LECTURE 14

Memory Consistency

Miquel Pericas
EDA284/DIT361 - VT 2020

Overview of Lectures 12-14

Goals:

1.

2.

Study the correct and reliable communication of values in
shared-memory multiprocessors
How programmers can enforce order in modern CMPs

Synchronization (L12) 26/2
Strict coherence (L13) 3/3

Plain coherence (L13) 3/3

Sequential consistency (L14, part 1) 3/3

Memory consistency models (L14, part 2) 6/3

What's cooking

Lectures
o Today - Final lecture: Memory Consistency Models
o Tuesday (10/3): The European Processor Initiative (Guest Lecturers:
Sonia Rani Gupta, Bhavishya Goel)
o Wednesday (11/3): Q&A session

2. Project Status
o March 10th deadline for assessment phase

3. Practice Sessions
o Tuesday (10/3): Message Passing, Synchronization
m problems will be published soon

Memory Consistency Models: Outline

e Sequential Consistency (today)

e Relaxed Memory Consistency Models (Friday)

o Not relying on Synchronization (E.G. Store-load Relaxation)
o Relying on Synchronization (E.G. Weak Ordering)

Coherence is not sufficient

e Point-to-point Synchronization
assume A and flag are both 0 i1nitially

P1 P2

A:=1; while(flag=0) do nothing;
flag:=1; print A;

 Expectation:
 S'(A)1 should reach P2 before S'(flag)1

» with coherence only, print A=0 is a valid outcome

Coherence is not sufficient

e Communication
assume A and B are both 0 1nitially

Pl P2
A:=1; print B;
B:=2; print A;

 Expectation
e if print B prints 2, then print A must print 1

e again, with coherence only (2, 0) is a valid outcome

Coherence is not sufficient

 Dekker’s Algorithm (critical section)
assume A and B are both 0 initially

P1 P2

S1(A):A:=1 S2(B):B:=1
L'(B):while(B=1); L°(A) :while(A=1);
<critical section> <critical section>
A:=0 B:=0

 Expectation

* Only one thread executes the critical section, or deadlock if both
threads execute the while statement at the same time.

» Even with store atomicity L(B)®@ and L?(A)® may happen,
which results in both threads entering the critical section

Coherence is not sufficient

 Programmer’s intuition is that accesses from different
processes are “interleaved” in process order

« different from coherence, which applies to a single location

* need to formalize this model

Formal model for Sequential Consistency (SC)

Shared THREADS EXECUTE
SHARED MEMORY MODEL | xy.z.. | Memory MEMORY ACCESSES ONE AT

FOR EVERY MEMORY A TIME IN PROCESS ORDER

LOCATIONS XY.Z MC
i @; %\‘D threads

 Program order of all threads is respected and all memory
accesses are atomic

A multiprocessor is sequentially consistent if “the result of any
execution is the same as if the memory operations of all the
processors were executed in some sequential order, and the

operations of each individual processor appear in the sequence in
the order specified by its program”

Leslie Lamport, How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs, IEEE Transactions on Computers, September 1979

Sequential Consistency (SC)

What it means: all loads and stores from all threads can be laid
out on a causality line so that:

1) all intra-thread orders are respected
2) only one access to shared memory is executed at a time

Thread 1: S1(x=0) - S2(y=3) - L3(x=1)
Thread 2: L1 (x=0) - S2(x=1) - L3(y=1l) - L4(x=1) - L5(x=1) - L6 (y=3)
Thread 3: L1 (x=0) - L2(x=1) - S3(y=2)

Causality timeline of loads (L) and stores (S)

L1 (x=0) L3 (y=1)_>L2 (x=1) S_3 (v=2) p L5(x=1) L6 (y=3)
i i i i i ,I' _L-:I::_:___j___:_ i i —>
S1(x=0) L1(x=0) 's2 (x—l) - 'LzT(Z_l) $2 (y=3)" L3 (x=1)
v
\ -

B

Like plain coherence, except that it applies to all memory locations

Sequential Consistency

Thread orders that must be enforced in the global order of all
memory accesses

LOAD LOAD STORE STORE
LOAD STORE LOAD STORE

In SC all intra-thread orders must be globally enforced

Sufficient condition for Sequential Consistency:
o Global order of stores to same address is enforced
o Athread cannot issue an access to memory until all its previous memory
accesses (for all memory locations) have been globally performed.

m Hence, processor needs to wait before starting every single access to any
memory location!

