LECTURE 6

ROOFLINE MODEL

Miquel Pericas
EDA284/DIT361 - 2019/2020

What's cooking

1. Lectures
o Today: Intro to Roofline Model
o Next week: Core Multithreading and Lab Intro (Tue 9h), Chip

Multiprocessors (Wed 8h) + Lab session on Friday

2. Practice session (today ~10h)

o Problems 1.2 (a-e), 3.27, 5.2, 2019 Re-exam Problem 3,

3. EDA284 project

@)

©)

©)

Finalized teams and selected topics are now in Canvas
https://chalmers.instructure.com/courses/8752/files/folder/Project#

Remember to contact your partners ASAP and make sure that they are
available for the project!
Detailed instructions on the submission will be published soon

https://chalmers.instructure.com/courses/8752/files/folder/Project#

OUTLINE (Lecture 6)

e Performance Modeling
e DRAM Roofline

e Hierarchical Roofline Model

Acknowledgements

This presentation is based on materials by Samuel Williams, Computational Research

Division, Lawrence Berkeley National Lab, in particular the following video lecture:
https://www.youtube.com/watch?v=8h3f3E-Oq5A

https://www.youtube.com/watch?v=8h3f3E-Oq5A

Why Use Performance Models or Tools?

|dentify performance bottlenecks

Amdahl's law

Motivate software optimizations

Determine when we’re done optimizing

* Assess performance relative to machine capabilities Peak (Fl)ops, Peak BW

* Motivate need for algorithmic changes

Predict performance on future machines / architectures
* Sets realistic expectations on performance for future procurements

* Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

Performance Models / Simulators

Historically, many performance models and simulators tracked

latencies to predict performance (i.e. counting cycles)
 e.g. Gem5 (EDA284 Labs)

The last two decades saw a number of latency-hiding techniques...
* Qut-of-order execution (hardware discovers parallelism to hide latency)

* HW stream prefetching (hardware speculatively loads data)
* Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

* Depending on the use case, latency or throughput are main goals

e Latency: Execution Time, Time to solution

 Throughput: Requests per second, Multiprogrammed workloads (cloud), etc

Roofline Model

= The Roofline Model is a
throughput-oriented performance
model...

* Tracks rates not times

CRD s PERFORMANCE AND ALGORITHMS RESEARCH MEMBERS RESEARCH PUBLICATIONS
| —
Home » Performance and Algorithms Research » Research » Roofiine-

Performance and Algorithms Research

o awp e Roofline Performance Model
e Augmented with Little’s Law RESEARGH

Roofline is a visually intuitive model created by Samuel Williams that is used to bound the performance of various numerical
Ressarch methods and operations running on multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak
- * . Ao estimates, the model can be used to assess the quality of attained by locality, and different
(concurrency = latency*bandwidth) oot et it wi s o Sl T e

e and inherent pe limitations.

EDGAR
. ExaBiome .
* Independent of ISA and architecture e Introduction
Introduction The Roofline model is oriented around the interplay between application data locality, data bandwidth, and computational throughput. Each of these

o topics are further refined and discussed here. Arithmetic Intensity The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic
oftware

. 1 Intensity is the ratio of total floating-point operations to total data movement (bytes). A BLAS-1 vector-vector increment { x[il+=y{i]) would have a very
(applies to CPUs, GPUs, Google TPUs", etc...) (o e ey o 0041 4 FLORS ..

