
LECTURE 5

MULTIPROCESSOR
SYSTEMS (II)

Miquel Pericàs
EDA284/DIT361 - 2019/2020

1

What's cooking

1. Lectures
○ Today: Shared memory multiprocessors
○ Friday 8h: Roofline Model

■ will check 9h is doable, TBA via Canvas

2. Practice session Friday 10h
○ Problems 1.2 (a-e), 5.2, 2019 Re-exam Problem 3
○ Try to solve the problems ahead of the session!

3. EDA284 project
○ Teams and selected topics are now in Canvas
○ https://chalmers.instructure.com/courses/8752/files/folder/Project#
○ Please contact your partners ASAP and make sure that they are

available!

2

https://chalmers.instructure.com/courses/8752/files/folder/Project#

Why are update protocols not popular?
Follow up on yesterday's discussion:

For multi-threaded applications, choice of write-update vs write-invalidate is governed by
(producer-consumer) sharing amount vs length of write runs on shared data

● write-update is lower cost as long as written data is consumed often

For single-threaded workloads a problematic case arises. Why? Because of O/S-initiated
process migration (e.g., to balance load across processors)

P1 P2

PA data PA data

After migration keep on updating P1 cache
but there are no consumers!

BusUpdate

PrWr

Remember: most workloads are single-threaded. Even MT workloads are occasionally
migrated. This is my guess as to why update-protocols are not popular

P1 P2

O/S migrates process A from P1 to P2

PA dataL1 cache

CPUs

OUTLINE (Lectures 4+5)

● Shared-memory parallel programming
● Bus-based shared memory systems

○ architectures
○ coherence protocols
○ coherence optimizations
○ multi-level caches

● Classification of Misses
● Scalable shared memory systems

4

TRUE vs FALSE SHARING

• Assume that a block is shared by two processors
• the block contains two words, word1 and word2

• True sharing: the two processors access the same word

true sharing communicates values – essential

TRUE vs FALSE SHARING

● False sharing: the two processors access different words in
the block
○ if P1 accesses W1 and P2 accesses W2. then sharing is useless
○ Write invalidate causes false sharing misses
○ Write update causes false sharing updates to dead copies

False sharing does not communicate values.
useless (non-essential), pure overhead

ESSENTIAL VS NON-ESSENTIAL MISSES

COLD MISS

COLD MISS

TRUE SHARING MISS

COLD MISS

REPLACEMENT MISS

COLD MISS

FALSE SHARING MISS

Example: assume A,B and C belong to same block (B1) and D to another

MISS CLASSIFICATION

● 4Cs: cold, true sharing (coherence) and replacement (conflict, capacity) are
essential; whereas false sharing misses are non-essential; can be ignored

● A transferred word is essential if it carries a new value into a cache, and the value is
accessed by the attached processor during the lifetime of the word in the cache

comprises both
capacity misses and
conflict misses

CLASSIFICATION OF MISSES

coherence misses

SCALABLE CACHE COHERENCE SOLUTIONS
Bus-based multiprocessors are inherently non-scalable
1) Bus BW capped by product of bus wires and clock rate
2) length & load on wires grows with #nodes (latency↑ BW↓)
3) memory access latency increases

cache-coherent, Non-Uniform Memory Architectures (cc-NUMA):
● distribute main memory across nodes to leverage locality (based on physical

address bits; at page granularity, mapping can be tuned by O/S)
● use a general (scalable) interconnect to accommodate BW

snoopy (broadcast) based cache protocols are not scalable
scalable cache protocols need to keep track of sharers

DIRECTORY-BASED PROTOCOLS

● Each memory block has a Home := the node where the block resides (in DRAM)
● A directory entry associated with the memory block points to nodes with a copy of

the block (remote nodes) + tracks the state of the block

PRESENCE-FLAG VECTOR SCHEME

EXAMPLE
• Block 1 is cached by processor 2 only and is dirty
• Block N is cached by all processors and is clean
• Block 0 is cache by a subset of processors and is clean

cc-NUMA PROTOCOLS

• based on snooping protocols (MSI-invalidate, MSI-update)
• protocol agents:

• home node (H): node where the memory block and its directory entry reside
• local node (L): node making the request
• dirty node (D): node holding the latest, modified copy
• shared node(s) (S): nodes holding a shared copy

home may be the same node as requester or dirty
note: busy bit per entry

MSI INVALIDATE PROTOCOL IN cc-NUMAs

note: in MSI-update the transitions are the same except that updates are sent
instead of invalidations

Multiple concurrent transactions are avoided by busy bit:
Home node is central arbiter that serializes all requests to a memory block!