11

Sequential Consistency

« What does this mean for in-order processors?

EX ME—»WB\

store buffer(SB)

 LOADSs are blocking, so LOAD-LOAD and LOAD-STORE orders are
enforced
e STOREs are non-blocking (they move to SB)
e STORE-LOAD: loads must block in ME until SB is empty (no
forwarding!)

e STORE-STORE: stores must be GPed one by one from SB (no write

combining, unless there is no intervening store to a different location
between two stores that combine)

12

Sequential Consistency and store buffers

Problem with store buffer: with forwarding store buffers, loads can be
performed before previous stores

* in SC, a LOAD must be stalled if prior STORESs are not GPed. No forwarding
+ Store Buffer is effective for long bursts of STOREs (write combining)

« But STOREs must be propagated one by one before the next load anyway

e LOOK AT DEKKER AGAIN
A and B are both 0 and cached as Shared initially

T1 T2
st(a)1 3% (B) 1
LY (B) L° (A) ?

What outcomes are possible under Sequential Consistency?

13

Dekker: expected outcomes

e Programmer Intuition:

SHARED MEMORY MODEL | xy z..

FOR EVERY MEMORY
LOCATIONS XY Z

Processor

instructions: Ti.1: ST X, 1

T1.2: 1D EAX1,Y

Shared THREADS EXECUTE
Memory MEMORY ACCESSES ONE AT
A TIME IN PROCESS ORDER

s g\@

Initially X,Y :=

T2.1: ST Y,1
T2.2: 1D EAXZ2,X EAX1, EAX2

outcome

e Quiz: out of the four outcomes [EAX1,EAX2]=[1,1], [0,1],

[1,0], [0,0], which are possible?

Dekker and SC

e l|ook at dekker again, can SC result in the [0,0] outcome?
A and B are both 0 and cached as Shared initially

T1 T2
st(na)1 32 (B) 1
LY (B)O L°(A)0

e [Execution graph has cycles — execution cannot be ordered, hence
this is not possible under SC!

e Dekker's algorithm is correct under SC, so modern hardware should
implement SC, right?

15

Ok! Iet's see this on my Iaptop m:g://div.inria.fr/

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

PO | Pl : STY, 1
MOV [x],%$1 | MOV [y],$1 ; ’///

MOV EAX,[y] | MOV EAX, [x] ; ~_
locations [x;y;] LD EAX, X
exists (0:EAX=0 /\ 1:EAX=0)

Test SB Allowed
Hi<tonram (4

500005:>0:EAX=0; 1

159,
Condition exists \X=0) i1s validated
Hash=2d53e83cd6 :
Observation SB Sometimes 159 999841
Time SB 0.13

)) on Intel systems, L*(B)@ & L?(A)@ is possible!
ST (A) 1 S°(B) 1 i.e. both threads will enter the critical section.
LY (B)O L2 (A) 0 Is Intel HW broken, or does it allow such outcomes?

http://diy.inria.fr/

Dekker, SC and Store Buffers

Intel HW allows loads to bypass stores in the Store Buffer

With store buffers and no GP store-load order, outcome can be (0,0)
m T1 executes A:=1, which stays in the SB
m T2 executes B:=1, which stays in the SB
m Under MSI invalidate T1 and T2 both read O

Problem: SC is very restrictive and cannot take really advantage of store
buffers

But store buffers are critical for performance!

o How do we solve the performance vs correctness question?

