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Overview of Lectures 12-14

● Synchronization (L12) 26/2

● Strict coherence (L13) 3/3

● Plain coherence (L13) 3/3 

● Sequential consistency (L14, part 1) 3/3

● Memory consistency models (L14, part 2) 6/3

Goals: 
1. Study the correct and reliable communication of values in 

shared-memory multiprocessors
2. How programmers can enforce order in modern CMPs
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What's cooking

1. Lectures 
○ Today - Final lecture: Memory Consistency Models
○ Tuesday (10/3): The European Processor Initiative (Guest Lecturers: 

Sonia Rani Gupta, Bhavishya Goel)
○ Wednesday (11/3): Q&A session

2. Project Status
○ March 10th deadline for assessment phase

3. Practice Sessions
○ Tuesday (10/3): Message Passing, Synchronization

■ problems will be published soon
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Memory Consistency Models: Outline

● Sequential Consistency (today)

● Relaxed Memory Consistency Models (Friday)
○ Not relying on Synchronization (E.G. Store-load Relaxation)
○ Relying on Synchronization (E.G. Weak Ordering) 
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Coherence is not sufficient

• Point-to-point Synchronization    
   assume A and flag are both 0 initially

P1           P2
::.            ::.
A:=1;          while(flag:=0) do nothing;
flag:=1;       print A;
::.            ::.

• Expectation:
• S1(A)1 should reach P2 before S1(flag)1

• with coherence only, print A=0 is a valid outcome
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Coherence is not sufficient
• Communication
    assume A and B are both 0 initially
    P1            P2
    ::.           ::.
    A:=1;         print B;
    B:=2;         print A;
    ::.           ::. 

• Expectation
● if print B prints 2, then print A must print 1
● again, with coherence only (2, 0) is a valid outcome
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Coherence is not sufficient
• Dekker’s Algorithm (critical section)
   assume A and B are both 0 initially

P1                    P2
::.                   ::.

   S1(A):A:=1            S2(B):B:=1
  L1(B):while(B:=1);    L2(A):while(A:=1);

<critical section>    <critical section>
A:=0                  B:=0

• Expectation
• Only one thread executes the critical section, or deadlock if both 

threads execute the while statement at the same time.

• Even with store atomicity L1(B)0 and L2(A)0 may happen, 
which results in both threads entering the critical section
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Coherence is not sufficient

• Programmer’s intuition is that accesses from different 
processes are “interleaved” in process order

• different from coherence, which applies to a single location

• need to formalize this model

SEQUENTIAL CONSISTENCY
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Formal model for Sequential Consistency (SC) 

• Program order of all threads is respected and all memory 
accesses are atomic 

A multiprocessor is sequentially consistent if “the result of any 
execution is the same as if the memory operations of all the 
processors were executed in some sequential order, and the 

operations of each individual processor appear in the sequence in 
the order specified by its program”

Leslie Lamport, How to Make a Multiprocessor Computer That Correctly Executes Multiprocess 
Programs, IEEE Transactions on Computers, September 1979 

• Program order of all threads is respected and all memory 
accesses are atomic 

a multiprocessor is sequentially consistent if “the result of any 
execution is the same as if the memory operations of all the 
processors were executed in some sequential order, and the 

operations of each individual processor appear in the sequence in 
the order specified by its program”
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Sequential Consistency (SC)

What it means: all loads and stores from all threads can be laid 
out on a causality line so that: 
1) all intra-thread orders are respected
2) only one access to shared memory is executed at a time

Thread 1: S1(x=0) → S2(y=3) → L3(x=1) 
Thread 2: L1(x=0) → S2(x=1) → L3(y=1) → L4(x=1) → L5(x=1) → L6(y=3)
Thread 3: L1(x=0) → L2(x=1) → S3(y=2)
Thread 4: S1(y=1) → L2(y=1)

Causality timeline of loads (L) and stores (S)

S1(x=0)

L1(x=0)

L1(x=0)

S1(y=1)

S2(x=1)

L3(y=1)

L4(x=1)

