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What's cooking

1. Lectures 
○ Today: Intro to Roofline Model 
○ Next week: Core Multithreading and Lab Intro (Tue 9h), Chip 

Multiprocessors (Wed 8h) + Lab session on Friday

2. Practice session (today ~10h)

○ Problems 1.2 (a-e), 3.27, 5.2, 2019 Re-exam Problem 3, 

3. EDA284 project
○ Finalized teams and selected topics are now in Canvas
○ https://chalmers.instructure.com/courses/8752/files/folder/Project#
○ Remember to contact your partners ASAP and make sure that they are 

available for the project!
○ Detailed instructions on the submission will be published soon
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OUTLINE (Lecture 6)

● Performance Modeling

● DRAM Roofline

● Hierarchical Roofline Model
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Acknowledgements

This presentation is based on materials by Samuel Williams, Computational Research 
Division, Lawrence Berkeley National Lab, in particular the following video lecture: 
https://www.youtube.com/watch?v=8h3f3E-Oq5A
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Why Use Performance Models or Tools?

▪ Identify performance bottlenecks

▪ Motivate software optimizations

▪ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

▪ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the 
computational needs of today’s applications.

Amdahl's law

Peak (Fl)ops, Peak BW
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Performance Models / Simulators

▪ Historically, many performance models and simulators tracked 
latencies to predict performance (i.e. counting cycles)

• e.g. Gem5 (EDA284 Labs) 

▪ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)

• HW stream prefetching (hardware speculatively loads data)

• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

▪ Effective latency hiding has resulted in a shift from a latency-limited 
computing regime to a throughput-limited computing regime

• Depending on the use case, latency or throughput are main goals

• Latency: Execution Time, Time to solution

• Throughput: Requests per second, Multiprogrammed workloads (cloud), etc
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Roofline Model
▪ The Roofline Model is a 

throughput-oriented performance 
model…
• Tracks rates not times

• Augmented with Little’s Law

(concurrency = latency*bandwidth) 

• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

▪ Components:
• Machine Characterization

(realistic performance potential of the system)

• Application Characterization 

(compute and memory needs)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/ro
ofline
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Simplified (DRAM) Roofline

▪ One could hope to always attain peak 
performance (Flop/s)

▪ However, finite locality (reuse) and 
bandwidth limit performance.

▪ Consider idealized processor/caches

▪ Plot the performance bound using 
Arithmetic Intensity (AI) as the x-axis…
• AI = Flops / Bytes presented to DRAM 

• Attainable Flop/s = min(peak Flop/s,  AI * peak GB/s ) 

• Log-log scale makes it easy to represent whole range

• Kernels with AI less than machine balance are 
ultimately DRAM bound (we’ll refine this later…)

Peak Flop/s
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Roofline Example #1
• Typical machine balance is 5-10 flops 

per byte…
• 40-80 flops per double to exploit compute capability

• Artifact of technology and cost

• Unlikely to improve

• huge amount of reuse is needed to achieve peak flops

▪ Consider STREAM Triad…

• 2 flops per iteration

• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

• AI = 0.083 flops per byte == Memory bound

Peak Flop/s
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TRIAD

Gflop/s ≤ AI * 
DRAM GB/s#pragma omp parallel for

for(i=0;i<N;i++){
  Z[i] = X[i] + alpha*Y[i];
}

0.083
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Roofline Example #2
▪ Conversely, 7-point (3D) stencil…

▪ 7 flops

▪ 8 memory references (7 reads, 1 store) per point

▪ Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate

Peak Flop/s
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7-point
Stencil

Gflop/s ≤ AI * DRAM 
GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
  for(j=1;j<dim+1;j++){
    for(i=1;i<dim+1;i++){
      int ijk = i + j*jStride + k*kStride;
      new[ijk] = -6.0*old[ijk    ]
                + old[ijk-1      ]
                + old[ijk+1      ]
                + old[ijk-jStride]
                + old[ijk+jStride]
                + old[ijk-kStride]
                + old[ijk+kStride];
}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44
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Think: how much "new" data is required by the application/ 
kernel/loop and how many ops are performed on the data



Hierarchical Roofline
▪ Real processors have multiple levels of memory

• Registers

• L1, L2, L3 cache

• MCDRAM/HBM (KNL/GPU device memory)

• DDR (main memory)

• NVRAM (non-volatile memory)

▪ Each level loads a smaller subset of data (caches filter locality)
▪ Unique data movements imply unique AI’s

▪ Moreover, each level will have a unique bandwidth (machine characteristic)

MCDRAM 
HBM DRAM

11



DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline

▪ Construct superposition of the 
multiple Rooflines…
▪ Measure a bandwidth and AI for 

each level of memory

• Although a given 
application/kernel/loop may have 
multiple AI’s and multiple bounds 
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum
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Hierarchical Roofline

Peak Flop/s
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▪ Construct superposition of the 
multiple Rooflines…
▪ Measure a bandwidth and AI for 

each level of memory

• Although a given 
application/kernel/loop may have 
multiple AI’s and multiple bounds 
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum
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▪ Construct superposition of the 
multiple Rooflines…
▪ Measure a bandwidth and AI for 

each level of memory

• Although a given 
application/kernel/loop may have 
multiple AI’s and multiple bounds 
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum

Hierarchical Roofline
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▪ Construct superposition of the 
multiple Rooflines…
▪ Measure a bandwidth and AI for 

each level of memory

• Although a given 
application/kernel/loop may have 
multiple AI’s and multiple bounds 
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum



Data, Instruction, Thread-Level Parallelism…
▪ We have assumed one can attain 

peak flops with high locality.

▪ In reality, this is premised on 
sufficient…
• Use special instructions (e.g. fused multiply-add)

• Vectorization (16 flops per instruction)

• unrolling, out-of-order execution 

• OpenMP across multiple cores

▪ Without these:
• Peak performance is not attainable

• Some kernels can transition from memory-bound 
to compute-bound

• DRAM bandwidth is often tied to DLP and TLP 
(single core can’t saturate BW w/scalar code)

Peak Flop/s

No FMA

No vectorization
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Lack of DLP pulls 
performance 
below DDR 

Roofline
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How to: Machine Characterization and 
Application Characterization (AI)?

● Machine Characterization: via microbenchmarks to measure BW at each 
level and max FLOPS (https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/software/ert/)

● Application Characterization: measure AI via performance counters. But be 
careful:

✘ Flop Counters can be broken/missing in production processors

✘ Counting Loads and Stores doesn’t capture cache reuse while counting cache 
misses doesn’t account for prefetchers.

✘ DRAM counters (Uncore PMU) might be accurate, but…
● are privileged and thus nominally inaccessible in user mode

● may need vendor and center approved OS/kernel changes

● Alternatively: use combination of software instrumentation (software Flop counters) 
and LLC/DRAM counters
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For the EDA284 project: Think about algorithmic intensity, i.e. FLOPS, vectorization, 
parallelism, bytes and memory access patterns; and perform a pencil & paper roofline 

analysis of your scenario (algorithm) and proposed computer architecture.



There are two Major Roofline Formulations:

▪ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…
• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore 

Architectures”, CACM, 2009 
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of flops and the memory intercepts (superposition of original, 

single-metric Rooflines)

▪ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture 

Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a 

lower one at constant AI

▪ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand 

the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor
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SUMMARY

● Performance Modeling

● DRAM Roofline

● Hierarchical Roofline

For more details see the youtube link on slide #4 and 2 papers in previous slide
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