17

need to change the rules:

MEMORY CONSISTENCY MODELS

(next lecture)

18

How to implement locks and lock-free algorithms?

type qnode = record
gnode* next
bool waiting

4.3. QUEUED SPINLOCKS 57

class lock Shared—Memory
gnode* tail := null Synchronization
lock.acquire(gnode* p): // Initialization of waiting can be delayed
p—next := null // until the if statement below,
p—waiting := true // but at the cost of an extra W||W fence.

gnode* prev := swap(&tail, g, W||)

if prev # null // queue was nonempty

prev—next.store(p)

while p—>waiting.load(); // spin
fencE(HRW)

lock.release(qnode* p):
gnode* succ := p—next.load(WR||)

if succ = null // no known successor

if CAS(&tail, p, null) return
repeat succ := p—next.load() until succ # null
succ—waiting.store(false)

Figure 4.8: The MCS queued lock.

What is the meaning of
these annotations?

How do we use them in
our programs?

Michael L. Scott

74 5. BUSY-WAIT SYNCHRONIZATION WITH CONDITIONS

class barrier
int count := 0
const int n := |T|
bool sense := true
bool local_sense[7T] := {true... }

barrier.cycle():
bool s := =local_sense[self]
local_sense[self] := s // each thread toggles its own sense
if FAI(&cou= n—1 // note release ordering
count.store(0)
sense.store(s) // last thread toggles global sense

else
while sense.load() # s; // spin

fende(||[RW)

Figure 5.1: The sense-reversing centralized barrier.

A@ MORGAN; CLAYPOOL PUBLISHERS

19

Memory Consistency Models: Outline

. ol Consist

e Relaxed Memory Consistency Models (today)

o Not relying on Synchronization (E.G. Store-load Relaxation)
o Relying on Synchronization (E.G. Weak Ordering)

20

Memory Consistency Models

e SC is very restrictive. Are there other programmer’s intuitions?
o such as those provided by synchronization?

o Whenever shared variables are read/write they should be protected by

synchronization methods (locks, barriers, ...):
BAR IS 0 INITIALLY

p1 P2
Ai=1; BARRIER(BAR,2);
B:=2; R1:=A;
BARRIER(BAR,2); R2:=B;

e Thee barrier enforces the order such that P2 can only observe the SC-compliant
case (A,B) = (1,2).

Accesses to sync variables can be treated differently from accesses to reqular
variables by the hardware, e.q. via special loads and stores or RMW atomics.

In this case, the pursuit of sequential consistency seems pointless.
Does it allow to build more efficient HW?

21

Let's consider the opposite approach?

e Why bother about the programmer anyway?

o How about designing memory access rules that are hardware
friendly and then let the programmer take care of it??

22

Memory Consistency Model

e In any case we need a memory access ordering model on
which programmers, compilers and machine architects can
agree

o Called the memory consistency model

e This model must be part of the ISA definition, since it is at
the interface between software and hardware

o Today’s instruction set manuals include the memory consistency
model as part of the ISA definition

23

From the Intel64 developers manual (Part 3.a)

8.2 MEMORY ORDERING

The term memory ordering refers to the order in which the processor issues reads (loads) and writes (stores)
through the system bus to system memory. The Intel 64 and IA-32 architectures support several memory-ordering _
models depending on the implementation of the architecture. For example, the Intei386 processor enforces

program ordering (generally referred to as strong ordering), where reads and writes are issued on the system

bus in the order they occur in the instruction stream under all circumstances. Sequential Consistencz!