L2(x=1)

L2(y=1)

S3(y=2)

S2(y=3)

L5(x=1)

L3(x=1)

L6(y=3)

Like plain coherence, except that it applies to all memory locations



Sequential Consistency

● Thread orders that must be enforced in the global order of all 
memory accesses 

• In SC all intra-thread orders must be globally enforced 

• Sufficient condition for Sequential Consistency:
○ Global order of stores to same address is enforced
○ A thread cannot issue an access to memory until all its previous memory 

accesses (for all memory locations) have been globally performed.
■ Hence, processor needs to wait before starting every single access to any 

memory location!
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Sequential Consistency

• What does this mean for in-order processors?

• LOADs are blocking, so LOAD-LOAD and LOAD-STORE orders are 
enforced

• STOREs are non-blocking (they move to SB)
• STORE-LOAD: loads must block in ME until SB is empty (no 

forwarding!)
• STORE-STORE: stores must be GPed one by one from SB (no write 

combining, unless there is no intervening store to a different location 
between two stores that combine)
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Sequential Consistency and store buffers

• Problem with store buffer: with forwarding store buffers, loads can be 
performed before previous stores

• in SC, a LOAD must be stalled if prior STOREs are not GPed. No forwarding
• Store Buffer is effective for long bursts of STOREs (write combining)

• But STOREs must be propagated one by one before the next load anyway
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• LOOK AT DEKKER AGAIN
A and B are both 0 and cached as Shared initially

   T1                     T2
   S1(A)1                 S2(B)1
   L1(B)?                 L2(A)?

What outcomes are possible under Sequential Consistency?



Dekker: expected outcomes

● Programmer Intuition:

Processor
instructions:

Initially X,Y := 0
T1.1: ST X,1        T2.1: ST Y,1
T1.2: LD EAX1,Y     T2.2: LD EAX2,X EAX1, EAX2

outcome

● Quiz: out of the four outcomes [EAX1,EAX2]= [1,1], [0,1], 
[1,0], [0,0], which are possible? 



Dekker and SC
● look at dekker again, can SC result in the [0,0] outcome? 

A and B are both 0 and cached as Shared initially
T1 T2
S1(A)1 S2(B)1
L1(B)0 L2(A)0
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● Execution graph has cycles → execution cannot be ordered, hence 
this is not possible under SC!

● Dekker's algorithm is correct under SC, so modern hardware should 
implement SC, right? 



Ok, let's see this on my laptop

ST Y, 1

LD EAX, X

T1 T2
S1(A)1 S2(B)1
L1(B)0 L2(A)0

on Intel systems, L1(B)0 & L2(A)0 is possible!
i.e. both threads will enter the critical section. 
Is Intel HW broken, or does it allow such outcomes? 

with 
http://diy.inria.fr/

http://diy.inria.fr/


Dekker, SC and Store Buffers
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● Intel HW allows loads to bypass stores in the Store Buffer
● With store buffers and no GP store-load order, outcome can be (0,0)

■ T1 executes A:=1, which stays in the SB
■ T2 executes B:=1, which stays in the SB
■ Under MSI invalidate T1 and T2 both read 0

● Problem: SC is very restrictive and cannot take really advantage of store 
buffers

● But store buffers are critical for performance!

○ How do we solve the performance vs correctness question?



need to change the rules:

MEMORY CONSISTENCY MODELS
(next lecture) 
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How to implement locks and lock-free algorithms?
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What is the meaning of 
these annotations?

How do we use them in 
our programs?



Memory Consistency Models: Outline

● Sequential Consistency 

● Relaxed Memory Consistency Models (today)
○ Not relying on Synchronization (E.G. Store-load Relaxation)
○ Relying on Synchronization (E.G. Weak Ordering) 
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Memory Consistency Models 

● SC is very restrictive. Are there other programmer’s intuitions?
○ such as those provided by synchronization?
○ Whenever shared variables are read/write they should be protected by 

synchronization methods (locks, barriers, ...):  
          BAR IS 0 INITIALLY
          P1                           P2
          A:=1;                        BARRIER(BAR,2);
          B:=2;                        R1:=A;
          BARRIER(BAR,2);              R2:=B;
● Thee barrier enforces the order such that P2 can only observe the SC-compliant 

case (A,B) = (1,2).

