LECTURE 5

MULTIPROCESSOR
SYSTEMS (II)

Miquel Pericas
EDA284/DIT361 - 2019/2020



What's cooking

1. Lectures
o Today: Shared memory multiprocessors
o Friday 8h: Roofline Model
m Wwill check 9h is doable, TBA via Canvas

2. Practice session Friday 10h
o Problems 1.2 (a-e), 5.2, 2019 Re-exam Problem 3
o Try to solve the problems ahead of the session!

3. EDA284 project
o Teams and selected topics are now in Canvas
o https://chalmers.instructure.com/courses/8752/files/folder/Project#
o Please contact your partners ASAP and make sure that they are
available!



https://chalmers.instructure.com/courses/8752/files/folder/Project#

Why are update protocols not popular?
Follow up on yesterday's discussion:

For multi-threaded applications, choice of write-update vs write-invalidate is governed by
(producer-consumer) sharing amount vs length of write runs on shared data
e write-update is lower cost as long as written data is consumed often

For single-threaded workloads a problematic case arises. Why? Because of O/S-initiated
process migration (e.g., to balance load across processors)

BusUpdate
L1 cache PA data PA data PA data
/ 3 PrWr
O/S migrates process A from P1 to P2 After migration keep on updating P1 cache

but there are no consumers!

Remember: most workloads are single-threaded. Even MT workloads are occasionally
migrated. This is my guess as to why update-protocols are not popular




OUTLINE (Lectures 4+5)

e Classification of Misses
e Scalable shared memory systems



TRUE vs FALSE SHARING

 Assume that a block is shared by two processors
 the block contains two words, word1 and word?2

 True sharing: the two processors access the same word

FINE GRAIN SHARING: COARSE GRAIN SHARING
P1 P2 P1 P2
w1 w1
T R1
w1 R1
wi w1
w1 w1
R1 w1
— 1
UPDATE PROTOCOL IS BETTER INVALIDATE PROTOCOL BETTER

true sharing communicates values — essential




TRUE vs FALSE SHARING

FINE GRAIN SHARING: COARSE GRAIN SHARING
P1 P2 P1 P2
w1 w1
T R1 R1
w1 R1
w1 w1
w1 w1
R1 w1
j— 1
UPDATE PROTOCOL IS BETTER INVALIDATE PROTOCOL BETTER

e False sharing: the two processors access different words in
the block

o if P1 accesses W1 and P2 accesses W2. then sharing is useless
o Write invalidate causes false sharing misses
o Write update causes false sharing updates to dead copies

False sharing does not communicate values.
useless (non-essential), pure overhead




ESSENTIAL VS NON-ESSENTIAL MISSES

Example: assume A,B and C belong to same block (B1) and D to another

MISS CLASSIFICATION

Time step

Processor 1

Processor 2

Processor 3

ro

Ra

COLD MISS

COLD MISS

Re COLD MISS
Rp (evict block B1) COLD MISS

TRUE SHARING MISS

FALSE SHARING MISS
Re REPLACEMENT MISS

4Cs: cold, true sharing (coherence) and replacement (conflict, capacity) are

essential; whereas false sharing misses are non-essential; can be ignored

A transferred word is essential if it carries a new value into a cache, and the value is

accessed by the attached processor during the lifetime of the word in the cache



CLASSIFICATION OF MISSES

First access
to the block?

Was the block
replaced from
cache?

Was any
read word
written by another,
processor?

False-sharing
miss

YES
Cold miss
comprises both
/ capacity misses and
Replacement conflict misses
miss
YES
True-sharing

miss

- coherence misses




SCALABLE CACHE COHERENCE SOLUTIONS

Bus-based multiprocessors are inherently non-scalable
1) Bus BW capped by product of bus wires and clock rate
2) length & load on wires grows with #nodes (latencyt BW|)
3) memory access latency increases

General (scalable) interconnect network

| ]
N.1. | N.I.: Network Interface N1

=% T

M c | C: cache M cC

M: Memory
module

cache-coherent, Non-Uniform Memory Architectures (cc-NUMA):

e distribute main memory across nodes to leverage locality (based on physical
address bits; at page granularity, mapping can be tuned by O/S)
e use a general (scalable) interconnect to accommodate BW

snoopy (broadcast) based cache protocols are not scalable
scalable cache protocols need to keep track of sharers

