
LECTURE 3

OUT-OF-ORDER EXECUTION
AND MULTILEVEL CACHE HIERARCHIES

Miquel Pericàs
EDA284/DIT361 - 2019/2020 SP3

1

IN
T

E
L

 S
K

Y
L

A
K

E

A
M

D
 Z

E
N

IBM POWER8

WHAT IS INSIDE MODERN PROCESSORS?

Dynamic Scheduling (OoO Microarchitecture)

• OUT-OF-ORDER EXECUTION
− huge and non-trivial topic
− for all the details read chapter 3.4 “dynamically scheduled pipelines”.
− OoO is motivated by limitations of statically scheduled pipelines.

● recommended reading: chapter 3.3

• TODAY’S LECTURE:
− out-of-order scheduling
− multi-level caches
− non-blocking caches

INSTRUCTION SET ARCHITECTURE (ISA)

• The ISA is the interface between software and hardware

• DESIGN OBJECTIVES

− functionality and flexibility for OS and compilers

− implementation efficiency in available technology

− backward compatibility

ISAs are typically designed to last through trends of changes in
usage and technology.

AS TIME GOES BY THEY TEND TO GROW
(https://software.intel.com/en-us/isa-extensions)

https://software.intel.com/en-us/isa-extensions

Static Scheduling
● Static Scheduling: In-order instruction dispatch & execution

● Simple & Low Power: All hazards resolved at ID (Instr. Decode)

− Data Hazards: Only read-after-write (RAW) hazards

− No Structural Hazards (if no multicycle ops, no superpipelining)

− Control Hazards: Squash IF+ID stages if branch is taken

● Instruction Scheduling is the job of the compiler

Instruction
Fetch

Instruction
Decode Execute

Memory Register
Writeback

Static Scheduling: Limitations

 In: Op Dst, Src1, Src2
 I1: L.S F0, 0(R1)
 I2: ADD.S F1, F1, F0
 I3: L.S F0, 0(R2)
 I4: ADD.S F2, F2, F0

Miss (1+10 cycles) Exec Cycle: 0
 (1 cycle) Exec Cycle: 12
Hit (1+1 cycles) Exec Cycle: 13
 (1 cycle) Exec Cycle: 15

RAW (read-after-write)

● I3, I4 do not depend on I1, I2, but cannot execute early

● In-order dispatch under-utilizes resources

EX MEM

● Not portable: one schedule for
each pipeline

● Cannot handle unpredictable
latencies

Dynamic Scheduling: The idea

Instruction scheduling is the job of the processor

Start execution of instructions in any order that
respects the dependencies implied by the program

Dynamically Scheduled Pipeline

● Split Inst. Decode stage (ID) into two parts:

−Dispatch: Decode + check for structural hazards

−Read operands: Wait until no data hazards, then
read operands and proceed to execute

● Dispatch in-order, Read Operands out-of-order

Data Hazards: RAW Data Hazards: RAW + WAR + WAW

in-order
front-end

in-order
out-of-order
back-end

Statically Scheduled Dynamically Scheduled

Data Hazards (Review)

• Possible Data Hazards with Dynamic Scheduling

I1: L.S F0, 0(R1)

I2: ADD.S F1, F1, F0

I3: L.S F0, 0(R2)
WAR
(write-after-read)

RAW
(read-after-write)

• RAW: subsequent instruction needs the result of the current instruction (RAW is called true
dependency)

• WAR: subsq. instruction writes to operand of current instruction

• WAW: subsq. instruction writes into the same operand as current

• WAW + WAR are name dependencies (no data is transmitted)

− Can be avoided if a different register can be used

WAW (write-after-write)

Dynamic Scheduling: Implementations

a) Scoreboarding (not covered)

−CDC 6600 (1965)

−handles RAW dependencies

−stalls on WAR + WAW hazards

b) Tomasulo's Algorithm

− IBM System/360 Model 91 (1967)

−handles RAW dependencies

−overcomes WAW + WAR dependencies (via register
renaming)

Tomasulo's Algorithm: Overview

1. Dispatch (D) to Reservation Stations
(RS) from Instruction Fetch Queue
(resolves structural hazards)

2. Wait for operands (RO) in
Reservation Stations (resolves data
hazards)

3. Writeback (WB) results through a
Common Data Bus (CDB)

4. Manage Memory Hazards (RAW,
WAR, WAW) via Load & Store
Queues (M)

Managing RAW Dependencies:
Reservation Stations

1. Read and buffer available operands from
Register File (F1=42)

2. Unavailable operands store the #entry
(tag) of the reservation station that writes
the value (F0=T3)

3. Results+tags are broadcast on the CDB,
which is monitored by the reservation
stations and RF. Matching tags are
updated with corresponding values (<T3,
3.14>)