Accesses to sync variables can be treated differently from accesses to regular 
variables by the hardware, e.g. via special loads and stores or RMW atomics.

In this case, the pursuit of sequential consistency seems pointless.
Does it allow to build more efficient HW?
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Let's consider the opposite approach? 

● Why bother about the programmer anyway?

○ How about designing memory access rules that are hardware 
friendly and then let the programmer take care of it??
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Memory Consistency Model

● In any case we need a memory access ordering model on 
which programmers, compilers and machine architects can 
agree
○ Called the memory consistency model

● This model must be part of the ISA definition, since it is at 
the interface between software and hardware
○ Today’s instruction set manuals include the memory consistency 

model as part of the ISA definition
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From the Intel64 developers manual (Part 3.a)

Sequential Consistency!

x86-TSO
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From the ARMv8-A manual

Weak Ordering
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From the RISC-V spec
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Weak Ordering

TSO



Memory Consistency Models 

• there are two types of relaxed memory consistency 
models:
• models not relying on synchronization
• models relying on synchronization
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Let's look first at models not relying on synchronization



Relaxed Memory Consistency Models

We can relax some of the access orders of each thread!
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Sequential 
Consistency (SC)
[old Intel, MIPS...]

LOAD

LOAD

LOAD

STORE

STORE

LOAD

STORE

STORE

Total Store Order 
(TSO) 
[Sun, new Intel]

LOAD

LOAD

LOAD

STORE

STORE

LOAD

STORE

STORE

LOAD

LOAD

LOAD

STORE

STORE

LOAD

STORE

STORE

Relaxed Memory 
Order (RMO)
[Power,ARM,Alpha]

Sequential Consistency is a strict memory model. All intra-thread 
orders must be enforced in the global order



Relaxing store-to-load order

● The major relaxation is the store-to-load order: 
○ LOADs can bypass prior STOREs

○ STOREs from the same processor must be observed by all other processors in 
thread order (because of STORE-STORE and LOAD-LOAD orders)
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● What does this mean for in-order processors?
○ Assuming store atomicity: LOADs return values from memory only when the 

values are GPed

 

○ LOAD-LOAD, LOAD-STORE, STORE-STORE: same as for SC
○ STORE-LOAD: LOADs don’t wait for SB to empty; 



Relaxing Store-to-load Orders

● Example: Sun Microsystems/x86 Total Store Order (TSO) 
○ Dekker's algorithm does not work (LOADs can bypass prior STOREs)

■ remember: we saw this on my laptop!
○ Point-to-point communication still works (because STORE-STORE and 

LOAD-LOAD are enforced)
 

● Values may or may not be forwarded from SB to loads
○ No forwarding from SB → strict coherent (store atomic)

■ Implementations: IBM 370
○ Forwarding from SB → plain coherent (case of TSO)

■ This means that some loads in TSO return values even if they are not GPed
■ Implementations: Sun TSO, Intel x86-TSO
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RMO: Relaxed Memory Order (SUN, ARM, POWER, RISC-V)

• In RMO only intra-thread memory dependency order is enforced
• as in all uniprocessors

• No implicit order between threads
• Enables more performance optimizations (most "hardware-friendly") 
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• MEMBAR (memory barrier) instructions specify orders explicitly. For 
example: 

• 4 bits are used to specify up to 4 orders
• LOAD-LOAD → forces all preceding loads to be GPed before any load 

may be issued
• LOAD-STORE → forces all preceding loads to be GP before any store
• STORE-STORE →  forces all preceding stores to be GP before any 

store
• STORE-LOAD →  forces all preceding stores to be GP before any load



RMO: Relaxed Memory Order (SUN, ARM, POWER)

• MEMBARS are inserted by the compiler or programmer
• MEMBARs are extra instructions executed by single thread (unlike thread barrier 

synchronization)

