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This week

1. Lectures
o Shared Memory Multiprocessors (L4 today + L5 tomorrow 8h)
o Roofline Model (L6 Friday 8h)
2. Practice session #1 (Friday 10h)
o SMPs & Performance Metrics
o Exercises will be published tomorrow

3. Project
o Today is last day to propose a team and select three scenarios.
Tomorrow we will setup the final teams.
o If you have not submitted your preference, you will be assigned a
random team member and scenario

4. Small change in schedule
o Practice session #2 has been moved from Feb 19th (Wed) to Feb 18th
(Tue). Currently there is no lecture scheduled on Feb 19th



OUTLINE (Lectures 4+5)

Shared-memory parallel programming
Bus-based shared memory systems

o architectures

o coherence protocols

o coherence optimizations

o multi-level caches

Classification of Misses

Scalable shared memory systems



EXAMPLE: MATRIX MULTIPLY + SUM

sequential program:
sum = 0;
for (i=0;i<N;i++)
for (j=0;j<N;j++){
Cli,jl=0;
for (k=0;k<N;k++)
C[i.,jl = Cli,j] + A[i,K]"B[k,jl;
sum += CJi,j];
}
multiply matrices A[N,N] by B[N,N] and store result in C[N,N]
« add all elements of C[, ] and store in variable 'sum'

e OO N O W A WOWIN -

How to parallelize?



TWO TYPES OF INTER-PROCESSOR COMMUNICATION

* Implicitly via memory
- processors share some memory

- communication is implicit through loads
and stores
* need to synchronize

* need to know how the hardware interleaves
accesses from different processors

e Explicitly via messages (sends and receives)
* need to know the destination and what to send
« explicit message-passing statements in the code
 called “message passing”

Shared Memory

NO HYPOTHESIS ON THE RELATIVE SPEED OF PROCESSORS



SHARED MEMORY EXAMPLE: MATRIX MULTIPLY + SUM

SHARED-MEMORY PROGRAM
I* A, B, C, BAR, LV and sum are shared
[* All other variables are private
1a low = get_thread_num()*N/nproc; //0...nproc-1

1b hi = low + N/nproc; /Irows of A
1c mysum = 0; sum = 0; //A and B are in
2 for (i=low,i<hi, i++) //shared memory
3 for (j=0,j<N, j++}
4 Cli,jl=0;
3) for (k=0,k<N, k++)
6 C[i.jl = CIi,jl + Ali,k]"B[k,j;
//at the end matrix C is
7 mysum +=C]i,j]; //C is in shared memory
8 } N low
9 BARRIER(BAR); matrix C _pid=0 _ f,.
10 LOCK(LV); N bt
11 sum += mysum; - .F."..zf. -

12 UNLOCK(LV);



what extensions to the single-threaded program
are needed to execute this parallel version?

[*A, B, C, BAR, LV and sum are shared
[* All other variables are private
1a low = get_thread_num()*N/nproc; //0...nproc-1

1b hi = low + N/nproc; lIrows of A
1c mysum = 0; sum = 0; /IA and B are in
2 for (i=low,i<hi, i++) l/shared memory
3 for (j=0,j<N, j++)
4 Cli,jl = 0;
5 for (k=0,k<N, k++)
6 C[i.jl = Cli,jl + Ali,kI"BIk,]];
//at the end matrix C is
7 mysum +=C]i,j]; //C is in shared memory
8 }
9 BARRIER(BAR); Y
10 LOCK(LV); MEM
11 sum += mysum,;

12 UNLOCK(LV); dD d@ (35 éD

CPUs 7



what extensions to single-threaded CPU
are needed to execute this program?

Need to correctly communicate data, in timely fashion. Stores need to

be propagated to Loads:
o in the same thread, and

o across different threads
Today's lecture

Implement interconnect + caches for performance:

o private caches for fast access
o shared caches for global data (multithreading) and dynamic sharing of
cache space (multiprogrammed)