To allow performance optimization of instruction execution, the IA-32 architecture allows departures from strong-
ordering model called processor ordering in Pentium 4, Intel Xeon, and P6 family processors. These processor-
ordering variations (called here the memory-ordering model) allow performance enhancing operations such as
allowing reads to go ahead of buffered writes. The goal of any of these variations is to increase instruction execu-
tion speeds, while maintaining memory coherency, even in multiple-processor systems. x86-TSO

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by Intel486, Pentium, Intel Core 2
Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors. Section 8.2.3 gives examples

Vol. 3A 8-5

MULTIPLE-PROCESSOR MANAGEMENT

illustrating the behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section 8.2.4 considers
the special treatment of stores for string operations and Section 8.2.5 discusses how memory-ordering behavior 24

From the ARMv8-A manual

ARM Cortex-A Series Programmer’s Guide for ARMv8-A Version: 1.0

Home > Memory Ordering

Chapter 13. Memory Ordering

If your code interacts directly either with the hardware or with code executing on other cores, or if it directly
loads or writes instructions to be executed, or modifies page tables, you need to be aware of memory ordering
issues.

If you are an application developer, hardware interaction is probably through a device driver, the interaction
with other cores is through Pthreads or another multithreading API, and the interaction with a paged memory
system is through the operating system. In all of these cases, the memory ordering issues are taken care of for
you by the relevant code. However, if you are writing the operating system kernel or device drivers, or
implementing a hypervisor, JIT compiler, or multithreading library, you must have a good understanding of the
memory ordering rules of the ARM Architecture. You must ensure that where your code requires explicit
ordering of memory accesses, you are able to achieve this through the correct use of barriers.

The ARMv8 architecture employs a weakly-ordered model of memory. In general terms, this means that the
order of memory accesses is not required to be the same as the program order for load and store operations.
The processor Is able to re-order memory read operations With respect to each other. Writes may also be re-
ordered (for example, write combining) .As a result, hardware optimizations, such as the use of cache and
write buffer, function in a way that improves the performance of the processor, which means that the required
bandwidth between the processor and external memory can be reduced and the long latencies associated with
such external memory accesses are hidden. Weak Ordering

Reads and writes to Normal memory can be re-ordered by hardware, being subject only to data dependencies
and explicit memory barrier instructions. Certain situations require stronger ordering rules. You can provide
information to the core about this through the memory type attribute of the translation table entry that
describes that memory.

Very high performance systems might support techniques such as speculative memory reads, multiple issuing
of instructions, or out-of-order execution and these, along with other techniques, offer further possibilities for
hardware re-ordering of memory access:

25

From the RISC-V spec

RVWMO Memory Consistency
Model, Version 2.0

This chapter defines the RISC-V memory consistency model. A memory consistency model is
a set of rules specifying the values that can be returned by loads of memory. RISC-V uses a
memory model called “RVWMO” (RISC-V Weak Memory Ordering) which is designed to provide
flexibility for architects to build high-performance scalable designs while simultaneously supporting
. ot oY 0-.-»..'.0‘ -~ Y .

a tractable programming model. Weak Ordering

Under RVWMO, code running on a single hart appears to execute in order from the perspective
of other memory instructions in the same hart, but memory instructions from another hart may
observe the memory instructions from the first hart being executed in a different order. There-
fore, multithreaded code may require explicit synchronization to guarantee ordering between mem-
ory instructions from different harts. The base RISC-V ISA provides a FENCE instruction for
this purpose, described in Section 2.7, while the atomics extension “A” additionally defines load-
reserved /store-conditional and atomic read-modify-write instructions.

The standard ISA extension for misaligned atomics “Zam” (Chapter 22) and the standard ISA
extension for total store ordering “Ztso” (Chapter 23) augment RVWMO with additional rules
specific to those extensions. TSO

26

Memory Consistency Models

* there are two types of relaxed memory consistency
models:

 models not relying on synchronization
 models relying on synchronization

Let's look first at models not relying on synchronization

27

Relaxed Memory Consistency Models

Sequential Consistency is a strict memory model. All intra-thread

orders must be enforced in the global order

Sequential LOAD LOAD STORE STORE
Consistency (SC) |
[O|d Intel, M|PS] LOAD STORE LOAD STORE
We can relax some of the access orders of each thread!