T1          T2                   T3
A:=1;       while(A:=0);   R2:=B;

     B:=1;       R3:=A;
• not sequentially consistent (yields non-SC outcomes)

T1          T2         T3
A:=1;  while(A:=0);  R2:=B;

 MEMBAR 0100  MEMBAR 1000
  B:=1;          R3:=A; 

• with membars: sequentially consistent (yields SC outcomes only)
■ MEMBAR 0100: LOAD-STORE
■ MEMBAR 1000: LOAD-LOAD
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Also useful to enforce order in TSO
Can we solve the Dekker ordering problem by inserting a memory barrier (MFENCE)? 

(note: Intel MFENCE instruction basically equivalent to MEMBAR 1111)

Yes:
Dekker works with 
TSO + MFENCE



MCM based on Synchronization: Weak Ordering

● Multithreaded execution uses locking 
mechanisms to avoid race conditions.

● Executions include various phases:
○ Accesses to private or read-only shared data, 

or
○ Accesses to shared modifiable data, 

protected by locks and barriers.

● In each phase the thread has exclusive 
access to all its data, meaning
○ No other thread can write to them, or
○ No other thread can read the data it modifies
○ Hence, no need to enforce ordering within a 

phase
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MCM based on Synchronization: Weak Ordering

● Accesses to synchronization data (including all locks and shared data in 
synchronization protocols) must be treated differently by the hardware from 
accesses to other shared and private data. 
○ They act as memory barriers on all accesses
○ Must globally perform all access preceding SYNC access in thread order (T.O.)
○ Must globally perform SYNC access before all following accesses in thread 

order (T.O.)

● Accesses to other (non-sync) shared and private data must enforce uniprocessor 
dependencies on same address
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WEAK ORDERING
● Variables that are used for synchronization must be declared as such (e.g., flag, A and 

B below) or specific statements must be labeled or marked
○ so that execution on these variables is safe
○ to avoid compiler reordering

   A=flag=0 initially
   T1                            T2
   A:=1;                         while(flag:=0)do nothing;
   flag:=1;                      print A;
   ::.                           ::.

Flag must be declared as sync variable

   A=B=0 initially
   T1                            T2
   A:=1                          B:=1
   while(B:=1);                  while(A:=1);
   <critical section>            <critical section>
   A:=0                          B:=0

A and B must be declared as SYNC variables
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Declaring synchronizing variables in C++11
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Memory Ordering in C++11
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Weak Ordering

• A RMW atomic on a memory location is globally performed once both the 
LOAD and STORE in the RMW access are globally performed.

• SYNC operation must be recognizable by the hardware at the ISA level
• RMW (T&S, F&OP, CAS,...)
• Special loads and stores for SYNC variable accesses

• Orders to enforce: 

• OP = regular LOAD or STORE
• SYNC = any synchronization access, e.g., SWAP, T&S, special LOAD/STORE

39



WEAK ORDERING
• What does it mean for IN-ORDER processors?

•  Note: here LOADs can return values even if they are not GPed

• Regular STOREs in the store buffer can be executed in any order, in 
parallel

• Regular LOADs never wait for STOREs and can be forwarded to
• When a SYNC access is executed, it is treated differently:

• It blocks in the memory stage until all stores in the store buffer are globally 
performed which enforces OP-to-SYNC. 

• SYNC-to-OP and SYNC-to-SYNC orders are automatically enforced by in-order 
processors (note: not the case for OoO -- need schemes to reconstruct order)
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Orderings are critical for concurrent algorithms
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Specifies weakest semantics to use to 
correctly implement lock-free 
algorithms: 
● memory barriers (various orders)
● "relaxed" atomics (various orders)

Fully-SC atomics are almost never 
required, but use them (1) when ISA 
does not provide weaker instructions, 
or (2) when unsure :)



42

Summary

● Sequential Consistency

● Memory Consistency Models
○ Not relying on Synchronization (E.G. Store-load Relaxation)

○ Relying on Synchronization (E.G. Weak Ordering) 


