
LECTURE 2

PERFORMANCE METRICS AND
VECTOR ARCHITECTURES

Miquel Pericàs
EDA284/DIT361 - 2019/2020 SP3

1

● Metrics
− Performance and Efficiency
− Review: Amdahl’s Law and Gustafson’s Law

● Vector / SIMD
− Architecture
− Memory Organization
− Example: ARM SVE

● Discussion of EDA284 project

2

TODAY'S LECTURE

PERFORMANCE METRICS
How to claim that machine X is faster than Y?

• METRIC #P1: Time to complete a task (Texe): execution time, response
time, latency

• “X is N times fast than Y” means Texe(Y)/Texe(X) = N (="Speed-up")
• The major metric used in this course

• METRIC #P2: number of tasks per day, hour, sec, ns
• The throughput for X Is N times higher than Y if

THROUGHPUT(X)/THROUGHPUT(Y) = N
• Not the same as Latency (E.g.: Multiprocessors, Pipelining)

3

Texe = IC x CPI x Tc

• IC ("Instruction Count"): depends on program, compiler and ISA
• CPI ("Cycles per Instruction"): depends on instruction mix, ISA, and

implementation
• Tc (Clock Cycle): depends on implementation complexity and technology

CPI (CLOCK PER INSTRUCTION) IS OFTEN USED INSTEAD OF

EXECUTION TIME

• When processor executes more than one instruction per clock it is

common to use IPC (instructions per clock) instead:

Texe = (IC X Tc)/IPC

4

Fundamental performance equations for CPUs:

EFFICIENCY METRICS

● METRIC #E1: Performance per Watt
○ Application performance measure: FLOPS, MIPS, benchmark score, ...
○ Usually: average power while running the benchmark. Alternative: peak power, idle

power.
■ Eg: Green500 ranking: Linpack FLOPS / average Watt during core phase

● see: Power Measurement Methodology

● METRIC #E2: Energy (J) of a computation
○ Determines battery life
○ Related to metric #E1.

● METRIC #E3: Energy-Delay Product
○ E x D = (P x D) x D = P x D^2
○ Why/when is this useful?

● Other metrics?

5

https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf

• A single program may execute efficiently on one machine but be
inefficient on a different one.

• Need benchmark suites to cover different types of computation:
• SPEC: standard performance evaluation corporation

• SPEC Cloud IaaS, SPEC CPU, SPEC ACCEL, SPEC MPI, SPEC OMP…
• cloud/general purpose/scientific/engineering
• SPEC CPU:

● integer and floating point
● new set every so many years (95,98,2000,2006,2017)

• TPC benchmarks:
• for commercial systems (transaction processing)
• TPC-B, TPC-C, TPC-H, AND TPC-W

• embedded benchmarks
• media benchmarks

6

WHICH PROGRAM TO CHOOSE?

 EXAMPLES OF UNRELIABLE METRICS:
• MIPS: million of instructions per second
• MFLOPS: million of floating point operations per second
• Why are they unreliable?

7

UNRELIABLE METRICS

EXECUTION TIME OF A PROGRAM IS THE ULTIMATE MEASURE OF
PERFORMANCE BENCHMARKING

• REAL PROGRAMS:
• porting problem; complexity; not easy to understand the cause of results

• KERNELS
• computationally intensive piece of real program

• TOY BENCHMARKS (e.g. quicksort, matrix multiply)

• SYNTHETIC BENCHMARKS (not real)

9

WHICH PROGRAM TO CHOOSE? OPTIONS

Let Ti be the execution time of program i:
1. (Weighted) Arithmetic mean of execution times:

 OR

Problem: programs with longest execution times dominate the result!