Publications
e Software

S We have created, collaborated, and leveraged, on a number of tools to affect Roofline modeling. Broadly speaking, these tools implement a subset of
CiDAC4

. machine application ion, cache simulation, and bottleneck identification. Moreover, these tools can trade performance
| | O l I I p O I I e l l S SciDAC3 overhead for accuracy allowing users to commence with rough high-level characterization and proceed to detailed analysis on key.
L]

X-SWAP « Empirical Roofline Tool (ERT)

Previous Projects
TOP500

e Machine Characterization e

« NVIDIA NVProf / NSight

« Roofline Visualizer

« LIKWID

(realistic performance potential of the system) - soenTune

People

Anumber of researchers have and continue to contribute to the Roofline effort at LBL Samuel Williams Charlene Yang Khaled Ibrahim Nan Ding

° A p p | | cat | on C h aracter | zat | on Thorsten Kurth Doug Doerfle Yunsong Wang Jonathan Madsen Jack Desiippe Leonid Ofiker Terry Ligocki Brian Van Straaien Matthew Cordery Linda

Lo

Publications

(com p u te an d memo ry nee d S) The following represents a core list of Roofiine-related publications. They can provide a more in-depth discussion of the theory, application, and

nuances associated with using the Roofline...

https://crd.lbl.gov/departments/computer-science/PAR/research/ro
ofline

"Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Simplified (DRAM) Roofline

One could hope to always attain peak A
performance (Flop/s) Peak Flop/s

However, finite locality (reuse) and
bandwidth limit performance.

Consider idealized processor/caches

Plot the performance bound using
Arithmetic Intensity (Al) as the x-axis...

* Al =Flops / Bytes presented to DRAM

e Attainable Flop/s = min(peak Flop/s, Al * peak GB/s)

Attainable Flop/s

1
Memory-bound : Compute-bound
I

|
« Kernels with Al less than machine balance are - >

ultimately DRAM bound (we’ll refine this later...) Arithmetic Intensity (FIop:l'3yte)

* Log-log scale makes it easy to represent whole range

Roofline Example #1

e Typical machine balance is 5-10 flops
per byte... !

40-80 flops per double to exploit compute capability Peak Flop/s
Artifact of technology and cost

Unlikely to improve

* huge amount of reuse is needed to achieve peak flops o
)
T Q)\%
. . <9 ©)
= Consider STREAM Triad... 8 N
C
© &, Gflop/s <Al *
#fpragma omp parallel for < : DRAM GB/s
for(i=0;i<N;i++){ I
Z[i] = X[i] + alphaxY[i]; I RIAD |
} .
|
0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

* Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
e Al=0.083 flops per byte == Memory bound

Roofline Example #2

= Conversely, 7-point (3D) stencil...

= 7 flops
= 8 memory references (7 reads, 1 store) per point
* Cache can filter all but 1 read and 1 write per point
* Al =0.44 flops per byte == memory bound,
but 5x the flop rate

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
int ijk = i + jxjStride + kxkStride;
new[ijk] = -6.0%old[ijk]

old[ijk-1]
old[ijk+1]
old[ijk-jStride]
old[ijk+jStride]
old[ijk-kStride]
old[ijk+kStride];

Think: how much "new" data is required by the application/
kernel/loop and how many ops are performed on the data

A
Peak Flop/s

(7]
S
I_I_C_> © Gflop/s < Al * DRAM
© OQ; . GBI/s
o <§ |
2 & :
S 0 |
< : | 7-point

[: Stencil

|

TRIAD 1 :
|
l I >
0.083 0.44

Arithmetic Intensity (Flop:Byte)
10

Hierarchical Roofline

Real processors have multiple levels of memory
* Registers

e L1,L2, L3 cache

« MCDRAM/HBM (KNL/GPU device memory)

* DDR (main memory)

* NVRAM (non-volatile memory)

Each level loads a smaller subset of data (caches filter locality)
= Unique data movements imply unique Al’s

= Moreover, each level will have a unique bandwidth (machine characteristic)

CPU

m [-Cache|e=—p 4
Ire sfe1 L3
%Ie L1 caches L2 —> PEEY MCDRAM
h o Cache

Cache Cache HBM DRAM

LB{]%T -Cachge=—p

11

Hierarchical Roofline

= Construct superposition of the
multiple Rooflines...