NODE




DIRECTORY-BASED PROTOCOLS

e Each memory block has a Home := the node where the block resides (in DRAM)
e Adirectory entry associated with the memory block points to nodes with a copy of
the block (remote nodes) + tracks the state of the block

| INTERCONNECTION NETWORK |

ST = = 'I'I

N.I.: Network Interface
Dir: DIRECTORY

dlr‘fy bit(d)
pli] = 1 => proc i has
I N A I copy
[ ] I ..... | | - DATA BLOCK d = 1 => copy is dirty
I (modified).
\ In this case only

P prese‘nce bits (p[il) one p[i] is set



PRESENCE-FLAG VECTOR SCHEME

NODE

EXAMPLE

0. o, %

General (scalable) interconnect network

M C

M: Memory
module

®

C: cache

N.I. | N.I.: Network Interface

N.L

Block PFV D
0 0110..1 )0
1 0100..0 | 1
| : :
' 1 I
N 1111...1 ] 0 ‘

Block 1 is cached by processor 2 only and is dirty
Block N is cached by all processors and is clean
Block 0 is cache by a subset of processors and is clean




cc-NUMA PROTOCOLS

» based on snooping protocols (MSl-invalidate, MSl-update)
- protocol agents:

 home node (H): node where the memory block and its directory entry reside
e local node (L): node making the request

e dirty node (D): node holding the latest, modified copy

» shared node(s) (S): nodes holding a shared copy

INTERCONNECTION NETWORK

home may be the same node as requester or dirty
note: busy bit per entry



MSI INVALIDATE PROTOCOL IN cc-NUMAs

req(1) forward(2)
BusRd RemRd
Flush Flush
reply(4) reply(3)

READ MISS ON A BLOCK DIRTY REMOTE

WRITE MISS ON A BLOCK SHARED BY OTHERS

note: in MSl-update the transitions are the same except that updates are sent
instead of invalidations

Multiple concurrent transactions are avoided by busy bit:
Home node is central arbiter that serializes all requests to a memory block!



Coherence Transitions




REDUCING LATENCIES IN DIRECTORY PROTOCOLS

2:RemRd 2d-InvRq
1:BusRd 1:BusUpgr 2a:UpgrAck
3b:RemAck 4:UpgrCompl
L R L RN
—

3a: Flush 3a:invAck

3b:InvAck

3c:InvAck
(a) BusRd transaction (b) BusUpgr transaction

Baseline directory protocol invokes four hops (in worst case) on a remote miss.
Three-hop protocol is also possible:

1. requestis sent to home (H)

2. home (H) redirects the request to remote(s) (R)

3. remote (R) responds to local (L) and notifies home (e.g. BusRd), or
4. local (L) notifies home (off the critical access path) (e.g. BusUpqgr)

proposed by Stanford DASH Multiprocessor (late 1980s)



MEMORY REQUIREMENTS OF DIRECTORY PROTOCOLS

Memory requirement of a Presence-Flag Vector protocol
* N processors (nodes)

M memory blocks per node

B block size

size of directory = M x N? (one directory at each processor)

Directory scales with the square of number of processors; a scalability
concern!

Mem. overhead: size(dir)/(size(memory) + size(dir)) = N/ (N+B)
Eg: 128 nodes, block size 16 bytes. What is the overhead?

Mem. overhead = 128 / (128 + 128) = 50%!



REDUCING MEMORY REQUIREMENTS OF DIRECTORY
PROTOCOLS

Option 1: limited pointer protocol
maintain j pointers (each log N bits) instead of N as in presence flag vectors
if pointer overflows, resort to broadcast
good if sharing is limited

Example: Mem. overhead for limited pointer scheme:
MxNxilogN/(MxNxB+MxNx ilogn) =ilogN/(B+i logN)

Option 2: coarse vector scheme
presence flags identify groups of processors rather than individual nodes.

Eg, each bit can identify clusters of four processors. Within the cluster, a
broadcast protocol can be used.