Total Store Order LOAD LOAD STORE STORE
(TSO) ‘
[Sun, new Intel] LOAD STORE LOAD STORE
Relaxed Memory LOAD LOAD STORE STORE
Order (RMO)

LOAD STORE LOAD STORE

[Power,ARM,Alpha]

28

Relaxing store-to-load order

e The major relaxation is the store-to-load order:
o LOADs can bypass prior STOREs

LOAD [toad 1] | store | L_STORE |
1! v
LOAD [Store | [LoAd] LsTore |
o STOREs from the same processor must be observed by all other processors in
thread order (because of STORE-STORE and LOAD-LOAD orders)

e What does this mean for in-order processors?

o Assuming store atomicity: LOADSs return values from memory only when the
values are GPed

IF—»ID—»EX—»F—»WB

le

store buffer(SB)

o LOAD-LOAD, LOAD-STORE, STORE-STORE: same as for SC
o STORE-LOAD: LOADs don’t wait for SB to empty;

Main
Memory

Relaxing Store-to-load Orders

e Example: Sun Microsystems/x86 Total Store Order (TSO)
o Dekker's algorithm does not work (LOADs can bypass prior STORES)
m remember: we saw this on my laptop!

o Point-to-point communication still works (because STORE-STORE and
LOAD-LOAD are enforced)

e Values may or may not be forwarded from SB to loads
o No forwarding from SB — strict coherent (store atomic)
m Implementations: IBM 370

o Forwarding from SB — plain coherent (case of TSO)
m This means that some loads in TSO return values even if they are not GPed
m Implementations: Sun TSO, Intel x86-TSO

30

RMO: Relaxed Memory Order (SUN, ARM, POWER, RISC-V)

In RMO only intra-thread memory dependency order is enforced

as in all uniprocessors

No implicit order between threads
Enables more performance optimizations (most "hardware-friendly")

MEMBAR (memory barrier) instructions specify orders explicitly. For
example:

4 bits are used to specify up to 4 orders

LOAD-LOAD — forces all preceding loads to be GPed before any load
may be issued

LOAD-STORE — forces all preceding loads to be GP before any store

STORE-STORE — forces all preceding stores to be GP before any
store

STORE-LOAD — forces all preceding stores to be GP before any load

31

RMO: Relaxed Memory Order (SUN, ARM, POWER)

* MEMBARS are inserted by the compiler or programmer

« MEMBARSs are extra instructions executed by single thread (unlike thread barrier
synchronization)

T1 T2 T3
A:=1; while(A=0); R2:=B;
B:=1; R3:=A;

« not sequentially consistent (yields non-SC outcomes)

T1 12 T3

A:=1; while(A=0); R2:=B;
MEMBAR 0100 MEMBAR 1000
B:=1; R3:=A;

* with membars: sequentially consistent (yields SC outcomes only)
m MEMBAR 0100: LOAD-STORE
m MEMBAR 1000: LOAD-LOAD

32

Also useful to enforce order in TSO

Can we solve the Dekker ordering problem by inserting a memory barrier (MFENCE)?
(note: Intel MFENCE instruction basically equivalent to MEMBAR 1111)
\

N X86 SBM

\ "Fre PodWR Fre PodWR"

\ . -0 *
\ { x=0; y=0; }

\ PO | P1 -
Y MOV [x],$1 | Mov [y],$1 ;
MFENCE | MFENCE :

MOV EAX,[y] | MOV EAX,[x]
locations [Xx;y;]
exists (0:EAX=0 /\ 1:EAX=0)

-

Test SBM Allowed
Histogram (3 states)
471602:>0:EAX=1; 1:EAX=0; x=1; y=1;

489537:>0:EAX=0; 1:EA

Yes:
Dekker works with
TSO + MFENCE

MCM based on Synchronization: Weak Ordering

Multithreaded execution uses locking
mechanisms to avoid race conditions.

