
LECTURE 6

ROOFLINE MODEL

Miquel Pericàs
EDA284/DIT361 - 2019/2020

1

1

What's cooking

1. Lectures
○ Today: Intro to Roofline Model
○ Next week: Core Multithreading and Lab Intro (Tue 9h), Chip

Multiprocessors (Wed 8h) + Lab session on Friday

2. Practice session (today ~10h)

○ Problems 1.2 (a-e), 3.27, 5.2, 2019 Re-exam Problem 3,

3. EDA284 project
○ Finalized teams and selected topics are now in Canvas
○ https://chalmers.instructure.com/courses/8752/files/folder/Project#
○ Remember to contact your partners ASAP and make sure that they are

available for the project!
○ Detailed instructions on the submission will be published soon

2

https://chalmers.instructure.com/courses/8752/files/folder/Project#

OUTLINE (Lecture 6)

● Performance Modeling

● DRAM Roofline

● Hierarchical Roofline Model

3

Acknowledgements

This presentation is based on materials by Samuel Williams, Computational Research
Division, Lawrence Berkeley National Lab, in particular the following video lecture:
https://www.youtube.com/watch?v=8h3f3E-Oq5A

4

https://www.youtube.com/watch?v=8h3f3E-Oq5A

Why Use Performance Models or Tools?

▪ Identify performance bottlenecks

▪ Motivate software optimizations

▪ Determine when we’re done optimizing
• Assess performance relative to machine capabilities

• Motivate need for algorithmic changes

▪ Predict performance on future machines / architectures
• Sets realistic expectations on performance for future procurements

• Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

Amdahl's law

Peak (Fl)ops, Peak BW

5

Performance Models / Simulators

▪ Historically, many performance models and simulators tracked
latencies to predict performance (i.e. counting cycles)

• e.g. Gem5 (EDA284 Labs)

▪ The last two decades saw a number of latency-hiding techniques…
• Out-of-order execution (hardware discovers parallelism to hide latency)

• HW stream prefetching (hardware speculatively loads data)

• Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

▪ Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

• Depending on the use case, latency or throughput are main goals

• Latency: Execution Time, Time to solution

• Throughput: Requests per second, Multiprogrammed workloads (cloud), etc

6

Roofline Model
▪ The Roofline Model is a

throughput-oriented performance
model…
• Tracks rates not times

• Augmented with Little’s Law

(concurrency = latency*bandwidth)

• Independent of ISA and architecture

(applies to CPUs, GPUs, Google TPUs1, etc…)

▪ Components:
• Machine Characterization

(realistic performance potential of the system)

• Application Characterization

(compute and memory needs)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

https://crd.lbl.gov/departments/computer-science/PAR/research/ro
ofline

7

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Simplified (DRAM) Roofline

▪ One could hope to always attain peak
performance (Flop/s)

▪ However, finite locality (reuse) and
bandwidth limit performance.

▪ Consider idealized processor/caches

▪ Plot the performance bound using
Arithmetic Intensity (AI) as the x-axis…
• AI = Flops / Bytes presented to DRAM

• Attainable Flop/s = min(peak Flop/s, AI * peak GB/s)

• Log-log scale makes it easy to represent whole range

• Kernels with AI less than machine balance are
ultimately DRAM bound (we’ll refine this later…)

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

Memory-bound Compute-bound

8

Roofline Example #1
• Typical machine balance is 5-10 flops

per byte…
• 40-80 flops per double to exploit compute capability

• Artifact of technology and cost

• Unlikely to improve

• huge amount of reuse is needed to achieve peak flops

▪ Consider STREAM Triad…

• 2 flops per iteration

• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

• AI = 0.083 flops per byte == Memory bound

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

Arithmetic Intensity (Flop:Byte)

TRIAD

Gflop/s ≤ AI *
DRAM GB/s#pragma omp parallel for

for(i=0;i<N;i++){
 Z[i] = X[i] + alpha*Y[i];
}

0.083

9

Roofline Example #2
▪ Conversely, 7-point (3D) stencil…

▪ 7 flops

▪ 8 memory references (7 reads, 1 store) per point

▪ Cache can filter all but 1 read and 1 write per point

• AI = 0.44 flops per byte == memory bound,

but 5x the flop rate

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DRAM G
B/s

7-point
Stencil

Gflop/s ≤ AI * DRAM
GB/s

TRIAD

#pragma omp parallel for
for(k=1;k<dim+1;k++){
 for(j=1;j<dim+1;j++){
 for(i=1;i<dim+1;i++){
 int ijk = i + j*jStride + k*kStride;
 new[ijk] = -6.0*old[ijk]
 + old[ijk-1]
 + old[ijk+1]
 + old[ijk-jStride]
 + old[ijk+jStride]
 + old[ijk-kStride]
 + old[ijk+kStride];
}}}