= Measure a bandwidth and Al for
each level of memory

Peak Flop/s

e Although a given
application/kernel/loop may have
multiple Al’s and multiple bounds
(flops, L1, L2, ... DRAM)...

e Performance is bound by minimum

DDR Bound
DDR AI"BW <
MCDRAM AI*BW

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

12

Hierarchical Roofline

= Construct superposition of the
multiple Rooflines...

Measure a bandwidth and Al for
each level of memory

Although a given
application/kernel/loop may have
multiple Al’s and multiple bounds
(flops, L1, L2, ... DRAM)...

Performance is bound by minimum

Peak Flop/s

Attainable Flop/s

DDR bottleneck
pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

13

Hierarchical Roofline

A
= Construct superposition of the Peak Flop/s
multiple Rooflines...
= Measure a bandwidth and Al for 2
each level of memory =
e Although a given 3
e © MCDRAM bound
application/kernel/loop may have = MCDRAM A"BW <
. . = DDR AI"'BW
multiple Al’s and multiple bounds <
(flops, L1, L2, ... DRAM)...
e Performance is bound by minimum
|
Arithmetic Intensity (Flop:Byte) >

14

Hierarchical Roofline

= Construct superposition of the

multiple Rooflines...

= Measure a bandwidth and Al for
each level of memory

e Although a given
application/kernel/loop may have
multiple Al’s and multiple bounds
(flops, L1, L2, ... DRAM)...

e Performance is bound by minimum

Peak Flop/s
=
eéo

2 S
o) C 1
i D |
Q@ N3

Q |
< @) \& !
£ \) D
I ° Q
< & :

MCDRAM bottleneck
pulls performance
below DDR Roofline

Arithmetic Intensity (Flop:

15

Data, Instruction, Thread-Level Parallelism...

We have assumed one can attain

peak flops with high locality. A
In reality, this is premised on Peak Flop/s
sufficient...
* Use special instructions (e.g. fused multiply-add) g_
o

* Vectorization (16 flops per instruction) LTC_> 0‘2)\ I
* unrolling, out-of-order execution % QQQ :

, £ !
* OpenMP across multiple cores S| No vectorizati :

< Lack of DLP pulls

Without these:

* Peak performance is not attainable

performance
below DDR
Roofline

* Some kernels can transition from memory-bound
to compute-bound

« DRAM bandwidth is often tied to DLP and TLP
(single core can’t saturate BW w/scalar code)

AN - —

Arithmetic Intensity (Flop:Byte)

16

How to: Machine Characterization and
Application Characterization (Al)?

e Machine Characterization: via microbenchmarks to measure BW at each
level and max FLOPS (https://crd.ibl.gov/departments/computer-science/PAR/research/roofline/software/ert/)
e Application Characterization: measure Al via performance counters. But be
careful:
X Flop Counters can be broken/missing in production processors

X Counting Loads and Stores doesn’t capture cache reuse while counting cache
misses doesn’t account for prefetchers.

X DRAM counters (Uncore PMU) might be accurate, but...
e are privileged and thus nominally inaccessible in user mode

e may need vendor and center approved OS/kernel changes

e Alternatively: use combination of software instrumentation (software Flop counters)
and LLC/DRAM counters

For the EDA284 project: Think about algorithmic intensity, i.e. FLOPS, vectorization,
parallelism, bytes and memory access patterns; and perform a pencil & paper roofline
analysis of your scenario (algorithm) and proposed computer architecture.

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

* Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore
Architectures”, CACM, 2009

* Defines multiple bandwidth ceilings and multiple Al's per kernel

* Performance bound is the minimum of flops and the memory intercepts (superposition of original,
single-metric Rooflines)

= Cache-Aware Roofline

» llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture
Letters, 2014

« Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)

* As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a
lower one at constant Al

= Why Does this matter?

« Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand
the differences

« Cache-Aware Roofline model was integrated into production Intel Advisor

18

SUMMARY

e Performance Modeling
e DRAM Roofline

e Hierarchical Roofline

For more details see the youtube link on slide #4 and 2 papers in previous slide

19