10

REPORTING PERFORMANCE FOR A SET OF PROGRAMS

2. Dealing with speed-ups
● Speedup measures the advantage of a machine over a reference

machine 'R' for a program 'i'

● Reporting speed-ups for multiple programs
• Arithmetic, Geometric or Harmonic mean?

weights

N programs

• Geometric means of Speedups

○ Geometric Mean Speedup comparisons between two machines are independent of the

reference machine. Applies also to normalized mean execution times

○ Used to report SPEC numbers for integer and floating point

Program A Program B Arithmetic Mean Speedup (ref 1) Speedup (ref 2)

Machine 1 10 sec 100 sec 55 sec 91.8 10

Machine 2 1 sec 200 sec 100.5 sec 50.2 5.5

Reference 1 100 sec 10000 sec 5050 sec

Reference 2 100 sec 1000 sec 550 sec

M
ea

n
of

E

xe
cu

tio
n

Ti
m

es

Performance of Program B
(longer) dominates the results!

Program A Program B Arithmetic Harmonic Geometric

Wrt Ref 1 Machine 1 10 100 55 18.2 31.6

Machine 2 100 50 75 66.7 70.7

Wrt Ref 2 Machine 1 10 10 10 10 10

Machine 2 100 5 52.5 9.5 22.4

M
ea

ns
 o

f
S

pe
ed

U
ps

co
nc

lu
si

on
: i

nd
ep

en
de

nt

of
 re

fe
re

nc
e

m
ac

hi
ne

!

Property

11

REPORTING PERFORMANCE FOR A SET OF PROGRAMS

● GM gives consistent results independent of reference1, but does it
mean it is correct?

● Multiplying execution times has no physical meaning2, in contrast to
adding times as in the arithmetic mean. Hard to understand
intuitively.

● Alternative: assign weights to each of the programs, calculate the
average weighted execution time (using the arithmetic mean), and
then normalize that result to one of the computers.

12

Discussion on usage of GeoMean

(1) Philip J. Fleming and John J. Wallace. 1986. How not to lie with statistics: the correct way to summarize benchmark results. Commun. ACM 29,
3 (March 1986), 218–221. DOI: https://doi.org/10.1145/5666.5673

(2) J. E. Smith. 1988. Characterizing computer performance with a single number. Commun. ACM 31, 10 (October 1988), 1202–1206. DOI:
https://doi.org/10.1145/63039.63043

https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/63039.63043

13

Amdahl's law and Gustafson's law (review)

Assessing the limits of parallel performance

● Example: prepare a data set (sequential), perform a computation
(parallel), and process the result (sequential)

● What is the maximum performance improvement that can be
achieved by improving the speed of the parallel computation?

parallel sequentialsequential

time
prepare data

compute

process result

14

AMDAHL’S LAW (by Gene Amdahl, 1967)

• Enhancement E accelerates a fraction F of the task by a factor S

• Basic assumption: total work to be done is constant

time

15

LESSONS FROM AMDAHL’S LAW

• Improvement is limited by the fraction of the execution time that
cannot be enhanced. Assuming S → ∞

• Optimize the common case (e.g., with dedicated hardware)
• Execute the rare case in software (e.g., via exceptions)

• A moderate enhancement S already achieves most of the potential
speed-up: Law of diminishing returns

16

LAW OF DIMINISHING RETURNS (F=0.5)

Further improvements to the same enhancement are unlikely to provide
large benefits!

17

PARALLEL SPEEDUP

In a parallel system, the number of processors P becomes the
enhancement factor S:

● Case Sp = P is called linear or ideal speed-up

OVERALL NOT VERY HOPEFUL:
Even with F=99% and 1M processors cannot achieve SpeedUp > 100

18

GUSTAFSON’S LAW (by John Gustafson, 1988)

● Redefine Speedup
− Rationale: Larger machines → larger challenges. Assume now that fixed

compute time, not fixed problem size

− Tp = s+p; s is the time taken by the serial code and p is the time taken
by the parallel code

− T1 = s+pP; exec time on one processor

− Let F=p/(s+p),
● then SP = (s+pP)/(s+p) = 1-F+FP = 1+F(P-1)

s

p

parallel with P processors

...

s P

p p
... serial

p

T1 = s + pP

Tp = s + p

19

GUSTAFSON’S LAW (by John Gustafson, 1988)

● In other words, take Tp constant time → what is the largest problem
size we can solve with P processors?

