LECTURE 3

OUT-OF-ORDER EXECUTION
AND MULTILEVEL CACHE HIERARCHIES

Miquel Pericas
EDA284/DIT361 - 2019/2020 SP3

WHAT IS INSIDE MODERN PROCESSORS?

INTEL SKYLAKE

Front End Instruction)
CacheTag| L1 Instruction Cache
WOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Branch
Predictor ‘ Instructicins i.etc_h sa PreDecode |
(BPU) (window)
MOP MOP MOP MOP MOP MOP
Instruction Queue
[mens [l T
MOP MOP MOP MOP MOP
MicroCode 5-Way Decode
Se‘:‘":;"e' Complex | [Smple |[Simple |[Smple |[Simpie
Decoder || Decoder || Decoder || Decoder || Decoder
(MS ROM)
T-ajoPs oP P 0P 3 Stack
Engine
4uoPs (sE)
Decoded Stream Buffer (DSB) - bl
ecoded Stream Buffer
(0P Ca 6 HOPs
(1.5k OPS; 8Way)
(643 vindow)

Loop Stream
petector (L5D)

Allocation Queue (IDQ) (128, 2x64 LOPS) |

OP pOP WOP uOP pOP pOP | Branch Order Buffer
Register Alias Table (RAT) uoy, TN (BOB) (48-entry)

Move Elimination Zeroing Idioms

Rename / Allocate / Retirement.
ReOrder Buffer (224 entries)

a12hd/av9

64K |-Cache
d-way

'

0 ueue
4 instruction: rop Q
ched
INTEGER

Integer Rename

E E———

Branch Prediction

'

Op Cache

—

FLOATING POINT

Floating Peint Rename

v

AMD ZEN

Scheduler

Scheduler Scheduler

Scheduler

l

I

Integer Register File

FF Register File

:

gz nor HoP nop HoP HopP HoP HopP HoP AL lJ AL lJ AL lJ AL lJ AG IJ AG lJ
N c § - ||
e i Bg | Load/St 32K D-Cacl e
i 28 ToL3 oadiStore -Cache
5 % z per cyle Queues 8-way - ";D) cache
g -way
" Eus
Execution Engine -
_u . \g Srerg I-TLB 32KB Insir:vci:;on Cache _@
Load sufier| 5| L1 Data Cache [Data e | ® Pred l 8 instr
(72 entries) | ¢ 32KiB 8-Way Fetch I .
H Unit i Instruction-Fetch Buffer |
Memory Subsystem 18 instr
Instruction Decode x8 2
Skylake-H (Core i7-6770HQ) Memory Hierarch Retire | . P T T
8 instr
Unit Rename/Dispatch x8 |
Core Core GFX I I l l 1 1 l l
L1D|| LTI
L1 | Issue Queue (64 entries) |
¥ v y i Graphics Queue
§ - - Gueus [T I I])
- . 4 T ‘ Cache
2 5 ¥ I
L3 LLC - Last Level Cache (1.5MB/core) } 4 64 64 64 ' 64 64 128 5;_3,}:5
| Cond Regs x8 | Int Registers (x8 threads) | | FP + VSX Reg x8 |
sl 111 i L1 s
DRAM 128
Doef/ri]cee:s E|VC|;L$] MC '_'l DDR | | IBM POWE R8 D-TLB 64KB Data Cache 512 128
8-way
Tags

Dynamic Scheduling (OoO Microarchitecture)

* OUT-OF-ORDER EXECUTION
— huge and non-trivial topic
— for all the details read chapter 3.4 “dynamically scheduled pipelines”.
— 000 is motivated by limitations of statically scheduled pipelines.
e recommended reading: chapter 3.3

* TODAY’S LECTURE:
— out-of-order scheduling
— multi-level caches
— non-blocking caches

INSTRUCTION SET ARCHITECTURE (ISA)

* The ISA is the interface between software and hardware

Application

Compiler/Libraries of macros and procedures

Operating system

Instruction set (ISA)

Computer architecture (organization)

Circuits (implementation of hardware functions)

Semiconductor physics

 DESIGN OBJECTIVES
— functionality and flexibility for OS and compilers
— implementation efficiency in available technology

— backward compatibility

ISAs are typically designed to last through trends of changes in
usage and technology.