4. Instructions with all operand values
become ready to execute

issue

tags &
values

MUL.S F2 F3

ALU/FP/AGU

T3

re
gi

st
er

 f
ile

42

value value
or tag

T3

F
lo

at
in

g
P

oi
nt

R

es
er

va
tio

n
st

at
io

n
F

un
ct

io
na

l
U

ni
ts

C
D

B

T3
T2
T1
T0

T4

F1
F0

I1: MUL.S F0,F2,F3
I2: ADD.S F1,F1,F0

<T3,3.14>MUL.S

CDB

OP

V
T

42

ADD.S 3.14

3.14 V

Managing WAR + WAW
Dependencies: Register Renaming

I1: L.S F0, 0(R1)

I2: ADD.S F1, F1, F0

I3: L.S F0, 0(R2)
WAR
(write-after-read)

RAW
(read-after-write)

At Dispatch, rename
destination register in
Register File with RS entry
name (= <tag>)

I1 L.S

I3 L.S

I2 ADD.S

issue issue

Memory
Reservation Station

Floating Point
Reservation Station

TM0

TM1

TM2

TM3
TM4

TF0

TF1

TF2

TF3
TF4

I1 L.S: F0 → TM0
I2 ADD.S: F1 → TF0
I3 L.S: F0 → TM1

I1 L.S <TM0>, 0(R1)
I2 ADD.S <TF0>,F1,<TM0>
I3 L.S <TM1>, 0(R2)

WAW+WAR hazards eliminated!

WAW (write-after-write)

Summary

∙Static scheduling: Simple & low power, but not
portable and does not tolerate unpredictable
delays

∙Dynamic Scheduling: makes observation that a
program is just a specification of dependencies
that need to be respected (not a schedule!)

−Dispatch in-order: check for structural hazards

−Read Operands out-of-order: respect dependencies

Summary

∙ Tomasulo's Algorithm:

∙ Reservation Stations: wait for operands, then execute

∙ Register renaming: overcomes name dependencies

∙ Limitations: stalls at branches, no precise exceptions

∙ Solved by speculative Tomasulo (see 3.4.4)

∙ Branch prediction to speculate past branches

∙ Re-Order Buffer (ROB) to separate speculative state from
non-speculative state

∙ enables exception management

∙ All modern microprocessors feature some variation of HW-
supported speculation

SPECULATIVE TOMASULO

How much of this hardware actually contributes to execution?

MULTI-LEVEL CACHE HIERARCHY

TYPICAL MEMORY HIERARCHY

• Principle of locality:

a program accesses a relatively small portion of the address space at a time
• two different types of locality:

• temporal locality: if an item is referenced, it will tend to be referenced again soon
• spatial locality: if an item is referenced, items whose addresses are close tend to be

referenced soon
• spatial locality turns into temporal locality in blocks (cache) / pages (disk)

TYPICAL MEMORY HIERARCHY: THE PYRAMID

:= illusion that there is only one copy of each data element

CACHE PERFORMANCE METRICS (4.3.4)

• AVERAGE MEMORY ACCESS TIME (AMAT)

AMAT= hit time + miss rate x miss penalty

• MISS RATE: FRACTION OF ACCESSES NOT SATISFIED AT THE HIGHEST LEVEL
• number of misses in L1 divided by the number of processor references
• also Hit rate = 1 - Miss rate

• MISSES PER INSTRUCTIONS (MPI)
• Number of misses in L1 divided by number of instructions

• Easier to use than miss rate: CPI = CPI0 + MPI*miss penalty

• MISS PENALTY: AVERAGE DELAY PER MISS CAUSED IN THE PROCESSOR
• if processor blocks on misses, then this is simply the number of clock cycles to bring a block from

memory or miss latency
• in a OoO processor, the penalty of a miss cannot be measured directly

● different from miss latency

• MISS RATE AND PENALTY CAN BE DEFINED AT EVERY CACHE LEVELS
• usually normalized to the number of processor references
• or to the number of accesses from the upper level

CACHE MAPPING (4.3.1)

• Memory blocks are mapped to cache lines
• Mapping can be direct, set-associative or fully associative

• DIRECT-MAPPED: each memory block can be mapped to only one cache line: block address
modulo the number of lines in cache

• SET-ASSOCIATIVE: each memory block can be mapped to a set of lines in cache; set number
is block address modulo the number of cache sets

• FULLY ASSOCIATIVE: each memory block can be in any cache line

• Cache is made of directory+ data memory, one entry per cache line
• DIRECTORY: tag + status (state) bits: valid, dirty, reference, cache coherence

• Cache access has two phases

1) Use index bits to fetch the tags and data from the set (cache index)

