches) load GP values only.
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Strict coherence (store atomicity) is restrictive. 
Can it be relaxed?

● A system is coherent if it is equivalent to a system with a single copy of 
each data element

● Formal model: 
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● Rules of the model:
○ Single copy of each data
○ Accesses one by one in thread order to each address

● A system is coherent if its memory accesses to each address can be 
executed correctly in thread order in a system with one single copy of each 
memory address



A weaker definition: Plain Coherence
● “A system is (plain) coherent iff, for every execution and for any memory 

location, it is possible to construct a serial order of all memory operations to 
the location such that:
○ memory operations of each thread to the location occur in thread order
○ the value returned by a Load is the value of the latest Store to the location in the serial 

order”
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● NOTES:    
○ accesses by each thread must appear in thread order
○ serial order is not necessarily same as temporal order

● Since all accesses to every location are in thread order and every load returns the 
value of the latest store in the serial order, one can schedule accesses to one 
address one by one on the formal model and get the same values returned by all 
loads



Forwarding Store Buffer
● An enlightening example of hardware which is PLAIN coherent but NOT store 

atomic is that of a store buffer that can forward to loads

● Stores are inserted in the store buffer and issued to cache later
● Loads are satisfied by store buffer (if same address), otherwise go to memory:

○ Loads are not globally performed!

18

Important: store buffers are not part of cache coherence!



Forwarding Store Buffers 

Stores are not atomic. Loads from different 
processors return different values at the same time

Stores are kept and combined in the Store Buffer & written to memory during WriteBack (WB), at 
which point they generate an atomic protocol transaction (APT)
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Forwarding Store Buffers
● Aggressive Store Buffer management

○ Stores overwrite previous values to same address (one single value in SB per address) 
○ Stores forward values to loads

● Despite lack of store atomicity, system is still coherent
● We first show the order of accesses to caches (GP Accesses)

○ INIT→ L3(A)a0→ WB1(A)a4→ L1(A)a4→ WB2(A)a5→ L1(A)a5→ WB3(A)a2→ L1(A)a2→ 
L3(A)a2→ L2(A)a2→ WB2(A)a6 

● We then expand all WBs by local LW/SW’s
○ L3(A)a0 S

1(A)a1 L
1(A)a1 S

1(A)a4 L
1(A)a4 L

1(A)a4 S
2(A)a3 L

2(A)a3 L
2(A)a3  S

2(A)a5 L
1(A)a5 

S3(A)a2 L
3(A)a2 L

3(A)a2 L
1(A)a2 L

3(A)a2 L
2(A)a2  S

2(A)a6 L
2(A)a6

● This results in the following orders: 
Temporal order: a0→ a1→ a2→ a3→ a4→ a5→ a6
Coherence order: a0→ a1→ a4→ a3→ a5→ a2→ a6
P1 observes a1→ a4→ a5→ a2 
P2 observes a3→ a5→ a2→ a6
P3 observes a0→ a2

Threads skip values in coherence order because they do not observe them through Loads!

Hence system is Plain coherent
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Forwarding Store Buffers 

• Order of accesses to caches:
• INIT→ L3(A)a0→ WB1(A)a4→ L1(A)a4→ WB2(A)a5→ L1(A)a5→ WB3(A)a2→ L1(A)a2→ L3(A)a2→ 

L2(A)a2→ WB2(A)a6
•  We then expand all WBs by local LW/SW’s:

• L3(A)a0 S
1(A)a1 L

1(A)a1 S
1(A)a4 L

1(A)a4 L
1(A)a4 S

2(A)a3 L
2(A)a3 L

2(A)a3 S
2(A)a5 L

1(A)a5 S
3(A)a2 

L3(A)a2 L
3(A)a2 L

1(A)a2 L
3(A)a2 L

2(A)a2  S
2(A)a6 L

2(A)a6
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Privacy Principle

• “Privacy Principle”: a thread may access its own private 
values which are not propagated to other threads without 
violating coherence
• Reason is no other thread can observe the values, so it’s 

easy to insert the accesses to them in a global order
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the problem with plain coherence
• Coherence is not composable with other possible orders

• Load-load or load-store on different locations

• Example

• According to plain coherence, this execution is coherent for A or B 
individually. 

• But: if the loads in both threads must be ordered, then it is not possible to 
find a global order of all accesses while maintaining coherence

• When a global order does not exist, reasoning about executions is much 
more complex. 
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The above execution is not possible with store atomicity, 
since store atomicity orders accesses in real time



Are Coherence and Store Atomicity sufficient?
● Is the following code coherent? And Store Atomic? 
  INIT A=0,B=0;
  T1        T2
  S1(A)1    S2(B)1
  L1(B)0    L2(A)0
● Yes, it is both coherent (because only two accesses each address) and 

store atomic (all loads are performed on GP values)
● Is the following code coherent and store atomic? 
  INIT A=0,B=0;
  T1               T2
  S1(A)1           S2(B)1
  BARRIER(bar1)    BARRIER(bar1)
  L1(B)0           L2(A)0
● Yes. But is it correct?
● Not what the programmer expects!
Coherence and store atomicity deal only with single memory locations. 

Not enough for program correctness

Motivation for memory consistency models!
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Summary so far

● why is coherence so hard

● strict coherence 

● store atomicity

● plain coherence

● forwarding store buffers and generalizations

● Limitations of plain coherence and store atomicity

● next: memory consistency models
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