BusRd

Flush

RemRd

Flush

BusUpgr

InvRq

UpgrAck
InvAck

InvRq

InvAck

L

L

Coherence Transitions

REDUCING LATENCIES IN DIRECTORY PROTOCOLS

Baseline directory protocol invokes four hops (in worst case) on a remote miss.
Three-hop protocol is also possible:
1. request is sent to home (H)
2. home (H) redirects the request to remote(s) (R)
3. remote (R) responds to local (L) and notifies home (e.g. BusRd), or
4. local (L) notifies home (off the critical access path) (e.g. BusUpgr)

proposed by Stanford DASH Multiprocessor (late 1980s)

MEMORY REQUIREMENTS OF DIRECTORY PROTOCOLS

Memory requirement of a Presence-Flag Vector protocol
• N processors (nodes)
• M memory blocks per node
• B block size

size of directory = M x N2 (one directory at each processor)
● Directory scales with the square of number of processors; a scalability

concern!
● Mem. overhead: size(dir)/(size(memory) + size(dir)) = N / (N+B)

Eg: 128 nodes, block size 16 bytes. What is the overhead?

Mem. overhead = 128 / (128 + 128) = 50%!

REDUCING MEMORY REQUIREMENTS OF DIRECTORY
PROTOCOLS

Option 1: limited pointer protocol
● maintain i pointers (each log N bits) instead of N as in presence flag vectors
● if pointer overflows, resort to broadcast
● good if sharing is limited

Example: Mem. overhead for limited pointer scheme:

M x N x i log N /(M x N x B + M x N x i log n) = i log N / (B + i log N)

Option 2: coarse vector scheme
● presence flags identify groups of processors rather than individual nodes.
● Eg, each bit can identify clusters of four processors. Within the cluster, a

broadcast protocol can be used.

Hybrid Scheme

● Coarse-grain vector can be combined with limited pointer
scheme
− start by using limited pointer scheme. If overflow, switch to coarse

vector scheme
− similar option is used in SGI Origin 2000

● E.g. 32-bit vector, 128 nodes
− log2(128) = 7 bits, can hold four pointers (4x7 = 28 bits)
− when fifth pointer is about to be allocated, switch to coarse scheme
− 128 nodes / 32 bits = 4 nodes per bit, i.e can track 32 clusters of 4

nodes

OTHER SCALABLE PROTOCOLS

Alternative:
● instead of memory, make number of entries proportional to cache size

Directory cache
● Most blocks are private or never used at all! Allocate directory entry only

when a memory block is cached in a new node
● Directory cache overhead is proportional to cache size instead of main

memory size (leverages locality)
● When an entry is replaced, remotes need to be invalidated

HIERARCHICAL SYSTEMS

● Instead of flat configuration, form clusters with multiple
processors in a hierarchical organization

● Requests are first serviced intra-cluster. If not possible, then
the inter-cluster scheme is used.

● Renewed interest due to chip-multiprocessors

HIERARCHICAL SYSTEMS

Coherence options:
● intra-cluster coherence: snoopy/directory
● inter-cluster coherence: snoopy/directory
● CMPs with large inclusive LLCs can filter external snoops
● intra-CMP coherence via bit vector (PFV) directory held

directly in inclusive LLC blocks is popular option

tradeoffs affect memory overhead and performance to
maintain coherence

Example
● 16-byte memory blocks, 128 node system with directory based

protocol
● traditional directory overhead is 128 / (128 + 128) = 50%
● What is the memory overhead if:

○ 8 processors per cluster,
○ intra-cluster coherence uses snoopy protocol
○ inter-cluster coherence uses directory protocol?

D
R

A
M

D
R

A
M

D
R

A
M

DIR DIR DIR

Scalable Interconnect

LLC extension for coherence

Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. 2012. Why on-chip cache coherence is here to stay. Commun. ACM 55, 7 (July 2012), 78–89.
DOI:https://doi.org/10.1145/2209249.2209269

Putting it all together: Zen
● Zen organized in groups of cores called

a CPU Complex (CCX).
● Each CCX consists of four cores

connected to an L3.
● L3 cache is an 8 MiB 16-way set

associative victim cache and is mostly
exclusive of the L2

● The L3 cache is made of four slices
(providing 2 MiB L3 slice/core) organized
by low-order address interleaved.

● First fill up the L2 and and spillover to L3
● There may be one or more CCXs joined

together.
● The separate CCX communicate with

each other via Infinity Fabric (IF)
● Multiprocessors can also be built via IF

(Global Memory Interconnect)
● Distributed MOESI cache coherence

Directory (no extra details published...)

SGI NUMALINK

(c) James Demmel & Horst Simon

how much can we scale? numalink latencies are not negligible (~μs)
larger systems typically use distributed memory with message passing

SUMMARY

● Classification of misses

● Scalable cache coherence protocols

● Hierarchical Systems