AS TIME GOES BY THEY TEND TO GROW

(https://software.intel.com/en-us/isa-extensions)

https://software.intel.com/en-us/isa-extensions

Static Scheduling

@ Static Scheduling: In-order instruction dispatch & execution

@® Simple & Low Power: All hazards resolved at ID (Instr. Decode)

— Data Hazards: Only read-after-write (RAW) hazards
— No Structural Hazards (if no multicycle ops, no superpipelining)

— Control Hazards: Squash IF+ID stages if branch is taken

@ Instruction Scheduling is the job of the compiler

Clock Cycle

Instruction |nstruction Memory Register
Fetch Decode Execute Writeback

Static Scheduling: Limitations

@ Not portable: one schedule for Clock Cycle

each pipeline 1 | 2

@ Cannot handle unpredictable

latencies 4 D

EX MEM

In: Op Dst, Srcl, Src?2
RAW (read-after-write)

I1: L.S FO,_O(Rl) Miss (1+10 cycles) Exec Cycle: 0

I2: ADD.S Fl}‘FO

4

(1 cycle) Exec Cycle: 12
I3: L.S FO._O0(R2) Hit (141 cycles) Exec Cycle: 13

\

I4: ADD.S F2, F2,7FO (1 cycle) Exec Cycle: 15

@ I3, I4donotdependon 11, I2, butcannot execute early

@ In-order dispatch under-utilizes resources

Dynamic Scheduling: The idea

Start execution of instructions in any order that
respects the dependencies implied by the program

Instruction scheduling is the job of the processor

Dynamically Scheduled Pipeline

 Split Inst. Decode stage (ID) into two parts:
— Dispatch: Decode + check for structural hazards

— Read operands: Wait until no data hazards, then
read operands and proceed to execute

« Dispatch in-order, Read Operands out-of-order

Clock Cycle Clock Cycle
1|z|3|4|5 1|2|3|4|5|6
F 4 b (_B—MEM WB F 4 o E_ROCBfrWEml—WB

in-order in-order out-of-order

front-end back-end
Statically Scheduled Dynamically Scheduled

Data Hazards: RAW Data Hazards: RAW + WAR + WAW

Data Hazards (Review)

* Possible Data Hazards with Dynamic Scheduling

I1: L.S FO, O(R1)
RAW

\ (read-after-write)

I2: ADD.S F1, F1, FO
WAR
I3: L.S FO, 0(R2) (write-after-read)

RAW: subsequent instruction needs the result of the current instruction (RAW is called frue
dependency)

WAR: subsq. instruction writes to operand of current instruction
WAW: subsq. instruction writes into the same operand as current

WAW + WAR are name dependencies (no data is transmitted)

— Can be avoided if a different register can be used

Dynamic Scheduling: Implementations

a) Scoreboarding (not covered)
—CDC 6600 (1965)
—handles RAW dependencies
—stalls on WAR + WAW hazards

b) Tomasulo's Algorithm
— IBM System/360 Model 91 (1967)
— handles RAW dependencies

— overcomes WAW + WAR dependencies (via register
renaming)

Tomasulo's Algorithm: Overview

Clock Cycle
1 | 2 | 3 | 4 | 5 | 6 .
F 4 o Hro PME M WE g I-Fetch
l \ L— l /tags
instruction
1. Dispatch (D) to Reservation Stations o Front-
(RS) from Instruction Fetch Queue End
integ |-decode/ P
(resolves structural hazards) j registels [dispatch] l registers
¥
: : - 1 1 I >
2. Wait for o_perands_(RO) in — H H =0
Reservation Stations (resolves data
hazards) integer memory floating-point
_ Back-
3. Writeback (WB) results through a issue issue issue End
Common Data Bus (CDB) j il ==
reger i
4. Manage I\/Iemqry Hazards (RAW, I_.CD.B ; 3 Ry |
WAR, WAW) via Load & Store = — rn -
Queues (M) Load <> QSmre
Queue Leue

'