Executions include various phases:

o Accesses to private or read-only shared data,

or

o Accesses to shared modifiable data,
protected by locks and barriers.

In each phase the thread has exclusive
access to all its data, meaning
o No other thread can write to them, or
o No other thread can read the data it modifies
o Hence, no need to enforce ordering within a
phase

INIT: A=2; B=0. X=0; Lb=Lx=0

13
tock(Lx) &
X:i=X+2; |
lunlock(Lx)l

B Iock(Lb)
1B:=B+1

while(B<3);
<wait>

T2

C:=D*E
C:=C+K

i
} Xi=A+X |

1 lock(Lb) 1
;B:=B+1 |
L unlock(Lb):
while(B<3);
<wait>

3

ooooo

alock(Lb) &
1B:=B+1 |
sunlock(Lb) [

while(B<3);
<wait>

34

MCM based on Synchronization: Weak Ordering

e Accesses to synchronization data (including all locks and shared data in
synchronization protocols) must be treated differently by the hardware from
accesses to other shared and private data.

o They act as memory barriers on all accesses

o Must globally perform all access preceding SYNC access in thread order (T.O.)

o Must globally perform SYNC access before all following accesses in thread
order (T.O.)

e Accesses to other (non-sync) shared and private data must enforce uniprocessor
dependencies on same address

35

WEAK ORDERING

e \Variables that are used for synchronization must be declared as such (e.g., flag, A and
B below) or specific statements must be labeled or marked

o so that execution on these variables is safe
o to avoid compiler reordering

A=flag=0 initially

T1 T2
A:=1; while(flag=0)do nothing;
flag:=1; print A;

Flag must be declared as sync variable

A=B=0 1nitially

T1 T2

A:=1 B:=1

while(B=1); while(A=1);
<critical section> <critical section>
A:=0 B:=0

A and B must be declared as SYNC variables

36

Declaring synchronizing variables in C++11
std::atomic

Defined in header <atomic>

template< class T > (1)

: (since C++11)
struct atomic;

template< class T > 2)
struct atomic<T*>;

Defined in header <memory>

template<class T> 3)
struct atomic<std::shared ptr<T>>;

(since C++11)

(since C++20)

template<class T> (@)

‘ ince C++20
struct atomic<std::weak ptr<T>>; (since)

Each instantiation and full specialization of the std: :atomic template defines an atomic type. If one thread writes to
an atomic object while another thread reads from it, the behavior is well-defined (see memory model for details on
data races)

In addition, accesses to atomic objects may establish inter-thread synchronization and order non-atomic memory
accesses as specified by std: :memory order.

int cnt = 0;
auto f = [&]{cnt++;};
std::thread t1{f}, t2{f}, t3{f}; // undefined behavior

std: :atomic<int> cnt{0};
auto f = [&]{cnt++;};
std::thread t1{f}, t2{f}, t3{f}; // OK

37

Memory Ordering in C++11

std::memory_order

Defined in header <atomic>

typedef enum memory order {
memory order relaxed,
memory order consume,

Constants
Defined in header <atomic>
Value Explanation

Relaxed operation: there are no synchronization or ordering constraints imposed on other
reads or writes, only this operation's atomicity is guaranteed (see Relaxed ordering below)

A load operation with this memory order performs a consume operation on the affected
memory location: no reads or writes in the current thread dependent on the value currently
memory order consume loaded can be reordered before this load. Writes to data-dependent variables in other
threads that release the same atomic variable are visible in the current thread. On most
platforms, this affects compiler optimizations only (see Release-Consume ordering below)

A load operation with this memory order performs the acquire operation on the affected
memory location: no reads or writes in the current thread can be reordered before this
load. All writes in other threads that release the same atomic variable are visible in the
current thread (see Release-Acquire ordering below)

A store operation with this memory order performs the release operation: no reads or
writes in the current thread can be reordered after this store. All writes in the current
thread are visible in other threads that acquire the same atomic variable (see Release-
Acquire ordering below) and writes that carry a dependency into the atomic variable
become visible in other threads that consume the same atomic (see Release-Consume
ordering below).