● Serial part must also be constant (independent of problem size)

s

p

parallel with P processors

...

s P

p p
... serial

p

MORE OPTIMISTIC OUTLOOK ON THE USEFULNESS OF
PARALLEL COMPUTERS

20

P=100

F (parallel fraction)

Exercise
● Let Tseq=10s be the time for the sequential part (prepare data + process results)

● Let Tcomp=90s be the total time of the parallelizable computation (assume linear
speed-up for the parallel part)

● What is the maximum speed-up according to Amdahl's law? What is the max speed-up
with 9 processors?

● For the current problem size, we are satisfied with a total time of 20s. What is,
according to Gustafson's law, the speed-up (wrt to the single processor system) for a
10x larger problem?

parallel sequentialsequential

time

prepare data

compute

process results

21

Amdahl’s and Gustafson’s law

● Amdahl's law and Gustafson's law assess the maximum speed-up in
the context of fixed size problem (Amdahl) and constant time problem
(Gustafson)
− Provide expected impact of an architectural improvement
− Provide guidance on where to focus the effort to improve the

performance of a computer system

22

● Types of parallel architectures
− Vector Processors: pipelining, array processing (Lecture 2, Today)

− Scalar Processors: pipelining, superscalar, OoO (Lecture 3)

− (Chip) Multiprocessors: thread parallelism (Lectures 4-5, 8)

● Trade-offs
− Functional, performance and cost

23

PARALLEL ARCHITECTURES

• Vector processors are able to execute instructions on entire vectors and
not just on scalars

• Instructions are of the type
ADDV V1, V2, V3

● V1, V2, AND V3 are vectors of scalars of same type and length
● They are specified by a base address, a vector length and a stride (memory operand), or

they can be vector registers
○ Executes V1[i] = V2[i] + V3[i], for all i’s

● Vector length and stride may be held in special control registers

● Need advanced compilers to automatically vectorize loops into vectors
● Alternative: use compiler intrinsics or (inline) assembly

V2

V3
V1

24

VECTOR PROCESSORS

• Vector Machines existed well before Superscalar processors

• Originally built for supercomputers for engineering/scientific computation

• Hugely popular during 1975-1990s, then overtaken by massively parallel
computers ("killer micros" https://en.wikipedia.org/wiki/Killer_micro)

• Because of media (Streaming) application they are now also common in
commodity markets (DSP) and also general purpose (e.g. SSE, AVX)

• Provide high efficiency: now getting popular again in the HPC domain

CRAY-1 (1975) 1974

160 MFLOPS
25

VECTOR PROCESSORS: HISTORY

https://en.wikipedia.org/wiki/Killer_micro

(PIPELINED) VECTOR ARCHITECTURE

• After vector startup time (the time to get the first result), results are
computed one per clock

Tvector = VECTOR_LENGTH + STARTUP TIME

26

27

SIMD Architecture
● Modern SIMD computers process all elements of the vector simultaneously

● SIMD_WIDTH is usually smaller than VECTOR_LENGTH, e.g. 512-bit in AVX-512

● Latency equal to equivalent scalar operation

● It is also possible to combine the pipeline approach with the parallel (SIMD) approach (similar to
superscalar execution), either via SW (loop) or HW (pipeline)

Tvector = VECTOR_LENGTH/SIMD_WIDTH + STARTUP TIME

Instruction Issue

ALU ALU ALU ALU ALU ALU ALU ALU

SIMD Register File

SIMD_WIDTH = 8

VECTOR - MEMORY SYSTEM

• LOAD/STORE instructions are of the form
 L.V V1, R1, R2 // load V1 from Mem[R1+(0,R2,2xR2,…)] R2: STRIDE

STRIDE := number of locations in memory between beginnings of successive array
elements, measured in bytes or in units of the size of the array's elements

• Access pattern to memory is known at decode time for the entire vectors
• all accesses involved in a memory vector operation can be efficiently scheduled right

after instruction decode.
• memory is interleaved. No need for caches, particularly for long vectors (why?)
• vector load/store units from memory to registers

28

VECTOR - MEMORY SYSTEM

• Load store units can be seen as pipelines
• the startup time is the time to get the first component
• startup time is much longer than for functional units
• vectors accessed with a stride are stored in consecutive locations of vector register