D-CACHE

Managing RAW Dependencies:
Reservation Stations

I1: MUL.S FO,F2,F3

. Read and buffer available from I2: ADD.S F1,F1,F0
Register File (F1=42) value . value
. = FoL 814 VI a4
. Unavailable operands store the #entry S -
(tag) of the reservation station that writes g — tags &
i values
the value (FO=T3) e op) -
STO I
. Results+tags are broadcast on the CDB, & 3§, T
which is monitored by the reservation T oTo| ADDS |42 |a1ale
. . O
stations and RF. Matching tags are SRT3[mus [Fa | Fs
updated with corresponding values (<T3, § §T4 9
(o
>) % issue]
. Instructions with all operand values . MULS <735 145
become ready to execute S o ‘
'-8 S ALU/FP/AGU
2 CDB

Managing WAR + WAW
Dependencies: Register Renaming

At Dispatch, rename
I1: L.S, F0O,~Q(R1) RAW destination register in

| read-after-write) Ragister File with RS entry
12: ADD.S Fl, Fl; FO

WAR name (= <tag>)

. (write-after-read)
I3: L.5 FO, O0(R2) I1 L.S: FO —» TMO
Memory Floating Point I2 ADD.S: F1 - TFO
Reservation Station Reservation Station | 13 1, g. FO _ TM1
TMO [I1 L.s TFO |12 ADD.S
TM1 (I3 L.s TF1
TM2 TF2 '
™3 TE3 I1 L.S <TMO>, O (R1)
TM4 TF4 12 ADD.S/<TFO> Fl,<TMO>
- \ 4%
ssue] [SsUe] I3 L.S <TM13, 0 (R2)

l l WAW+WAR hazards eliminated!

Summary

o Static scheduling: Simple & low power, but not
portable and does not tolerate unpredictable
delays

« Dynamic Scheduling: makes observation that a
program is just a specification of dependencies
that need to be respected (not a schedule!)

— Dispatch in-order: check for structural hazards
— Read Operands out-of-order: respect dependencies

Summary

« Tomasulo's Algorithm:
o Reservation Stations: wait for operands, then execute

o Register renaming: overcomes name dependencies

o Limitations: stalls at branches, no precise exceptions

e Solved by speculative Tomasulo (see 3.4.4)
e Branch prediction to speculate past branches

« Re-Order Buffer (ROB) to separate speculative state from
non-speculative state
e enables exception management

o All modern microprocessors feature some variation of HW-
supported speculation

SPECULATIVE TOMASULO

ROB

FRONT-END

P
eqgisters

.,

floating-point

integer
register:

I) D-Cache)

NEW STRUCTURES:
«REORDER BUFFER (ROB)

«BRANCH PREDICTION
BUFFER (BPR)
«BRANCH TARGET
BUFFER (BTB)

ROB:
« KEEPS TRACK OF
PROCESS ORDER (FIFO)

«HOLDS SPECULATIVE
RESULTS

*NO MORE SNOOPING

BY REGISTERS
REGISTER VALUES

*PENDING IN BACK-END

* SPECULATIVE IN ROB

«COMMITTED IN THE
REGISTER FILE

USE ROB ENTRY # AS

TAG TO RENAME
REGISTER

How much of this hardware actually contributes to execution?

MULTI-LEVEL CACHE HIERARCHY

TYPICAL MEMORY HIERARCHY

200nscec

20nsec
CPU 0.5nsec Snsec 10msec

P L3 MAIN)

—> > e’
Cache Cache MEMORY —

Virtual memory
Cache hierarchy hierarchy

4 — —— b

* Principle of locality:

a program accesses a relatively small portion of the address space at a time

* two different types of locality:

temporal locality: if an item is referenced, it will tend to be referenced again soon

spatial locality: if an item is referenced, items whose addresses are close tend to be
referenced soon

spatial locality turns into temporal locality in blocks (cache) / pages (disk)

TYPICAL MEMORY HIERARCHY: THE PYRAMID

| speed \
t/bit

SRAM ctos I\
suze{

TCompiIer‘ management

F 3

L1(cache)

L2(cache)

Hardware management

-‘h
Kernel/0OS
managemey

Ln-1(Main Memory--DRAM)

\

GOALS: HIGH SPEED, LOW COST, HIGH CAPACITY

Ln (Secondary Memory--DISK)

COHERENCE = illusion that there is only one copy of each data element

CACHE PERFORMANCE METRICS (4.3.4)

AVERAGE MEMORY ACCESS TIME (AMAT)
AMAT= hit time + miss rate x miss penalty

MISS RATE: FRACTION OF ACCESSES NOT SATISFIED AT THE HIGHEST LEVEL

number of misses in L1 divided by the number of processor references
also Hit rate = 1 - Miss rate

