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This week

1. Lectures
○ Shared Memory Multiprocessors (L4 today + L5 tomorrow 8h) 
○ Roofline Model (L6 Friday 8h)

2. Practice session #1 (Friday 10h)
○ SMPs & Performance Metrics
○ Exercises will be published tomorrow

3. Project
○ Today is last day to propose a team and select three scenarios. 

Tomorrow we will setup the final teams. 
○ If you have not submitted your preference, you will be assigned a 

random team member and scenario

4. Small change in schedule
○  Practice session #2 has been moved from Feb 19th (Wed) to Feb 18th 

(Tue). Currently there is no lecture scheduled on Feb 19th 
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OUTLINE (Lectures 4+5)

● Shared-memory parallel programming
● Bus-based shared memory systems

○ architectures
○ coherence protocols
○ coherence optimizations
○ multi-level caches

● Classification of Misses
● Scalable shared memory systems
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EXAMPLE: MATRIX MULTIPLY + SUM

sequential program:
1  sum = 0;
2  for (i=0;i<N;i++)      
3    for (j=0;j<N;j++){
4      C[i,j] = 0;
5      for (k=0;k<N;k++)
6         C[i,j] = C[i,j] + A[i,k]*B[k,j];
7         sum += C[i,j];
8      }
• multiply matrices A[N,N] by B[N,N] and store result in C[N,N]
• add all elements of C[ , ] and store in variable 'sum'

4
How to parallelize?



TWO TYPES OF INTER-PROCESSOR COMMUNICATION

• Implicitly via memory
− processors share some memory

− communication is implicit through loads 
and stores
• need to synchronize
• need to know how the hardware interleaves 

accesses from different processors

• Explicitly via messages (sends and receives)
• need to know the destination and what to send
• explicit message-passing statements in the code
• called “message passing”

NO HYPOTHESIS ON THE RELATIVE SPEED OF PROCESSORS
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SHARED MEMORY EXAMPLE: MATRIX MULTIPLY + SUM

SHARED-MEMORY PROGRAM
/* A, B, C, BAR, LV and sum are shared
/* All other variables are private

1a low = get_thread_num()*N/nproc; //0...nproc-1
1b hi = low + N/nproc;      //rows of A
1c mysum = 0; sum = 0;   //A and B are in 
2  for (i=low,i<hi, i++)       //shared memory
3  for (j=0,j<N, j++){
4  C[i,j] = 0;
5  for (k=0,k<N, k++)
6  C[i,j] = C[i,j] +  A[i,k]*B[k,j]; 
                        //at the end matrix C is
7  mysum +=C[i,j];  //C is in shared memory
8  } 
9 BARRIER(BAR);
10  LOCK(LV);
11        sum += mysum;
12  UNLOCK(LV);
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what extensions to the single-threaded program 
are needed to execute this parallel version?

/* A, B, C, BAR, LV and sum are shared
/* All other variables are private
1a low = get_thread_num()*N/nproc; //0...nproc-1
1b hi = low + N/nproc;      //rows of A
1c mysum = 0; sum = 0;   //A and B are in 
2  for (i=low,i<hi, i++)       //shared memory
3  for (j=0,j<N, j++){
4  C[i,j] = 0;
5  for (k=0,k<N, k++)
6  C[i,j] = C[i,j] +  A[i,k]*B[k,j]; 
                        //at the end matrix C is
7  mysum +=C[i,j];  //C is in shared memory
8  } 
9 BARRIER(BAR);
10  LOCK(LV);
11        sum += mysum;
12  UNLOCK(LV);

CPUs

1 2 3 4

MEM



what extensions to single-threaded CPU 
are needed to execute this program?