• Efficient accesses to matrices are important

29

vector register

STRIDEs:
● Rows: stride 1, Columns: stride N
● Forward diagonal: stride N+1, Backward diagonal: stride N-1

VECTOR - MEMORY ORGANIZATION
• Heavily interleaved (potentially hundreds of memory modules)
• Banks are started one after the other
• if the number of banks is greater that the memory cycle time, we have no conflicts, and

results come out one per clock

Tload = VECTOR_LENGTH + STARTUP TIME (TIMETOGETX0 -1)
30

MEMORY SCATTER GATHER

• SCATTER/GATHER
• many scientific computations use sparse matrices

• Most components are 0
• But the pattern is not regular
• Compress a sparse matrix into vectors of non-zero elements A[1:1000] ==> K[1:9], A*[1:9]
• A*: Nonzero elements of A; K: Indices of nonzero elements of A

• GATHER operation implements following function:
for(i=0;i<N,i++)

 A[i] = B[INDEX[i]];

● SCATTER operation implements corresponding functionality for stores

0
1
7
9

14
15
16
23

A_INDEX

10
20
30
40
50
60
70
80

Value (A)

31

B[]=

MEMORY SCATTER/GATHER

• Memory locations of vector components are spread out in memory
• Use scatter and gather instructions

• Gather is a load instruction loading the components at indexed addresses into consecutive
v-register locations

• Scatter is a store instruction from v-register to indexed addresses

L.V Vk,0(R1),R6 //load vector K in REGISTER Vk
LI.V Va,Vk,0(R2) //load indexed from A(K(i)): gather

<work on Va, put result in Vb>
SI.V 0(R2), Vk, Vb //store indexed to A(K(i)): scatter

32

CHAINING AND PARALLEL EXECUTION OF INDEPENDENT
VECTOR INSTRUCTIONS

• CONSIDER THE CODE:
Y = a * X + Y // “AXPY” in BLAS library

• EXECUTION TIME (ONE OP AT A TIME): startup(load) + vector_length + startup(multv) +
vector_length + startup(load) + vector length+ startup(addv) + vector_length + startup(store)
+ vector_length = (startup + vector_length)x5

• EXECUTION TIME (CHAINING+PARALLEL): startup(load) + startup(multv) + startup(addv)
+ startup(store) + vector_length (the two loads execute in parallel)

33

SUMMARY ON VECTOR PROCESSORS

• Design complexity?

− explicit parallelism enables high performance with simple hardware

• Compiler?

− need advanced technology to find vectorizable loops

• Memory subsystem?

− no need for caches if long vectors

• Applications?

− need long vectors for high performance!

• Vector architectures are highly efficient. Currently experiencing a rebirth of vector
technology for high performance computing:

− INTEL AVX-512: Short/medium, fixed-length vectors (512 bits, SIMD)

− ARM SVE: Long, variable-length vectors (128-2048 bits)

− NEC SX-10+: Long, fixed-length vectors (16384 bits)

34

35

ARM-SVE: an example of a modern vector
architecture

36

ARM SVE - Scalable Vector Extension

The following slides are taken from the ARM tutorial: "Vector Architecture Exploration with gem5" given at ICS'18 in Beijing,
June 12th 2018, by Alex Rico, Jose Joao and Giacomo Gabrielli

37

38

39

40

41

42

● whilelt p0.s, x4, x3 fills predicate register p0 by setting each lane as p0.s[idx] := (x3 + idx) < x4 (x3 and
x4 hold i and N respectively), for each of the indexes idx corresponding to 32-bit lanes of a vector register

● incd: increment the index x4 by as many words as a vector can store with incd
● b.first: The first active element is true.

DAXPY

● Metrics
− Performance and Efficiency
− Review: Amdahl’s Law and Gustafson’s Law

● Vector / SIMD
− Architecture
− Memory Organization
− Examples: ARM SVE

● Discussion of EDA284 project

43

SUMMARY

Next Lecture

● Next Lecture is tomorrow (Jan 28th)

● Topic: Out-of-Order Execution + Multilevel Cache Hierarchy (mostly review
of DAT105)

● Note: There will be no lecture this Friday.

● Final topic for today: EDA284 project