MISSES PER INSTRUCTIONS (MPI)
Number of misses in L1 divided by number of instructions
- Easier to use than miss rate: CPI = CPI, + MPI*miss penalty

MISS PENALTY: AVERAGE DELAY PER MISS CAUSED IN THE PROCESSOR

if processor blocks on misses, then this is simply the number of clock cycles to bring a block from
memory or miss latency

in a Oo0 processor, the penalty of a miss cannot be measured directly
* different from miss latency

MISS RATE AND PENALTY CAN BE DEFINED AT EVERY CACHE LEVELS

usually normalized to the number of processor references
or to the number of accesses from the upper level

CACHE MAPPING (4.3.1)

* Memory blocks are mapped to cache lines
* Mapping can be direct, set-associative or fully associative

Physical Address

Memory block address Block offset

TAG Cache index Block offset

* DIRECT-MAPPED: each memory block can be mapped to only one cache line: block address
modulo the number of lines in cache

 SET-ASSOCIATIVE: each memory block can be mapped to a set of lines in cache; set number
is block address modulo the number of cache sets

* FULLY ASSOCIATIVE: each memory block can be in any cache line

* Cache is made of directory+ data memory, one entry per cache line
* DIRECTORY: tag + status (state) bits: valid, dirty, reference, cache coherence

* Cache access has two phases
1) Use index bits to fetch the tags and data from the set (cache index)
2) Check tags to detect hit/miss

REPLACEMENT POLICIES (4.3.2)

* Which block to evict when a new cache line is filled?
* random, LRU, fifo, Pseudo-LRU

* maintains replacement bits
* EXAMPLE: least-recently used (LRU)

replaced
pofe1pe]ps Poleipafee)
Line #. \ T02F 2 wblochy
erplucemen‘r
priority:
11: LRU :
Line 0
Llne[}
Ny 00:MRU Line 1 m -
i

in cache

(a) Hit on line 3 at priority level 2 (b) Miss
Update of history bits in LRU

DIRECT-MAPPED: no need
SET-ASSOCIATIVE: per-set replacement
FULLY ASSOCIATIVE: cache-level replacement

CLASSIFICATION OF CACHE MISSES (4.3.5)

* THE 3C’s
* compulsory (cold) misses: on the 1st reference to a block
* capacity misses: space is not sufficient to host data or code

* conflict misses: happen when two memory blocks map on the same cache block in direct-
mapped or set-associative caches

* LATER ON: COHERENCE MISSES — 4C’s CLASSIFICATION

* HOW TO FIND OUT?

* cold misses: simulate infinite cache size
* capacity misses: simulate fully associative cache then deduct cold misses
* conflict misses: simulate cache then deduct cold and capacity misses

CLASSIFICATION IS USEFUL TO UNDERSTAND HOW TO ELIMINATE MISSES

MULTI-LEVEL CACHE HIERARCHIES

L4
> Cache

L2 L3

Cache Cache

1st-level, 2nd and 3rd level are usually on-chip; 4th level mostly off-chip
usually, cache inclusion is maintained (“inclusive cache hierarchy”)

* Lower cache levels “include” (contain) the data blocks in higher cache levels

* when a block misses in L1 then it must be brought into all Li.

* when a block is replaced in Li, then it must be removed from all Lj, j<i
also: exclusive cache (“exclusive cache hierarchy”)

* ifablockisin Lithen it is not in any other cache level

* if a block misses in L1 then all copies are removed from all Li’s, i>1

* if a block is replaced in Li then it is allocated in Li+1

or no policy (eg., “non-inclusive cache hierarchy”)

THINK: what are the advantages / disadvantages of each scheme?

MULTI-LEVEL CACHE HIERARCHIES

Core Request

Core Request

Core Request
A . A A -
evict victim
- -L1 - L - -L1 - -L1
ARE & 2| (3 z| |2
ol e e ol (e ol
L L = LL L L L
3| = 2 3| = 3| |E
S| % LLC £ S| |5 LLC = LLC ”
[&]
@
[victim o Yy victim | victim
\ v
- L) L
Memory Memory Memory

(a) Inclusive Hierarchy (b) Non-Inclusive Hierarchy (c) Exclusive Hierarchy

Figure 1: Summary of Cache Hierarchies.