Arithmetic Intensity (Flop:Byte)
0.083 0.44

10

Think: how much "new" data is required by the application/
kernel/loop and how many ops are performed on the data

Hierarchical Roofline
▪ Real processors have multiple levels of memory

• Registers

• L1, L2, L3 cache

• MCDRAM/HBM (KNL/GPU device memory)

• DDR (main memory)

• NVRAM (non-volatile memory)

▪ Each level loads a smaller subset of data (caches filter locality)
▪ Unique data movements imply unique AI’s

▪ Moreover, each level will have a unique bandwidth (machine characteristic)

MCDRAM
HBM DRAM

11

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

Hierarchical Roofline

▪ Construct superposition of the
multiple Rooflines…
▪ Measure a bandwidth and AI for

each level of memory

• Although a given
application/kernel/loop may have
multiple AI’s and multiple bounds
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/sMCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

12

Hierarchical Roofline

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/sMCDRAM ca
ch

e G
B/s

Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

DDR bottleneck
pulls performance
below MCDRAM

Roofline

13

▪ Construct superposition of the
multiple Rooflines…
▪ Measure a bandwidth and AI for

each level of memory

• Although a given
application/kernel/loop may have
multiple AI’s and multiple bounds
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum

DDR G
B/sMCDRAM ca
ch

e G
B/s

MCDRAM bound
MCDRAM AI*BW <

DDR AI*BW

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s
Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

14

▪ Construct superposition of the
multiple Rooflines…
▪ Measure a bandwidth and AI for

each level of memory

• Although a given
application/kernel/loop may have
multiple AI’s and multiple bounds
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum

Hierarchical Roofline

DDR G
B/sMCDRAM ca
ch

e G
B/s

Hierarchical Roofline

Peak Flop/s

A
tta

in
ab

le
 F

lo
p/

s
Arithmetic Intensity (Flop:Byte)

L2
 G

B/s

MCDRAM bottleneck
pulls performance

below DDR Roofline

15

▪ Construct superposition of the
multiple Rooflines…
▪ Measure a bandwidth and AI for

each level of memory

• Although a given
application/kernel/loop may have
multiple AI’s and multiple bounds
(flops, L1, L2, … DRAM)…

• Performance is bound by minimum

Data, Instruction, Thread-Level Parallelism…
▪ We have assumed one can attain

peak flops with high locality.

▪ In reality, this is premised on
sufficient…
• Use special instructions (e.g. fused multiply-add)

• Vectorization (16 flops per instruction)

• unrolling, out-of-order execution

• OpenMP across multiple cores

▪ Without these:
• Peak performance is not attainable

• Some kernels can transition from memory-bound
to compute-bound

• DRAM bandwidth is often tied to DLP and TLP
(single core can’t saturate BW w/scalar code)

Peak Flop/s

No FMA

No vectorization

A
tta

in
ab

le
 F

lo
p/

s

DDR G
B/s

Arithmetic Intensity (Flop:Byte)

Lack of DLP pulls
performance
below DDR

Roofline

16

How to: Machine Characterization and
Application Characterization (AI)?

● Machine Characterization: via microbenchmarks to measure BW at each
level and max FLOPS (https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/software/ert/)

● Application Characterization: measure AI via performance counters. But be
careful:

✘ Flop Counters can be broken/missing in production processors

✘ Counting Loads and Stores doesn’t capture cache reuse while counting cache
misses doesn’t account for prefetchers.

✘ DRAM counters (Uncore PMU) might be accurate, but…
● are privileged and thus nominally inaccessible in user mode

● may need vendor and center approved OS/kernel changes

● Alternatively: use combination of software instrumentation (software Flop counters)
and LLC/DRAM counters

17

For the EDA284 project: Think about algorithmic intensity, i.e. FLOPS, vectorization,
parallelism, bytes and memory access patterns; and perform a pencil & paper roofline

analysis of your scenario (algorithm) and proposed computer architecture.

There are two Major Roofline Formulations:

▪ Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, …)…
• Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore

Architectures”, CACM, 2009
• Defines multiple bandwidth ceilings and multiple AI’s per kernel
• Performance bound is the minimum of flops and the memory intercepts (superposition of original,

single-metric Rooflines)

▪ Cache-Aware Roofline
• Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture

Letters, 2014
• Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes)
• As one looses cache locality (capacity, conflict, …) performance falls from one BW ceiling to a

lower one at constant AI

▪ Why Does this matter?
• Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand

the differences
• Cache-Aware Roofline model was integrated into production Intel Advisor

18

SUMMARY

● Performance Modeling

● DRAM Roofline

● Hierarchical Roofline

For more details see the youtube link on slide #4 and 2 papers in previous slide

19