A read-modify-write operation with this memory order is both an acquire operation and a
release operation. No memory reads or writes in the current thread can be reordered

memory order acq rel before or after this store. All writes in other threads that release the same atomic variable
are visible before the modification and the modification is visible in other threads that
acquire the same atomic variable.

A load operation with this memory order performs an acquire operation, a store performs a
release operation, and read-modify-write performs both an acquire operation and a release
operation, plus a single total order exists in which all threads observe all modifications in
the same order (see Sequentially-consistent ordering below)

me
} memory order relaxed

memory order acquire

memory order release

memory order seq cst

38

Weak Ordering

A RMW atomic on a memory location is globally performed once both the
LOAD and STORE in the RMW access are globally performed.

SYNC operation must be recognizable by the hardware at the ISA level
« RMW (T&S, F&OP, CAS,...)
» Special loads and stores for SYNC variable accesses

Orders to enforce:

Sync $ Sync

Op | Sync | Sync

OP = regular LOAD or STORE
SYNC = any synchronization access, e.g., SWAP, T&S, special LOAD/STORE

39

WEAK ORDERING

e What does it mean for IN-ORDER processors?
» Note: here LOADs can return values even if they are not GPed

Forwarding path ADDED

store buffer(SB)

 Regular STOREs in the store buffer can be executed in any order, in
parallel

 Regular LOADs never wait for STOREs and can be forwarded to

e When a SYNC access is executed, it is treated differently:

|t blocks in the memory stage until all stores in the store buffer are globally
performed which enforces OP-to-SYNC.

« SYNC-to-OP and SYNC-to-SYNC orders are automatically enforced by in-order
processors (note: not the case for OoO -- need schemes to reconstruct order)

Sync @ Sync

Op | Sync | Sync

40

Orderings are critical for concurrent algorithms

type qnode = record
gnode* next
bool waiting

4.3. QUEUED SPINLOCKS 57

A@ MORGAN:CLAYPOOL PUBLISHERS

class lock Shared—Memory
gnode* tail := null Synchronization
lock.acquire(gnode* p): // Initialization of waiting can be delayed
p—next := null // until the if statement below,
p—waiting := true // but at the cost of an extra W||W fence.

qnode* prev :o swap(&tail, p, W|))|

if prev # null // queue was nonempty

prev—next.store(p)

while p—>waiting.load(); // spin
I fence(||RW)

lock.release(qnode* p):
gnode* succ := p—next.load(WR]||)

if succ = null // no known successor

if CAS(&tail, p, null) return
repeat succ := p—next.load() until succ # null
succ—waiting.store(false)

Figure 4.8: The MCS queued lock.

Specifies weakest semantics to use to
correctly implement lock-free

algorithms:
e memory barriers (various orders)
e 'relaxed" atomics (various orders)

Fully-SC atomics are almost never
required, but use them (1) when ISA
does not provide weaker instructions,
or (2) when unsure :)

Michael L. Scott

74 5. BUSY-WAIT SYNCHRONIZATION WITH CONDITIONS

class barrier
int count := 0
const int n := |T|
bool sense := true
bool local_sense[7T] := {true...}

barrier.cycle():
bool s := =local_sense[self]
local_sense[self] := s // each thread toggles its own sense
if|[FAl(&count, RW|)|= n—1 // note release ordering
count.store(0)

sense.store(s) // last thread toggles global sense
else

while sense.load() # s; // spin
fence(||[RW)

Figure 5.1: The sense-reversing centralized barrier.

41

Summary

e Sequential Consistency

e Memory Consistency Models

o Not relying on Synchronization (E.G. Store-load Relaxation)

o Relying on Synchronization (E.G. Weak Ordering)

42

