
LECTURE 7

Core Multithreading

Miquel Pericàs
EDA284/DIT361 - 2019/2020 

11



What's cooking

1. Lectures
○ Today: Core Multithreading 
○ Tomorrow: Chip Multiprocessors (8h-10h) 
○ Friday: GEM5 Lab session (8h-12h @ ED3507) 

2. EDA284 project
○ Submission instructions have been published
○ 1st deadline February 19th - Design teams submit first version to 

reviewers
■ TBD via Canvas

3. EDA284 Lab #1 
○ Instructions have been published
○ To be completed in pairs (choose your partner)
○ Submission Deadline for Lab #1 is Feb 27th 23:59h

2

https://chalmers.instructure.com/courses/8752/files/folder/Project?


CMPs: new opportunities

• Compared to traditional shared-memory: more on-chip 
components + drastically reduced communication overheads

• This enables new architectures and new programming 
paradigms

• Systems with huge amount of threads can be built by 
exploiting parallelism at all levels: system, processors, and 
cores

core
multithreading

CACHE

MEMORY

chip multiprocessor

CACHE

multiple sockets (ccNUMA)

CACHE

MEMORYMEMORY

Message Passing Hardware multiple nodes
(e.g., cluster)

3

MEMORY

chip multiprocessor

CACHE

HBM

GPU



Lectures 7 - 10 Overview

LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

LECTURE 11
Message Passing Hardware

C
hi

p 
M

ul
tip

ro
ce

ss
or

s
C

lu
st

er
s

4



OUTLINE (Lecture 7)

● Why Multithreading

● Block Multithreading

● Interleaved Multithreading

● Simultaneous Multithreading

5



AMD Zen SMT
IBM POWER 5 SMT

Intel Hyperthreading
SUN NIAGARA Multithreading

Multithreading

and GPGPUs!
6



Cache miss in the 5-stage pipeline

• On a miss, the processor clock is stopped, the miss is handled and then the clock 
is restarted 

Why Core Multithreading??

IDEA: make use
of idle resources 
via multithreading

CPI degrades 3x -> microprocessor resources severely underutilized! 7

• EXAMPLE: 20 cycles L1-miss latency/200 cycles L2 miss latency
• CPI without cache misses (CPI0) is 1
• L1- MPI (miss per instruction) is .05; L2-MPI is .005

• Q: What is the time to execute 200 instructions, with and without cache misses?
• Without misses: 200 instructions → 200 cycles
• With misses: 200(inst)*1 (CPI) + 200*0.05*20 + 200*0.005*200 = 200 + 200 + 200 = 600 cycles 



Origins: Software Multithreading

• Used since the 1960’s to hide the latency of I/O operations
• Multiple processes or threads are active

• Virtual memory space allocated
• Process control block allocated

• On an I/O operation
• Process is preempted and removed from ready list
• I/O operation is started
• In the meantime, another active process is picked from the ready list and run

• When I/O completes, put the preempted process back in the ready list

APP 2

context switch

APP1 APP1 APP1 APP1

network I/O

http://venkateshcm.com/2014/04/Reactor-Pattern-Part-1-Non-blocking-I-O/

8



How software multithreading works

• Context switch
• Trap processor--flush pipeline
• Save process state in process control block

• Includes register file(s), PC, interrupt vector, Page Table Base Register, etc
• Restore process state of a different process
• Start execution--fill pipeline
• Order of microseconds on modern systems 

• Also triggered on
• Shared resource conflict (e.g., Semaphores)
• Timer interrupts (fairness)

Very high switching overhead. Ok, since wait is very long.
Can we apply this to handle cache misses? How?

9



Hardware Multithreading

• Run multiple threads on the same core at the same time
• Fetch instructions from another thread when a thread is blocked 

on:
• Unsuccessful synchronization
• L1 or L2 cache misses 
• TLB misses
• Exceptions
• Even while waiting for operands (latency of operation)

http://key-to-programming.blogspot.com/2016/06/multi-threading-in-java-source-code.html

10



Hardware Multithreading

• Minimum required hardware support: replicate architectural state 
• All running threads must have their own thread context

• Multiple register sets in the processor
• Multiple state registers (PC, PTBR, IV, CF, etc..)*

• They must not be allowed to observe each others data

• Three types of hardware multithreading:

• Block multithreading aka coarse-grain multithreading

• Interleaved multithreading aka fine-grain multithreading

• Simultaneous multithreading

(*) PC = Program Counter, PTBR = Page Table Base 
Register, IV = Interrupt Vector, CF = Condition Flags

11



Block (Coarse-grain) Multithreading
● Each running thread executes in turn until a long latency event (cache miss)

○ Similar to software multithreading but at a different scale
○ Only one thread in the pipeline at the same time. Where is the parallelism?

