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TODAY'S LECTURE

e Metrics

— Performance and Efficiency

— Review: Amdahl's Law and Gustafson’s Law
e Vector/SIMD

— Architecture

— Memory Organization

- Example: ARM SVE
e Discussion of EDA284 project




PERFORMANCE METRICS

How to claim that machine X is faster than Y?

* METRIC #P1: Time to complete a task (T_,): execution time, response
time, latency

« “X'is N times fast than Y” means Texe(Y)/Texe(X) = N (="Speed-up")
» The major metric used in this course

« METRIC #P2: number of tasks per day, hour, sec, ns

» The throughput for X Is N times higher than Y if
THROUGHPUT(X)/THROUGHPUT(Y) =N

» Not the same as Latency (E.g.: Multiprocessors, Pipelining)



Fundamental performance equations for CPUs:

Texe =IC x CPI x Tc

e IC ("Instruction Count"): depends on program, compiler and ISA

e CPI ("Cycles per Instruction"): depends on instruction mix, ISA, and
implementation

* Tc (Clock Cycle): depends on implementation complexity and technology

CPI (CLOCK PER INSTRUCTION) IS OFTEN USED INSTEAD OF
EXECUTION TIME

 When processor executes more than one instruction per clock it is
common to use IPC (instructions per clock) instead:

Texe = (IC X Tc)/IPC



EFFICIENCY METRICS

METRIC #E1: Performance per Watt
o Application performance measure: FLOPS, MIPS, benchmark score, ...
o Usually: average power while running the benchmark. Alternative: peak power, idle
power.
m Eg: Green500 ranking: Linpack FLOPS / average Watt during core phase
e see: Power Measurement Methodology

METRIC #E2: Energy (J) of a computation
o Determines battery life
o Related to metric #E1.

METRIC #E3: Energy-Delay Product
o ExD=(PxD)xD=PxD"2
o Why/when is this useful?

Other metrics?


https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf

WHICH PROGRAM TO CHOOSE?

* A single program may execute efficiently on one machine but be
inefficient on a different one.
 Need benchmark suites to cover different types of computation:
« SPEC: standard performance evaluation corporation
* SPEC Cloud laaS, SPEC CPU, SPEC ACCEL, SPEC MPI, SPEC OMP...

* cloud/general purpose/scientific/engineering

* SPEC CPU:
e integer and floating point
e new set every so many years (95,98,2000,2006,2017)

e TPC benchmarks:

* for commercial systems (transaction processing)
* TPC-B, TPC-C, TPC-H, AND TPC-W

« embedded benchmarks
* media benchmarks



UNRELIABLE METRICS

EXAMPLES OF UNRELIABLE METRICS:
* MIPS: million of instructions per second
« MFLOPS: million of floating point operations per second
» Why are they unreliable?

EXECUTION TIME OF A PROGRAM IS THE ULTIMATE MEASURE OF
PERFORMANCE BENCHMARKING



WHICH PROGRAM TO CHOOSE? OPTIONS

REAL PROGRAMS:
» porting problem; complexity; not easy to understand the cause of results

KERNELS
» computationally intensive piece of real program

TOY BENCHMARKS (e.g. quicksort, matrix multiply)

SYNTHETIC BENCHMARKS (not real)



REPORTING PERFORMANCE FOR A SET OF PROGRAMS

Let Ti be the execution time of program i:
1. (Weighted) Arithmetic mean of execution times:

._— weights

T./N T.x W.
- l OR - 1 l

N programs

Problem: programs with longest execution times dominate the resulit!

2. Dealing with speed-ups
e Speedup measures the advantage of a machine over a reference
machine 'R' for a program "'

Ty .
! T.
l

e Reporting speed-ups for multiple programs
* Arithmetic, Geometric or Harmonic mean?
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REPORTING PERFORMANCE FOR A SET OF PROGRAMS

Geometric means of Speedups
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o Geometric Mean Speedup comparisons between two machines are independent of the

reference machine. Applies also to normalized mean execution times

o Used to report SPEC numbers for integer and floating point
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Discussion on usage of GeoMean

e GM gives consistent results independent of reference’, but does it
mean it is correct?

e Multiplying execution times has no physical meaning?, in contrast to
adding times as in the arithmetic mean. Hard to understand
intuitively.

e Alternative: assign weights to each of the programs, calculate the
average weighted execution time (using the arithmetic mean), and
then normalize that result to one of the computers.