1. Need to correctly communicate data, in timely fashion. Stores need to 
be propagated to Loads: 
○ in the same thread, and
○ across different threads

2. Implement interconnect + caches for performance: 
○ private caches for fast access
○ shared caches for global data (multithreading) and dynamic sharing of 

cache space (multiprogrammed) 

3. Need to provide constructs for synchronization (barriers and locks)
○ Lecture 13

4. Need a method to create threads and to obtain thread numbers (this 
is the domain of O/S)
○ discussed partially in DAT400
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Today's lecture



BUS-BASED SHARED MEMORY SYSTEMS

(a) conceptual – not practical; no cache
(b) shared L1 cache; no replication but higher hit latency than private (c)
(c) private L1 caches; lower latency but smaller cache capacity
(d) private L1 caches and shared L2; popular for chip multiprocessors (CMPs)

rest of discussion considers organization (c) and (d)
9

Bus: broadcast-based interconnect medium



RECAP ON MULTI-LEVEL CACHES

● multi-level cache allocation policies
− inclusive vs exclusive vs non-inclusive

● write policies
− next slide

● non-blocking 
− continue servicing loads in the shadow of a miss

BLOCKING 
CACHE

NON-BLOCKING 
CACHE
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HOW TO HANDLE WRITES?

• WRITE THROUGH: write to next level on all writes
• combined with store buffer (SB) to avoid CPU stalls. SB holds individual STs
• simple, no inconsistency among levels.  

• WRITE-BACK: write to next level on replacement (reduces write traffic)
• with the help of a dirty bit and a write-back buffer. WB holds dirty cache lines
• writes happen in background on a miss only 

• ALLOCATION ON WRITE MISSES
• always allocate in write-back; design choice in write-through
• small caches often use WT + no-alloc to alleviate storage pressure

Store Buffer (word address and data)
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COHERENCE 
● in uniprocessors, a load must return the value of the latest 

store in process order with the same address
○ this is done through memory disambiguation (3.4.5) and management of 

cache hierarchy. 
● coherence between I/O traffic and cache must be enforced

○ however, this is infrequent and software is informed
○ some solutions: uncacheable memory, uncacheable ops, cache flushing
○ also possible to pass I/O through cache
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COHERENCE 

• in multiprocessors the coherence problem is pervasive, 
performance critical and software is not informed

• sharing of data, thread migration and I/O
• communication is implicit
• thus hardware must solve the problem
• coherence will be formally treated in lecture #14

• informal definition (for multiprocessors)

• a cache system is coherent if all processors, at any point in time, 
have a consistent view of the last globally written value to each 
location

● i.e. no processor can read an old value w1 after w2 has been 
globally performed

● performed := value at memory has been altered
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CACHE COHERENCE 

which of these systems are more prone to suffer coherence problems?

those that can contain multiple copies of the same location: (c) and (d)
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IS CACHE COHERENCE A PROBLEM IN MODERN 
PROCESSORS?

Intel Skylake
(SMP with private L1/L2 caches

and shared L3 cache)

Intel Knights Landing
(SMP with private caches)
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YES: multiple cache 
levels, replicated 
L1&L2 caches



SNOOPING-BASED CACHE COHERENCE 

• Basic idea
• Transactions on the bus are “visible” to all processors
• Bus interface can “snoop” (monitor) the bus traffic and take action when required
• To take action the “snooper” must check the status of the cache: competes with regular loads

• Reduce cache controller congestion with a dual directory 

• Snooping can be done in the 2nd level cache (SLC)

• when there is inclusion, SLC filters out transactions to FLC (first level cache)
• SLC contains a bit indicating whether the block is in FLC

(in modern systems: SLC often called LLC := last level cache) 16



A SIMPLE PROTOCOL FOR WRITE-THROUGH CACHES

• To simplify assume no allocate on store misses
• all stores and load misses propagate on the bus

• stores may update or invalidate caches
 
• state diagram

• each cache is represented by a finite state machine
• imagine P identical FSMs working together, one per cache
• FSM represents the behavior of a cache w.r.t. a memory block

• not the cache controller! 