● Five stage pipeline with two threads: 

● TID := thread ID, PC := program counter. Seen as two independent CPUs by the OS
● Each context switch due to L1 miss causes overhead to flush and refill pipeline

○ 15 cycles compute, 5 cycles to refill pipeline, overlapped with 20 cycles L1 miss
○ cache miss is handled in writeback stage

12



Block multithreading (Five stage pipeline)
• Both L1 and L2 must be lockup-free

• Must handle two cache accesses (one hit and one miss, or two misses)

• Use more threads to cover more idle times
• more state replication
• more complex thread selection
• scale up TLB and cache sizes to accommodate working sets
• diminishing returns, limited number of runnable threads

• Fictive timeline in previous example
• cache misses happen at highly variable times
• latencies are variable
• overlap is never as perfect as in the example

13



Block multithreading examples
● IBM RS64-II (1998)

○ called HMT (hardware MT)
○ 4-way superscalar IO (in-order) processor with a 5-stage pipeline
○ designed for commercial workloads
○ two threads: foreground and background
○ switch threads on cache misses + time-out mechanism

● INTEL MONTECITO (2006) 
○ called TMT (temporal MT)
○ two EPIC (in-order) cores with two threads per core
○ Events: L3 cache misses/data return, expiration of quantum, thread switch hint 

provided by software (instruction that forces the thread to yield the core)
○ thread urgency level based on occurrence of events
○ thread switching occurs when the urgency level of suspended thread is higher 

than that of the running thread
● Think: what are the problems of block multithreading? 
● How can we reduce the costly pipeline flushes?

14



Interleaved (fine-grained) multithreading

• Dispatch instructions from different threads in each cycle 
• different ready threads dispatch in turn in every cycle
• hides small latencies, such as instruction latencies causing pipeline 

bubbles (in addition to long latencies)

• Two threads: penalty of a taken branch is one clock and penalty of 
an exception is three clocks.

• Five threads: penalty of a taken branch is zero and penalty of an 
exception is one clock.

Two running threads

Five running threads

taken branch exception

exception

15



Interleaved multithreading 

● Multiple threads can be active in the pipeline

● Same architecture as for block multithreading except:
a. Data forwarding must be thread aware, context ID is carried by forwarded values
b. Stage flushing must be thread aware. On an miss exception, taken branch or 

software exception IF, ID, EX and MEM cannot be flushed indiscriminately
c. Thread selection algorithm is different

● a different thread is selected in each cycle (round-robin)
● on a long latency event the selector puts the thread aside and removes it 

from selection
16



Interleaved multithreading - Example
• SPARC T1 AND T2 (“NIAGARA”, 2005) 

• In-order pipeline with add-ons: thread selection stage; store buffers; 
IFQ & architectural state replicated to manage four threads 

• IFQ to smooth out instruction delivery when I-cache misses
• Thread selector selects the thread to fetch/decode in every cycle

• Typically round-robin
• If long latency event, the selection of the thread is suspended

• Flushing and forwarding are thread aware
• Q: Can we simplify this hardware?

8 cores, 4 threads/core

17



Barrel Processors

• Enough threads so that the pipeline is filled with instructions 
from different threads 

• no need to forward or to detect hazards!
• there can be so many ready threads that there is no need for a cache

• or cache can be very large with high hit latency 
• control hazards are also solved by multithreading
• high throughput but very low single thread performance 

18



Examples of Barrel processors

• DENELCOR HEP (EARLY 1980s)
• up to 16 processors
• 8-stage pipeline 
• different threads in the pipeline (needs at least 8 threads)
• no forwarding, no hazard detection unit, no stalling and no flushing
• no cache
• throughput for one thread 1.25 MIPS. Eight threads: 10 MIPS

19



Examples of barrel processors

• TERA MTA (1999)
• MP with up to 256 processors
• 128 I-streams per processor, 128 PCs and 4096 registers
• No hardware support for data hazards:

• an instruction in an I-stream can issue if it has no dependencies with 
previous instructions

• a lookahead field is added to every instruction. It indicates the number 
of following instructions that have no dependency with it

• multiple (independent) instructions from the same thread can be in 
flight (unlike HEP)

20



21

How to provide both high 
single-thread performance and high 

resource utilization?