2) Check tags to detect hit/miss

REPLACEMENT POLICIES (4.3.2)

• Which block to evict when a new cache line is filled?
• random, LRU, fifo, Pseudo-LRU

• maintains replacement bits

• EXAMPLE: least-recently used (LRU)

DIRECT-MAPPED: no need
SET-ASSOCIATIVE: per-set replacement

FULLY ASSOCIATIVE: cache-level replacement

Update of history bits in LRU

CLASSIFICATION OF CACHE MISSES (4.3.5)

• THE 3 C’s
• compulsory (cold) misses: on the 1st reference to a block
• capacity misses: space is not sufficient to host data or code
• conflict misses: happen when two memory blocks map on the same cache block in direct-

mapped or set-associative caches

• LATER ON: COHERENCE MISSES → 4C’s CLASSIFICATION

• HOW TO FIND OUT?
• cold misses: simulate infinite cache size
• capacity misses: simulate fully associative cache then deduct cold misses
• conflict misses: simulate cache then deduct cold and capacity misses

CLASSIFICATION IS USEFUL TO UNDERSTAND HOW TO ELIMINATE MISSES

MULTI-LEVEL CACHE HIERARCHIES

• 1st-level, 2nd and 3rd level are usually on-chip; 4th level mostly off-chip
• usually, cache inclusion is maintained (“inclusive cache hierarchy”)

● Lower cache levels “include” (contain) the data blocks in higher cache levels
● when a block misses in L1 then it must be brought into all Li.
● when a block is replaced in Li, then it must be removed from all Lj, j<i

• also: exclusive cache (“exclusive cache hierarchy”)
• if a block is in Li then it is not in any other cache level
• if a block misses in L1 then all copies are removed from all Li’s, i>1
• if a block is replaced in Li then it is allocated in Li+1

• or no policy (eg., “non-inclusive cache hierarchy”)

THINK: what are the advantages / disadvantages of each scheme?

MULTI-LEVEL CACHE HIERARCHIES

• Miss and Fill flow for different policies

− Taken from Jaleel et al. “Achieving Non-Inclusive Cache Performance with Inclusive Caches.
Temporal Locality Aware (TLA) Cache Management Policies” (MICRO 2010)

• AMD processors have traditionally used an exclusive hierarchy

• Intel processor traditionally used an inclusive hierarchy. Since Skylake, the hierarchy
has been updated to include non-inclusive cache hierarchy

EXAMPLE OF INTEL KNIGHTS LANDING

DDR4
DRAM

EFFECT OF CACHE PARAMETERS

• LARGER CACHES
• slower,
• more complex,
• less capacity misses

• LARGER BLOCK SIZE

• exploit spatial locality
• too big a block increases capacity misses
• big blocks also increase miss penalty

• HIGHER ASSOCIATIVITY
• addresses conflict misses
• in practice, 8-16 way S.A. is as good as fully associative
• a 2-way S.A. cache of size N has a similar miss rate as a direct mapped cache of size 2N
• higher hit time

LOCKUP-FREE (NON-BLOCKING CACHES)

• CACHE IS A 2-PORTED DEVICE: MEMORY & PROCESSOR

• if a lockup-free cache misses, it does not block
• rather, it handles the miss and keeps accepting accesses from the

processor
• allows for the concurrent processing of multiple misses and hits

LOCKUP-FREE (NON-BLOCKING CACHES)

• cache has to bookkeep all pending misses

• MSHRs (miss status handling registers) contain the address of
pending miss, the destination block in cache, and the destination
register

• number of MSHRs limits the number of pending misses

• data dependencies eventually block the processor

• non-blocking caches are required:

1. dynamically scheduled processors

2. to support prefetching

3. for multithreading (L1)

4. shared L2 caches in multicore

LOCKUP-FREE CACHES: PRIMARY/SECONDARY MISSES

• PRIMARY: the first miss to a block
• SECONDARY: following accesses to blocks pending due to primary miss

• Many more misses (blocking cache only has primary misses)
• Needs MSHRs for both primary and secondary misses
• Misses are overlapped with computation and other misses

TOY: LW R1,0(R2)
 ADDI R2, R2, #4
 BNE R2, R4, TOY

BLOCKING
CACHE

NON-BLOCKING
CACHE

Cache blocks when all MSHRs are in use

Miss latency = 200 cycles
#MSHRs = 16
Block Size = 4 words

SUMMARY

● Out-of-order (Tomasulo) overcomes limits of static scheduling

− But introduces considerable control overhead!

● Multi-level caches

− Inclusive vs exclusive, coherence across levels

● Non-blocking caches

− Necessary for chip thread level parallelism

● Next lecture (Feb 4th): Multiprocessor hardware (i)

− Main topic: coherence across MP caches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