Hybrid Scheme

e (Coarse-grain vector can be combined with limited pointer

scheme

— start by using limited pointer scheme. If overflow, switch to coarse
vector scheme

— similar option is used in SGI Origin 2000

e E.g. 32-bit vector, 128 nodes
- log,(128) = 7 bits, can hold four pointers (4x7 = 28 bits)
— when fifth pointer is about to be allocated, switch to coarse scheme

- 128 nodes / 32 bits = 4 nodes per bit, i.e can track 32 clusters of 4
nodes



OTHER SCALABLE PROTOCOLS

Alternative:
e instead of memory, make number of entries proportional to cache size

Directory cache

e Most blocks are private or never used at all! Allocate directory entry only
when a memory block is cached in a new node

e Directory cache overhead is proportional to cache size instead of main
memory size (leverages locality)

e \When an entry is replaced, remotes need to be invalidated



HIERARCHICAL SYSTEMS

Inter-cluster interconnect

Intra-cluster interconnect

1 \‘ M NI
O 6

&

e 6

Instead of flat configuration, form clusters with multiple
processors in a hierarchical organization

Requests are first serviced intra-cluster. If not possible, then
the inter-cluster scheme is used.

Renewed interest due to chip-multiprocessors



HIERARCHICAL SYSTEMS

Inter-cluster interconnect

Intra-cluster interconnect

M NI, " 1. \ M NI

OO 6|k © e ©

Coherence options:

intra-cluster coherence: snoopy/directory

inter-cluster coherence: snoopy/directory

CMPs with large inclusive LLCs can filter external snoops
intra-CMP coherence via bit vector (PFV) directory held
directly in inclusive LLC blocks is popular option

tradeoffs affect memory overhead and performance to
maintain coherence



Example

e 16-byte memory blocks, 128 node system with directory based
protocol
e traditional directory overhead is 128 / (128 + 128) = 50%
e \What is the memory overhead if:
o 8 processors per cluster,
o intra-cluster coherence uses snoopy protocol
o inter-cluster coherence uses directory protocol?

DIR C—

DIR

O
000

O
000
000

DIR C—

Scalable Interconnect




LLC extension for coherence

System model; additions for coherence are shaded.

Block in private cache

private cache private cache private cache private cache
A: [M,

~2bits ~B4 bits  ~512bits i l

Interconnection network >

Block in shared cache ‘I I

state tag block data

tracking :' """""""""""""""""""""""" "
bits state tag block data ' Bank O Bank 1 Bank 2 Bank 3 ]

+ 1

1 A: [{1000} ™ 1

k. : B: [{0110} S :

~1 bit ~2bits ~64 bits ~512 bits ; :
percore d o !

Shared cache
(banked by block address)
State — Meaning

M (Modified) — Read/write permission
S (Shared) — Read-only permission
I (Invalid) — No permissions

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. 2012. Why on-chip cache coherence is here to stay. Commun. ACM 55, 7 (July 2012), 78-89.
DOI:https://doi.org/10.1145/2209249.2209269



Putting it all together:

Zen organized in groups of cores called
a CPU Complex (CCX).

Each CCX consists of four cores
connected to an L3.

L3 cache is an 8 MiB 16-way set
associative victim cache and is mostly
exclusive of the L2

The L3 cache is made of four slices
(providing 2 MiB L3 slice/core) organized
by low-order address interleaved.

First fill up the L2 and and spillover to L3

Core

Core

Zen

90lIS $€71

80lIS $€71

90l|S $€71

30IIS $€71

Core

Core

There may be one or more CCXs joined

together. —

The separate CCX communicate with

each other via Infinity Fabric (IF)

Multiprocessors can also be built via IF

(Global Memory Interconnect) /l’ e

Distributed MOESI cache coherence

Directory (no extra details published...)

PQe




SGI NUMALINK
SGI Altix 3000

NODE 0 NODE 1
ddr SORAM da SDRAM
Momoty > < Memoy
WK oy
wiS: 3% wth 3V
ih4GB,. - = ~ 1 G /s
Y XN i
GaGRs 24GH's GAGEs 24GH's e 5
Il duplex Al duplex il duplex Ll duplex Best of Show

~LinuxWorld 2003

+ A node contains up to 4 Itanium 2 processors and 32GB of memory
+ Network is SGI’'s NUMAIink, the NUMAflex interconnect technology.
+ Uses a mixture of snoopy and directory-based coherence

« Up to 512 processors that are cache coherent (global address space
is possible for larger machines) (c) James Demmel & Horst Simon

how much can we scale? numalink latencies are not negligible (~us)
larger systems typically use distributed memory with message passing



SUMMARY

e Classification of misses
e Scalable cache coherence protocols

e Hierarchical Systems