Need to provide constructs for synchronization (barriers and locks)
o Lecture 13

Need a method to create threads and to obtain thread numbers (this

is the domain of O/S)
o discussed partially in DAT400




BUS-BASED SHARED MEMORY SYSTEMS

Bus: broadcast-based interconnect medium

Memory Memory Memory
I I I

Bus or other broadcast-based interconnect
1 [ I 1 I I

b n Private Private Private
Bus or other broadcast-based nterconnect ache A e

® © ©® ® O ®

{a) Dance-hall multiprocessor architecture or SMP (c) SMP with private caches

Memory Memory Memory

Memory Memory Memory
Memory Memory Memory I T ]
| ] T Shared Shared Shared
] cache cache cache
Bus or other broadcast-based interconnect T T 1
1 1 [ Bus or other broadcast-based interconnect
Shared cache | | |
Private Private Private

ce__.° 38 B

{b) SMP with shared level 1 cache
{d) SMP with private caches and shared Level 2 cache

(a) conceptual — not practical; no cache

(b) shared L1 cache; no replication but higher hit latency than private (c)

(c) private L1 caches; lower latency but smaller cache capacity

(d) private L1 caches and shared L2; popular for chip multiprocessors (CMPs)

rest of discussion considers organization (c) and (d)



RECAP ON MULTI-LEVEL CACHES

. multi-level cache allocation policies

- inclusive vs exclusive vs non-inclusive

. write policies

- next slide

. hon-blocking

- continue servicing loads in the shadow of a miss

BLOCKING
CACHE

NON-BLOCKING
CACHE

2nd~4th Iw
3 hits
1st Iw 1st miss (200cycles) 2nd miss (200cycles)
—
< 1]
BLOCK SIZE =4 WORDS
’ CONSECUTIVE WORD
(a) Blocking cache ACCESSES
PSSS
<1 stiw  1st primary miss (200cycles) l‘l PSSS
2nd primariy miss (200cycles) ‘1l PSSS
Tttt‘ R > PSSS
1 t 3rd primariy miss (200cycles)
PSSS f t Tt 4th primariy miss (200cycles) Jl 1‘
4

PSSSPSSStTTT

PSSS

(b) Non-blocking cache with 16 MSHRs
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HOW TO HANDLE WRITES?

« WRITE THROUGH: write to next level on all writes
« combined with store buffer (SB) to avoid CPU stalls. SB holds individual STs
* simple, no inconsistency among levels.

CPU

Il accesses L1 L1 misses
] L2

All stores

e

Store Buffer (word address and data)

« WRITE-BACK: write to next level on replacement (reduces write traffic)
» with the help of a dirty bit and a write-back buffer. WB holds dirty cache lines
« writes happen in background on a miss only

All L1 misses
. accesses L1 L2
write-back

buffer(block address and data)

e ALLOCATION ON WRITE MISSES

« always allocate in write-back; design choice in write-through
» small caches often use WT + no-alloc to alleviate storage pressure



COHERENCE

in uniprocessors, a load must return the value of the latest

store in process order with the same address

o this is done through memory disambiguation (3.4.5) and management of
cache hierarchy.

coherence between |I/O traffic and cache must be enforced

o however, this is infrequent and software is informed

o some solutions: uncacheable memory, uncacheable ops, cache flushing

o also possible to pass I/O through cache

mem
x system (memory) bus
o

n I/0 bus

, I/0 processors
‘ main DMA
processor I/0 controllers, peripherals

12



COHERENCE

* in multiprocessors the coherence problem is pervasive,
performance critical and software is not informed
 sharing of data, thread migration and 1/O
e communication is implicit
 thus hardware must solve the problem
» coherence will be formally treated in lecture #14

e informal definition (for multiprocessors)

» a cache system is coherent if all processors, at any point in time,
have a consistent view of the last globally written value to each
location

.e. no processor can read an old value w, after w, has been
globally performed

performed := value at memory has been altered

13



CACHE COHERENCE

Memory

Memory

Memory

Bus or other broadcast-based interconnect

©

©

©

(a) Dance-hall multiprocessor architecture or SMP

Memory

Memory

|

Memory

|

Bus or other broadcast-based interconnect

|

Shared cache

®

©

(b) SMP with shared level 1 cache

which of these systems are more prone to suffer coherence problems?

©

Memory Memory Memory
| | 1
Bus or other broadcast-based interconnect

1 1
Private Private Private
cache cachs cache
(c) SMP with private caches
Memory Memory Memory
| [ I
Shared Shared Shared
cache cache cache
| | |
Bus or other broadcast-based interconnect
| 1 1
Private Private Private
cache cache cache

®

®

{d) SMP with private caches and shared Level 2 cache

those that can contain multiple copies of the same location: (c) and (d)
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< 384 GiB System DDR4, ~90 GB/s

IS CACHE COHERENCE A PROBLEM IN MODERN
PROCESSORS?