● PrRd/PrWr: Processor Read/Write; BusRd/BusWr: Bus Read/Write
● Good: (almost) no new state (1 bit per block in cache)
● Bad: most blocks are not shared, all write requests launch bus transactions → generates 

unnecessary write traffic!
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WRITE-BACK: MSI INVALIDATE PROTOCOL  

● BLOCK STATES: 
○ Invalid (I); 
○ Shared (S): one copy or more, memory is 

clean; 
○ Modified (M): one copy, memory is stale

● PROCESSOR REQUESTS
○ PrRd or PrWr

● BUS TRANSACTIONS
○ BusRd: requests copy with no intent to 

modify
○ BusRdX: requests copy with intent to modify
○ BusUpgr: invalidate remote copies
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● write to shared block: use BusUpgr
● flush: forward block copy to requester (memory copy is stale)

○ memory should be updated at the same time
● Writes to blocks in state M do not generate Bus activity!
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Exercise
Two processors P1 and P2 perform following series of Loads and Stores to 
a memory block storing word A

P1: LDA STA
P2: LDA 

What are the coherence transitions and bus actions as performed by the 
cache of P1 for the two protocols Valid-Invalid and MSI?

time

Transitions are as follows:
VI    (P1):  I->V (BusRd), V->V (BusWr), -- 
MSI (P1):  I->S (BusRd), S->M (BusUpgr), M->S (Flush)



MESI PROTOCOL

● problem with MSI invalidate protocol
○ most of blocks are private--not shared (ex. multiprogrammed workloads)
○ read miss (LD @A) followed by write (ST @A) causes two bus accesses (BusRd, BusWr)

● add an exclusive state
○ Exclusive (E): one copy, memory is clean
○ use a Shared (S) line on bus to detect that the copy is unique 

● On a read miss go to E or S depending on the value returned by the Shared line.
● Transition from E to M is silent: No extra Bus Access

○ Could use BusUpgr in local transition from S to M
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MOESI: A GENERAL CLASS OF PROTOCOLS

• MOESI can model (among others) MSI and MESI
• adds notion of ownership of a cache block

− E&M implicitly owner. O used for ownership of 'S' blocks
• owner supplies a copy of the block when another cache requests it (enables sharing 

of dirty data, no Mem WB needed)
• ownership is transferred to another cache or to memory when block is 

invalidated/replaced (triggers WB)
21
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Exercise
Two processors P1 and P2 perform following series of Loads and Stores to 
a memory block storing address @A

P1: LDA STA
P2: LDA 

What are the coherence transitions and bus actions as performed by the 
cache of P1 for the two protocols MESI and MOESI?

time

Transitions are as follows:
MESI: I->E (BusRd), E->M, M->S (Flush)
MOESI: I->E (BusRd), E->M, M->O (Flush)



CACHE COHERENCE PROTOCOLS IN USE

Some vendors have provided indication of the protocols in use
• AMD64, ARMv8 (except Cortex-A9) use MOESI
• intel64 uses MESIF (F = forwarding: similar to O but ownership transferred 

to requester along with data reply. exploits temporal locality)
• Intel itanium 2, ARM Cortex-A9 use MESI
• others?

Cache coherence is an implementation detail (not part of the ISA). Hence 
programmers do not require to understand it to develop correct programs.

But it can impact performance optimizations! 
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CACHE PROTOCOL OPTIMIZATIONS

● producer-consumer sharing; e.g. one processor writes and others (say N 
proc.) read the same data
○ results in invalidation followed by N read misses
○ can do better by letting one read miss bring block into all N caches – read snarfing (or 

broadcast): load MB if data is in cache in state i 
● migratory sharing; processors read and modify same cache block – one at a 

time
○ common behavior in data access inside critical sections
○ results in one coherence miss followed by an invalidation; the invalidation could be 

saved.
○ optimization: issue only read-exclusive (combined read and upgrade)
○ needs a method to detect migratory sharing

LOCK(LV);
  sum += mysum;
UNLOCK(LV);

T1 T2 T3
sum += mysum;

sum += mysum;

sum += mysum;

time

BusRd1
BusUpgr1

BusRd3
BusUpgr3

BusRd2
BusUpgr2

BusRdX

BusRdX

BusRdX 24



EXAMPLE: MATRIX MULTIPLY + SUM
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SHARED-MEMORY PROGRAM
/* A, B, C, BAR, LV and sum are shared
/* All other variables are private