1. Use Out-of-Order execution (OoO) for 
single-thread processing

2. Use interleaved multithreading for 
improved efficiency

Simultaneous Multithreading (SMT) 



22

OoO Pipeline with Speculative Execution
Instruction lifetime in Tomasulo algorithm with speculative execution: 
1. In-order Fetch and Dispatch
2. Out-of-Order Execution and WriteBack
3. In-order Commit via ReOrder Buffer (ROB) 



Simultaneous Multithreading (SMT) 
• Dispatch instructions from different threads in consecutive cycles

− If superscalar, may dispatch from different threads in the same cycle
− Long latency events redirect dispatch to other threads

 

• Dispatching, scheduling, flushing and forwarding must be thread aware
• In addition to architectural state, must typically replicate: ROB ("Group 

completion", IBM POWER5), IFQ ("Instruction Buffer"), SB ("Store Queue")
• A miss does not trigger an exception

• It simply waits in the LSQ & ROB
• No flushing of instructions in the back-end 23

IBM POWER5 
SMT pipeline



Block multithreading vs SMT in OoO cores
• COST OF SWITCHING THREADS WITH BLOCK MULTITHREADING

1. complete all instruction prior to event in thread order
2. flush all instructions following the event

• EXAMPLE

• THREAD 1 EXPERIENCES A LONG LATENCY EVENT AT INST X5
• thread switch is triggered when X5 reaches the top of ROB
• must flush large amount of instructions 

24



Block multithreading
• OoO PROCESSORS

• 2-way dispatch, 2-way issue (1 issue Q of size 4), 2 CDBs, 2-way commit
Instruction
(latency)

Dispatch
(issue Q) Issue

Register
fetch

Exec 
start

Exec 
complete CDB Commit

(T1)
Commit
(T2)

X1(2) 1(1) 2 3 4 5 6 7

X2(2) 1(2) 4 5 6 7 8 9

X3(4) 2(3) 4 5 6 9 10 11

X4(2) 2(4) 6 7 10 11 12 13

X5(1,20) 9(3) 10 11 12* 12 13

X6(1) 9(4) 11 12 13 13 14

Y1(2) 15(1) 16 17 18 19 20 21

Y2(3) 15(2) 18 19 20 22 23 24

Y3(2) 16(3) 21 22 23 24 25 26

Y4(2) 16(4) 23 24 25 26 27 28

Y5(3) 24(3) 25 26 27 29 30 31

Y6(1) 24(4) 28 29 30 30 31 32

X5(1,1) 32(3) 33 34 35 35 36 37

X6(1) 32(3) 34 35 36 36 37 38

Flush

Replay

CPI = 2.7 (= 32 cycles / 12 instructions)
25



Execution in two-way OoO processor with SMT
Instruction
(latency)

Dispatch Issue Register
fetch

Exec 
start

Exec 
complete

CDB Commit
(T1)

Commit
(T2)

X1(2) 1(1) 2 3 4 5 6 7

Y1(2) 1(2) 2 3 4 5 6 7

X2(2) 2(3) 4 5 6 7 8 9

Y2(3) 2(4) 4 5 6 8 9 10

X3(4) 7(3) 8 9 10 13 14 15

Y3(2) 7(4) 8 9 10 11 12 13

X4(2) 10(3) 12 13 14 15 16 17

Y4(2) 10(4) 11 12 13 14 15 16

X5(1,20) 15(2) 16 17 18* 37 38 39

Y5(3) 15(3) 16 17 18 20 21 22

X6(1) 17(2) 36 37 38 38 39 40

Y6(1) 17(3) 19 20 21 21 22 23

CPI = 17/11 = 1.55, compared to CPI = 2.7 with Block Multithreading

No Flush!

26



MODERN SMT EXAMPLES

AMD Zen / Ryzen

IBM POWER 5Intel Hyperthreading

None of these implements 
“true” SMT:
● No fetch, decode and 

dispatch instructions 
from multiple threads in 
the same cycle

● Guarantee access to all 
core resources in 
single-thread mode

27



Summary: multithreading

● Block Multithreading

● Interleaved Multithreading

● Barrel Processors

● Simultaneous Multithreading

28