< 16 GiB On-Package MCDRAM, ~400 GB/s

MCDRAM PCle MCDRAM
CORE |CORE  CORE [CORE | CORE |CORE| |CORE [CORE |CORE|CORE |CORE |CORE
$ 1
[0 e oL = o = 12 14
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CORE [CORE| CORE |CORE |CORE|CORE| | CORE |CORE| |CORE|CORE| | CORE |CORE
L 1
L2 L2 L2 L2 L2 L2
MCDRAM MCDRAM

Intel Skylake

(SMP with private L1/L2 caches
and shared L3 cache)

Intel Knights Landing
(SMP with private caches)

YES: multiple cache
levels, replicated
L1&L2 caches

eDRAM Based Cache

Core Core GFX
L1 L1D|| LTI L1D|| LTI
............................ 11E A 11[ st
L2 L2 L2 caches
A
----------------------------------- ‘ I ooooon
L3
LLC - Last Level Cache (2MB/core)
eDRAM
.................................................................................................... f
i !
Other j o -
Devices System Agent 5 MC DDR
Tags
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Intel Next Generatiol

n Microarchitecture Code Name Skylake
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SNOOPING-BASED CACHE COHERENCE

 Basic idea
« Transactions on the bus are “visible” to all processors
» Bus interface can “snoop” (monitor) the bus traffic and take action when required
» To take action the “snooper” must check the status of the cache: competes with reqular loads

* Reduce cache controller congestion with a dual directory
—() Shoope

r

— DD contains a copy of the cache
$ directory
DD filters out bus request
E to avoid conflicts with the CPU

e Snooping can be done in the 2nd level cache (SLC)

» when there is inclusion, SLC filters out transactions to FLC (first level cache)
« SLC contains a bit indicating whether the block is in FLC

M snooper M) snooper

SLC filters out bus request
works because SLC is not
as busy as FLC

(in modern systems: SLC often called LLC := last level cache)



A SIMPLE PROTOCOL FOR WRITE-THROUGH CACHES

* To simplify assume no allocate on store misses
 all stores and load misses propagate on the bus
 stores may update or invalidate caches

» state diagram
» each cache is represented by a finite state machine
» imagine P identical FSMs working together, one per cache
* FSM represents the behavior of a cache w.r.t. a memory block
* not the cache controller!

BusWr/--
PrRd/--
PrWr/Bus BusRd/--
BusRd/-- BusWr/--
PrWr/BusWr
PrRd/BusRd

e PrRd/PrWr: Processor Read/Write; BusRd/BusWr: Bus Read/Write

e (Good: (almost) no new state (1 bit per block in cache)
e Bad: most blocks are not shared, all write requests launch bus transactions — generates

unnecessary write traffic!
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WRITE-BACK: MSI INVALIDATE PROTOCOL

BLOCK STATES:
o Invalid (I);

o Shared (S): one copy or more, memory is
clean;

o Modified (M): one copy, memory is stale
PROCESSOR REQUESTS

o PrRd or PrWr BusRdX/Flush
BUS TRANSACTIONS

o BusRd: requests copy with no intent to
modify

o BusRdX: requests copy with intent to modify
o BusUpgr: invalidate remote copies

BusRdX/--

write to shared block: use BusUpgr

flush: forward block copy to requester (memory copy is stale)

o memory should be updated at the same time
Writes to blocks in state M do not generate Bus activity!

Prive/
BusRdX

18



Exercise

Two processors P1 and P2 perform following series of Loads and Stores to
a memory block storing word A

P1: LDA STA
P2: LDA

» time

What are the coherence transitions and bus actions as performed by the
cache of P1 for the two protocols Valid-Invalid and MSI?