(1)  Philip J. Fleming and John J. Wallace. 1986. How not to lie with statistics: the correct way to summarize benchmark results. Commun. ACM 29,
3 (March 1986), 218-221. DOI: https://doi.org/10.1145/5666.5673

(2) J. E. Smith. 1988. Characterizing computer performance with a single number. Commun. ACM 31, 10 (October 1988), 1202—-1206. DOI:
https://doi.org/10.1145/63039.63043
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Amdahl's law and Gustafson's law (review)
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Assessing the limits of parallel performance

e Example: prepare a data set (sequential), perform a computation
(parallel), and process the result (sequential)

sequential parallel sequential

pr:epare data process refsult

compute time

e What is the maximum performance improvement that can be
achieved by improving the speed of the parallel computation?

14



AMDAHL’S LAW (by Gene Amdahl, 1967)

1-F F
e
Apply enhancement ‘ //
Y
-

with E

 Enhancement E accelerates a fraction F of the task by a factor S

T,,.(withE) = T

i E
exe exe(wn‘rhoufE)X[(l -F)+ é}

Texe(wifhoufE) ) 1

T (withE)

Speedup(E) = = 3
exe 1-F)+ H

« Basic assumption: total work to be done is constant

time

15



LESSONS FROM AMDAHL'’S LAW

« Improvement is limited by the fraction of the execution time that
cannot be enhanced. Assuming S — «

 Optimize the common case (e.g., with dedicated hardware)
» Execute the rare case in software (e.g., via exceptions)

« A moderate enhancement S already achieves most of the potential
speed-up: Law of diminishing returns
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LAW OF DIMINISHING RETURNS (F=0.5)
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—o— Maximum speedup

—o— Marginal speedup gain

—#— Amdahl speedup

—s— Remaining speedup gain

Further improvements to the same enhancement are unlikely to provide

large benefits!
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PARALLEL SPEEDUP

In a parallel system, the number of processors P becomes the
enhancement factor S:

Case Sp = P is called linear or ideal speed-up

OVERALL NOT VERY HOPEFUL.:
Even with F=99% and 1M processors cannot achieve SpeedUp > 100
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GUSTAFSON'’S LAW (by John Gustafson, 1988)

. Redefine Speedup

- Rationale: Larger machines — larger challenges. Assume now that fixed
compute time, not fixed problem size

- Tp = s+p; s is the time taken by the serial code and p is the time taken
by the parallel code

- T, = s+pP; exec time on one processor
- Let F=pl/(s+p),
. then SP = (s+pP)/(s+p) = 1-F+FP = 1+F(P-1)

parallel with P processors T =s+p

| | | ] I I serial T, =s+pP
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GUSTAFSON'’S LAW (by John Gustafson, 1988)

In other words, take T _constant time — what is the largest problem

size we can solve with P processors?

. Serial part must also be constant (independent of problem size)
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MORE OPTIMISTIC OUTLOOK ON THE USEFULNESS OF
PARALLEL COMPUTERS
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Exercise

Let Tseq=10s be the time for the sequential part (prepare data + process results)

Let Tcomp=903 be the total time of the parallelizable computation (assume linear
speed-up for the parallel part)

sequential parallel sequential

pre:pare data processiresults

compute time

What is the maximum speed-up according to Amdahl's law? What is the max speed-up
with 9 processors?

For the current problem size, we are satisfied with a total time of 20s. What is,

according to Gustafson's law, the speed-up (wrt to the single processor system) for a
10x larger problem?

21



Amdahl’s and Gustafson’s law

e Amdahl's law and Gustafson's law assess the maximum speed-up in
the context of fixed size problem (Amdahl) and constant time problem
(Gustafson)

— Provide expected impact of an architectural improvement

— Provide guidance on where to focus the effort to improve the
performance of a computer system

22



PARALLEL ARCHITECTURES

. Types of parallel architectures

- Vector Processors: pipelining, array processing (Lecture 2, Today)

— Scalar Processors: pipelining, superscalar, OoO (Lecture 3)

- (Chip) Multiprocessors: thread parallelism (Lectures 4-5, 8)