* Miss and Fill flow for different policies

Taken from Jaleel et al. “Achieving Non-Inclusive Cache Performance with Inclusive Caches.
Temporal Locality Aware (TLA) Cache Management Policies” (MICRO 2010)

* AMD processors have traditionally used an exclusive hierarchy

Intel processor traditionally used an inclusive hierarchy. Since Skylake, the hierarchy
has been updated to include non-inclusive cache hierarchy

EXAMPLE OF INTEL KNIGHTS LANDING

CPU
|!-Ee!cﬁ: [-Cachej4=p
registe L2 L3 DDR4
file L1 caches —> —>
oot R Cache Cache DRAM
unit “Cachq D [\

Knights Landing Over

2 x16 /
Mcnmuj MCDRAj 1x4 DM' MCDRAM Mmﬂj
A b T
DDR U = U S DDR
' a
e -
i 2t T 3t
\ncm MCDRAM ‘ . MCDRAM MCDRAM
ackage

Tile: 2 Cores + 2 VPU/core + 1 MB L2

CHA

p: 36 Tiles interconnected by 2D Mesh

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Vector Peak Perf. 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner

Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

numbers are based on STREANlike mmma S
estimated mammteml Intel ana

EFFECT OF CACHE PARAMETERS

* LARGER CACHES
* slower,
* more complex,
* less capacity misses

* LARGER BLOCK SIZE
* exploit spatial locality
* too big a block increases capacity misses
* big blocks also increase miss penalty

* HIGHER ASSOCIATIVITY
* addresses conflict misses
* in practice, 8-16 way S.A. is as good as fully associative
* a2-way S.A. cache of size N has a similar miss rate as a direct mapped cache of size 2N
* higher hit time

LOCKUP-FREE (NON-BLOCKING CACHES)

* CACHE IS A 2-PORTED DEVICE: MEMORY & PROCESSOR

C.m: cache to memory $ Main
interface Q o
3 memory
C,.: processor to cache |

C
P lInterface

* if a lockup-free cache misses, it does not block

* rather, it handles the miss and keeps accepting accesses from the

processor
* allows for the concurrent processing of multiple misses and hits

LOCKUP-FREE (NON-BLOCKING CACHES)

* cache has to bookkeep all pending misses

* MSHRs (miss status handling registers) contain the address of
pending miss, the destination block in cache, and the destination

register

* number of MSHRs limits the number of pending misses
* data dependencies eventually block the processor

* non-blocking caches are required:
1. dynamically scheduled processors
2. to support prefetching
3. for multithreading (L1)
4. shared L2 caches in multicore

LOCKUP-FREE CACHES: PRIMARY/SECONDARY MISSES

* PRIMARY: the first miss to a block

« SECONDARY: following accesses to blocks pending due to primary miss
* Many more misses (blocking cache only has primary misses)
* Needs MSHRs for both primary and secondary misses
* Misses are overlapped with computation and other misses

TOY: LW R1,0(R2) Miss latency = 200 cycles
ADDI R2, R2, #4 HMSHRs = 16
BNE R2, R4, TOY Block Size = 4 words
2nd~4th lw
3 hits
BLOCKING 1st Iw 1st miss (200cycles))l I l 2nd miss (200cycles)
-+ 3
CACHE BLOCK SIZE = 4 WORDS
, CONSECUTIVE WORD
(a) Blocking cache ACCESSES
P555
Istlw 1st primary miss (200cycles) 1‘1 PSSS
2nd primariy miss (200cycles) l PSSS
NON-BLOCKING Tttt 3rd primariy miss (EDD::ycllevzs l ll PSSS

CACHE pSSS TT" 4th primariy miss (200cycles) Jlll
e P

PSSS Cache blocks when all MSHRs are in use

(b) Non-blocking cache with 16 MSHRs

SUMMARY

@ Out-of-order (Tomasulo) overcomes limits of static scheduling

— But introduces considerable control overhead!

@ Multi-level caches

— Inclusive vs exclusive, coherence across levels

@ Non-blocking caches

— Necessary for chip thread level parallelism

@ Next lecture (Feb 4th): Multiprocessor hardware (i)

— Main topic: coherence across MP caches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