BusWr/--

PrRd/--

PrWr/Bus BusRd/--

BusRd/-- BusWr/--
PrWr/BusWr

PrRd/BusRd rWrf

BusUpgr Prive/

BusRdX/Flush BusRdX

Transitions are as follows:
VI (P1): I->V (BusRd), V->V (BusWr), --
MSI (P1): 1->S (BusRd), S->M (BusUpgr), M->S (Flush)

19



MESI PROTOCOL

problem with MSI invalidate protocol

o most of blocks are private--not shared (ex. multiprogrammed workloads)

o read miss (LD @A) followed by write (ST @A) causes two bus accesses (BusRd, BusWr)
add an exclusive state

o Exclusive (E): one copy, memory is clean

o use a Shared (S) line on bus to detect that the copy is unique

—BUsRdX/Flush
Prwr/BusRdX

BusRd/Flush

BusRdX/--
BusRsd/--

On a read miss go to E or S depending on the value returned by the Shared line.
Transition from E to M is silent: No extra Bus Access

o Could use BusUpgr in local transition from S to M

20



MOESI: A GENERAL CLASS OF PROTOCOLS

BusRd/

PrRd(SY

BusUpgr/— BusRd

BusRdX/Flush

MOESI can model (among others) MSI and MESI
adds notion of ownership of a cache block

BusUpgr/-
BusRdX/-

- E&M implicitly owner. O used for ownership of 'S’ blocks
owner supplies a copy of the block when another cache requests it (enables sharing
of dirty data, no Mem WB needed)

ownership is transferred to another cache or to memory when block is
invalidated/replaced (triggers WB)

21



Exercise

Two processors P1 and P2 perform following series of Loads and Stores to
a memory block storing address @A

P1: LDA STA
P2: LDA

» time

What are the coherence transitions and bus actions as performed by the
cache of P1 for the two protocols MESI and MOESI?

BusRdX/Flush Prwr/—
Prwr/BusRdX

BusRdX/--
BusRsd/--

BusRdX/--

PrRd(S)/BusRd

BusRd

PrRd(S)
BusRd

Transitions are as follows: SO
MESI: I->E (BusRd), E->M, M->S (Flush)
MOESI: I->E (BusRd), E->M, M->O (Flush)

BusUpgr/—
BusRdX/-

22



CACHE COHERENCE PROTOCOLS IN USE

Some vendors have provided indication of the protocols in use

AMDG64, ARMv8 (except Cortex-A9) use MOESI

intel64 uses MESIF (F = forwarding: similar to O but ownership transferred
to requester along with data reply. exploits temporal locality)

Intel itanium 2, ARM Cortex-A9 use MESI
others?

Cache coherence is an implementation detail (not part of the ISA). Hence
programmers do not require to understand it to develop correct programs.

But it can impact performance optimizations!

23



CACHE PROTOCOL OPTIMIZATIONS

producer-consumer sharing; e.g. one processor writes and others (say N
proc.) read the same data
o results in invalidation followed by N read misses

o can do better by letting one read miss bring block into all N caches — read snarfing (or
broadcast): load MB if data is in cache in state i

migratory sharing; processors read and modify same cache block — one at a
time
© common behavior in data access inside critical sections

O results in one coherence miss followed by an invalidation; the invalidation could be
saved.

O optimization: issue only read-exclusive (combined read and upgrade)
O needs a method to detect migratory sharing

| 12 13
LOCK(LV); sum += mysum;
sum += mysum,;
UNLOCK(LV); sUp
BusRdX sum += mysum,
sUp
sum += mysum;  BusRdX
tlme v sUp

BusRdX 24



EXAMPLE: MATRIX MULTIPLY + SUM

SHARED-MEMORY PROGRAM
I* A, B, C, BAR, LV and sum are shared
[* All other variables are private
1a low = get_thread_num()*N/nproc; //0...nproc-1

1b hi = low + N/nproc; /Irows of A
1c mysum = 0; sum = 0; //A and B are in
2 for (i=low,i<hi, i++) //shared memory
3 for (j=0,j<N, j++}
4 Cli,jl=0;
3) for (k=0,k<N, k++)
6 C[i.jl = CIi,jl + Ali,k]"B[k,j;
//at the end matrix C is
7 mysum +=C]i,j]; //C is in shared memory
8 } N low
9 BARRIER(BAR); matrix C _pid=0 _ f,.
10 LOCK(LV); N bt
11 sum += mysum; - 2._:3 -

12 UNLOCK(LV);

25



UPDATE-BASED PROTOCOLS

* update (instead of invalidate) block copies

* when sharing is high (eg producer-consumer) invalidate is inefficient

« if every written value is consumed, update protocols will outperform invalidate-based
protocols (shorter latency and less bandwidth)

e introduce a new bus transaction: BusUpdate

» BusUpdate is cheaper than BusRd: only updated words are transferred, not full memory
block (eg. 8 bytes vs 64 bytes)

« However if write runs are long (=many local writes before consumer reads) update is
less efficient than invalidate (particularly in cc-NUMA!)