. Trade-offs

- Functional, performance and cost

23



VECTOR PROCESSORS

e Vector processors are able to execute instructions on entire vectors and
not just on scalars

e Instructions are of the type
ADDV V1,V2,V3
V1, V2, AND V3 are vectors of scalars of same type and length

They are specified by a base address, a vector length and a stride (memory operand), or
they can be vector registers

Executes V1[i] = V2[i] + V3]i], for all i’s
Vector length and stride may be held in special control registers

V2

>@—~ Vi
V3
e Need advanced compilers to automatically vectorize loops into vectors
e Alternative: use compiler intrinsics or (inline) assembly

24



VECTOR PROCESSORS: HISTORY

Vector Machines existed well before Superscalar processors
Originally built for supercomputers for engineering/scientific computation

Hugely popular during 1975-1990s, then overtaken by massively parallel
computers ("killer micros" https://en.wikipedia.org/wiki/Killer_micro)

Because of media (Streaming) application they are now also common in
commodity markets (DSP) and also general purpose (e.g. SSE, AVX)

Provide high efficiency: now getting popular again in the HPC domain

CRAY-1 (1975) 1974 CDC STAR-100

160 MFLOPS
25


https://en.wikipedia.org/wiki/Killer_micro

(PIPELINED) VECTOR ARCHITECTURE

Assume ADD has 10 stages

The total execution time is:
Tex =10 + 63 =9+ &4

In general: Tex = Tstart + N

 After vector startup time (the time to get the first result), results are
computed one per clock

Tvector = VECTOR_LENGTH + STARTUP TIME

26



SIMD Architecture

e Modern SIMD computers process all elements of the vector simultaneously
e SIMD WIDTH is usually smaller than VECTOR_LENGTH, e.g. 512-bit in AVX-512

e Latency equal to equivalent scalar operation

SIMD _WIDTH =8 Instruction Issue

SIMD Register File <

ALU ALU ALU ALU ALU ALU ALU ALU

e |Itis also possible to combine the pipeline approach with the parallel (SIMD) approach (similar to
superscalar execution), either via SW (loop) or HW (pipeline)

Tvector = VECTOR_LENGTH/SIMD_WIDTH + STARTUP TIME



VECTOR - MEMORY SYSTEM

e LOAD/STORE instructions are of the form
L.V V1, R1, R2 //load V1 from Mem[R1+(0,R2,2xR2,...)] R2: STRIDE

STRIDE := number of locations in memory between beginnings of successive array
elements, measured in bytes or in units of the size of the array's elements

* Access pattern to memory is known at decode time for the entire vectors

 all accesses involved in a memory vector operation can be efficiently scheduled right
after instruction decode.

* memory is interleaved. No need for caches, particularly for long vectors (why?)
 vector load/store units from memory to registers

28



VECTOR - MEMORY SYSTEM

* Load store units can be seen as pipelines

 the startup time is the time to get the first component

 startup time is much longer than for functional units

« vectors accessed with a stride are stored in consecutive locations of vector register
Efficient accesses to matrices are important

STRIDE N
array A >

vector register

STRIDEsS:
e Rows: stride 1, Columns: stride N
e Forward diagonal: stride N+1, Backward diagonal: stride N-1

29



VECTOR - MEMORY ORGANIZATION

Heavily interleaved (potentially hundreds of memory modules)
Banks are started one after the other

if the number of banks is greater that the memory cycle time, we have no conflicts, and
results come out one per clock

MEMORY bank0 bankl bank2 bank3

LA | X X
X X X

vl O

INTERLEAVING:
Xi IS IN BANK (I MOD 4)

w

63

4 BANKS 4CYCLES

bank0

bank1
bank2

bank3

T

load

::::?ﬁf????:—
i e e e B

= VECTOR_LENGTH + STARTUP TIME (TIMETOGETXO0 -1)
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MEMORY SCATTER GATHER

e SCATTER/GATHER

* many scientific computations use sparse matrices
* Most components are 0
» But the pattern is not regular

+ Compress a sparse matrix into vectors of non-zero elements A[1:1000] ==> K[1:9], A*[1:9]
* A*: Nonzero elements of A; K: Indices of nonzero elements of A
* GATHER operation implements following function:
for(i=0;i<N,i++)
A[i] = B[INDEXIi]];