1a low = get_thread_num()*N/nproc; //0...nproc-1
1b hi = low + N/nproc;      //rows of A
1c mysum = 0; sum = 0;   //A and B are in 
2  for (i=low,i<hi, i++)       //shared memory
3  for (j=0,j<N, j++){
4  C[i,j] = 0;
5  for (k=0,k<N, k++)
6  C[i,j] = C[i,j] +  A[i,k]*B[k,j]; 
                        //at the end matrix C is
7  mysum +=C[i,j];  //C is in shared memory
8  } 
9 BARRIER(BAR);
10  LOCK(LV);
11        sum += mysum;
12  UNLOCK(LV);



UPDATE-BASED PROTOCOLS
• update (instead of invalidate) block copies

• when sharing is high (eg producer-consumer) invalidate is inefficient
• if every written value is consumed, update protocols will outperform invalidate-based 

protocols (shorter latency and less bandwidth)

• introduce a new bus transaction: BusUpdate
• BusUpdate is cheaper than BusRd: only updated words are transferred, not full memory 

block (eg. 8 bytes vs 64 bytes)

• However if write runs are long (=many local writes before consumer reads) update is 
less efficient than invalidate (particularly in cc-NUMA!) 

Bandwidth trade-off (invalidate vs update):
• write-run of length N
• invalidate: Bandwidth = B(upgrade) + B(read miss)
• update: Bandwidth = N x B(update)
• assume: B(upgrade) = B(update)

update outperforms invalidate when
N < 1 + B(read miss)/B(update)
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MULTIPHASE CACHE PROTOCOLS

machine models so far have assumed
• single level of private caches
• “atomic” (non-pipelined) buses

a realistic model comprises
• a multi-level (private) cache hierarchy
• a split-transaction (pipelined) bus

FIFO Request Buffers
(smooth speed differences, e.g. bursty traffic)
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TRANSIENT (NON-ATOMIC) CACHE STATES
Using ‘stable’ states (e.g. M S I) as an abstraction is too high-level to resolve races in 
cache protocols. Transitions cannot happen atomically!
Example
• Q: Two processors issue a bus upgrade to a block in state shared. When is the race 

resolved?
• A: After bus arbitration
Transient states deal with race conditions that result from e.g. resource arbitration. They 
are transient (as opposed to stable) since they exist only as long as the current transaction 
is in progress

TRANSIENT STATES
S → M
upon invalidation, need 
to update request from 
BusUpgr to BusRdX

28

Example of adding 
transient states. Not 
exhaustive!



SPLIT-TRANSACTION BUS
● Split-transaction bus: pipelines a sequence of phases in a bus transaction; e.g. 

request and response

● must divide transaction into subtransactions: adds additional latency (due to 
arbitration of each subtransaction) but increases bandwidth:
○ bus no longer occupied during full transaction
○ can overlap multiple bus transactions
○ trade-off latency vs bandwidth

● must balance pipeline stages to maximize throughput

● separation between request/response arbitration. Use address (or unique 
transaction ID) to match flushed blocks with requests.

BusRd, BusUpgr, BusRdX

Flush: (Memory → Cache)
or (Cache → Cache)

MSI

Request Phase

Response Phase
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MULTI-LEVEL CACHE ISSUES

Adding another level of private cache offers some benefits
• shorter miss penalty to next level
• can filter out snoop actions to first level if inclusion is maintained

If not maintained, snoop result cannot be reported until first level cache has been checked.
Increases contention on FLC accesses

inclusion

no inclusion
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MULTI-LEVEL CACHE ISSUES

inclusion is not always easy to maintain
• to maintain inclusion need to evict a block at level 

1 when the block is evicted at level 2 (called 
“inclusion victims”)

• checking L1 on each L2 replacement may lock 
out processor

write policy is important to reduce snoop 
overhead
• if level 1 is write-back level 2’s copy is 

inconsistent and dirty miss requests must be 
serviced by level 1 (adds latency)

• if level 1 is write-through and inclusion is 
maintained, level 2 can always respond to miss 
requests from other processors; can reduce 
overhead, but increases write traffic
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SUMMARY

● PARALLEL PROGRAMMING MODELS
○ shared memory vs message passing

● BUS-BASED SHARED MEMORY SYSTEMS (I)
○ coherence
○ snoopy cache protocols (VI, MSI, MESI, MOESI)
○ optimizations, updates,
○ multi-level caches 
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