Bandwidth trade-off (invalidate vs update):

« write-run of length N

« invalidate: Bandwidth = B(upgrade) + B(read miss)
« update: Bandwidth = N x B(update)

« assume: B(upgrade) = B(update)

update outperforms invalidate when
N <1 + B(read miss)/B(update)

26



MULTIPHASE CACHE PROTOCOLS

machine models so far have assumed
» single level of private caches
« “atomic” (non-pipelined) buses

a realistic model comprises
« a multi-level (private) cache hierarchy
» a split-transaction (pipelined) bus

Memory

Memory

14

I

Memory

L

Split-transaction bus

L

I

L2 cache

L2 cache

L

L1
cache

®

L

L1
cache

©

FIFO Request Buffers

&

L2 cache

I

L1
cache

©

(smooth speed differences, e.g. bursty traffic)
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TRANSIENT (NON-ATOMIC) CACHE STATES

Using ‘stable’ states (e.g. M S |) as an abstraction is too high-level to resolve races in

cache protocols. Transitions cannot happen atomically!

Example

« (Q: Two processors issue a bus upgrade to a block in state shared. When is the race
resolved?

« A: After bus arbitration

Transient states deal with race conditions that result from e.g. resource arbitration. They

are transient (as opposed to stable) since they exist only as long as the current transaction
IS In progress PR/~ PrWri-

e Sy

'%J/ \ TRANSIENT STATES
M) S—-M

\ / invalidat g
TR S S— upon invalidation, nee

’t BusRdX to update request from
N BusUpgr to BusRdX
SM |
/
BusUpgri— g T o
BusRdX/- PrRd/
BusRd Example of adding
transient states. Not
BusRd/~ exhaustive!

BusUpar/--
BusRdX/-

28



SPLIT-TRANSACTION BUS

e Split-transaction bus: pipelines a sequence of phases in a bus transaction; e.g.
request and response

e must divide transaction into subtransactions: adds additional latency (due to
arbitration of each subtransaction) but increases bandwidth:
o bus no longer occupied during full transaction
o can overlap multiple bus transactions
o trade-off latency vs bandwidth

e must balance pipeline stages to maximize throughput

e separation between request/response arbitration. Use address (or unique
transaction ID) to match flushed blocks with requests.

MSI
Request Phase b anuest WAORS) BusRd, BusUpgr, BusRdX
g arhitration tfransfer acknowledgment
R Ph Response Response Flush: (Memory — Cache)
esponse Fhase arbitration transfer TIME or (Cache — Cache)
g

29



MULTI-LEVEL CACHE ISSUES

Adding another level of private cache offers some benefits

» shorter miss penalty to next level
» can filter out snoop actions to first level if inclusion is maintained

If not maintained, snoop result cannot be reported until first level cache has been checked.
Increases contention on FLC accesses

Memory Memory

1 I

GC ion bus

TR}

12 cthe inclusion chacn}
/
I
H |
\4 I X
]
Wi . . L1
cache | NO inclusion cache




MULTI-LEVEL CACHE ISSUES

inclusion is not always easy to maintain

« to maintain inclusion need to evict a block at level
1 when the block is evicted at level 2 (called
“‘inclusion victims”)

» checking L1 on each L2 replacement may lock
out processor

write policy is important to reduce snoop
overhead

« if level 1 is write-back level 2’s copy is
inconsistent and dirty miss requests must be
serviced by level 1 (adds latency)

« if level 1 is write-through and inclusion is
maintained, level 2 can always respond to miss
requests from other processors; can reduce
overhead, but increases write traffic

Memory

Memory

14

I

Memory

L

Split-transaction bus

L

I

L2 cache

L2 cache

8

L

L1
cache

L1
cache

®

®

&

L2 cache

I

L1

cache

®
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SUMMARY

e PARALLEL PROGRAMMING MODELS
o shared memory vs message passing

e BUS-BASED SHARED MEMORY SYSTEMS (I)

O

O
O
O

coherence

snoopy cache protocols (VI, MSI, MESI, MOESI)
optimizations, updates,

multi-level caches
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