A_INDEX Value (A)
0 10

102 0 0/0 0 j %8_
B[l=| 0 30 0 40 0 0 9 0
0 0 50 60 70 0 qg %

0 0 0 0 0 80 16 70

23 80

e SCATTER operation implements corresponding functionality for stores
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MEMORY SCATTER/GATHER

* Memory locations of vector components are spread out in memory
* Use scatter and gather instructions

* Gather is a load instruction loading the components at indexed addresses into consecutive
v-register locations

» Scatter is a store instruction from v-register to indexed addresses

L.V Vk,0(R1),R6 /Noad vector K in REGISTER Vk
LIV Va,Vk,0(R2) /lload indexed from A(K(i)): gather
<work on Va, put result in Vb>
SL.V 0(R2), VK, Vb //store indexed to A(K(i)): scatter
MEMORY
GATHER Va SCATTER Vb
Va O 0

63 6




CHAINING AND PARALLEL EXECUTION OF INDEPENDENT
VECTOR INSTRUCTIONS

CONSIDER THE CODE:
Y=a*X+Y //[*"AXPY”in BLAS library

EXECUTION TIME (ONE OP AT A TIME): startup(load) + vector_length + startup(multv) +
vector_length + startup(load) + vector length+ startup(addv) + vector_length + startup(store)
+ vector_length = (startup + vector_length)x5

EXECUTION TIME (CHAINING+PARALLEL): startup(load) + startup(multv) + startup(addv)
+ startup(store) + vector_length (the two loads execute in parallel)

I NEMary I L.D FO,0(R4),R6

| .L i L.V V1,0(R1).R6

FOza B e e o MULV V2. V1, FO
— —, L.V V3.0(R2),R6

ADD.V Va4 V2, V3

— I sV O(R2),V4,R6
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SUMMARY ON VECTOR PROCESSORS

Design complexity?
— explicit parallelism enables high performance with simple hardware
Compiler?
— need advanced technology to find vectorizable loops
Memory subsystem?
— no need for caches if long vectors
Applications?

— need long vectors for high performance!

Vector architectures are highly efficient. Currently experiencing a rebirth of vector
technology for high performance computing:

- INTEL AVX-512: Short/medium, fixed-length vectors (512 bits, SIMD)
- ARM SVE: Long, variable-length vectors (128-2048 bits)
- NEC SX-10+: Long, fixed-length vectors (16384 bits)

34



ARM-SVE: an example of a modern vector
architecture
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ARM SVE - Scalable Vector Extension

The following slides are taken from the ARM tutorial: "Vector Architecture Exploration with gem5" given at ICS'18 in Beijing,
June 12th 2018, by Alex Rico, Jose Joao and Giacomo Gabrielli

Scalable Vector Extension — SVE
Significantly extends vector processing capabilities of AArch64

Enables implementation choices of vector lengths — 128 to 2048 bits

« Vector Length Agnostic (VLA) programming adjusts dynamically to the available VL

+ No need to recompile, or to rewrite hand-coded SVE assembler or C intrinsics

Focus is HPC scientific workloads and machine learning, not media/image processing

Will enable advanced vectorizing compilers to extract more fine-grain parallelism from existing
code and so reduce software deployment effort

9 © 2018 Arm Limited q rm Resea rCh
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Introducing the Scalable Vector Extension (SVE)

A vector extension to the ARMv8-A architecture with some major new features:

\T 7/

1 2 3 4

e 5 5 5 5
o . o
-

for (i = 0; i < n; ++i)
INDEX if n-2 | n-1 n n+1

AMDT. T -
CMEPLIT .n 1 1

11  © 2018 Arm Limited

Gather-load and scatter-store
Loads a single register from several non-contiguous memory locations.

Per-lane predication
Operations work on individual lanes under control of a predicate
register.

Predicate-driven loop control and management
Eliminate scalar loop heads and tails by processing partial vectors.

Ar'M Research
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Introducing the Scalable Vector Extension (SVE)

A vector extension to the ARMv8-A architecture with some major new features:

i 2
Voo
+ 1 2

0
el 1 1| 0

EO

1 B4 2 K4 3 B4 4 B
1 B4 2 BN 3 R 4

n + <+
n + <+

g
K

+

12 © 2018 Arm Limited

Vector partitioning and software-managed

speculation
First Faulting Load instructions allow memory accesses to cross into
invalid pages.

Extended floating-point horizontal reductions
In-order and tree-based reductions trade-off performance and
repeatability.

Ar'M Research
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What'’s the vector length?

There is no preferred vector length

- Vector Length (VL) is the CPU
implementor’s choice, from 128 to 2048
bits, in increments of 128

- Adopting a Vector Length Agnostic (VLA)
code generation style makes code portable
across all possible vector lengths

- VLA is made possible by the per-lane
predication, predicate-driven loop control,
vector partitioning and software-managed
speculation features of SVE

« No need to recompile, or to rewrite hand-
coded SVE assembler or C intrinsics

13  © 2018 Arm Limited

VL

128b

256b

384b

512b

64

128

128

256

128 256 384
128 256 384 512
ArMResearch
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SVE — architectural state

= Scalable vector registers
« Z0-Z31 extending NEON’s V0-V31
-~ DP & SP floating-point
- 64, 32, 16 & 8-bit integer

= Scalable predicate registers
« PO-P7
« P8-P15 for predicate manipulation
« FFR first fault register

lane masks for Id/st/arith

= Scalable vector control registers
« ZCR_ELx vector length (LEN=1..16)
« Exception / privilege level EL1 to EL3

14 © 2018 Arm Limited

. LEN x 128 2y
Z31 V31
Z2 V2|
Z1
Z0
LEN x 1
P7 [ P15 ]
T —
PO | P8 | FFR[__ |
ZCR I_L'%EM
EL2
LEN | EL3
ArM Research
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daxpy (scalar)

~

~
»
=
|

= &x[0]
&y [0]
&a
// x3 = &n

~ N
~ N~
F
N =
nn

ldrsw
mov
1dr
void daxpy(double *x, double *y, double a, int n) b
{ .loop:
for (int 1 = 0; 1 < n; i++) { ldr
y[i] = a * x[i] + y[i]; 1dr
} fmadd
} str
add
.latch:
cmp
b.lt
ret

16 © 2018 Arm Limited

x3, [x3]
x4, #0
do, [x2]
.latch

dl, [x0, x4, 1lsl #3]
d2, [x1, x4, 1lsl #3]
d2, d1, d0, d2

d2, [x1, x4, 1lsl #3]
x4;.x8. #1

x4, x3
.loop

Ar'M Research
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void daxpy (double *x, double *y, double a, int n)

|
for (int i = 0; i < n; i++) {

DAXPY y[i] = a * x[i] + y[i];

daxpy (SVE) daxpy (scalar)

daxpy_: daxpy_:
ldrsw x3, [x3] ldrsw x3, [x3]
mov x4, #0 mov x4, #0
whilelt p0.d, x4, x3 1ldr do, [x2]
1dlrd z0.d, p0/z, [x2] b .latch

.loop: .loop:
1d1d zl.d, p0/z, [x0, x4, 1lsl #3] 1dr dl, [x0, x4, 1lsl #3]
1d1d z2.d, p0/z, [x1, x4, 1sl #3] 1ldr d2, [x1, x4, 1lsl #3]
fmla z2.d, p0/m, z1.d, z0.d fmadd d2, d1, d0, d2
stld z2.d, p0, [x1, x4, 1sl #3] str d2, [x1, x4, 1lsl #3]
incd x4 add x4, x4, #1

.latch: .latch:
whilelt pO0.d, x4, x3 cmp x4, x3
b.first .loop bl .loop
ret ret

e whilelt pO.s, x4, x3fills predicate register pO by setting each lane as p0.s[idx] := (x3 + idx) < x4 (x3 and

x4 hold i and N respectively), for each of the indexes idx corresponding to 32-bit lanes of a vector register
e incd: increment the index x4 by as many words as a vector can store with incd
e Db.first: The firstactive elementis true.

K s ArMResearch
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SUMMARY

e Metrics

— Performance and Efficiency

— Review: Amdahl's Law and Gustafson’s Law
e Vector/SIMD

— Architecture

— Memory Organization

- Examples: ARM SVE
e Discussion of EDA284 project
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Next Lecture

Next Lecture is tomorrow (Jan 28th)

Topic: Out-of-Order Execution + Multilevel Cache Hierarchy (mostly review
of DAT105)
Note: There will be no lecture this Friday.

Final topic for today: EDA284 project




