LECTURE 7

Core Multithreading

Miquel Pericas
EDA284/DIT361 - 2019/2020

What's cooking

1. Lectures
o Today: Core Multithreading

o Tomorrow: Chip Multiprocessors (8h-10h)
o Friday: GEMS5 Lab session (8h-12h @ ED3507)

2. EDA284 project
o Submission instructions have been published

1st deadline February 19th - Design teams submit first version to

O
reviewers
m TBD via Canvas
3. EDA284 Lab #1
o Instructions have been published
o To be completed in pairs (choose your partner)
o Submission Deadline for Lab #1 is Feb 27th 23:59h

https://chalmers.instructure.com/courses/8752/files/folder/Project?

CMPs: new opportunities

 Compared to traditional shared-memory: more on-chip
components + drastically reduced communication overheads
» This enables new architectures and new programming
paradigms
e Systems with huge amount of threads can be built by
exploiting parallelism at all levels: system, processors, and

cores
Message Passing Hardware multiple nodes
(e.g., cluster)
MEMORY MEMORY MEMORY HBM
I

I
N~/ [-CACHE H— CACHE | [_CACHE | 000000
ee0000

core ' chip multiprocessor chip multiprocessor GPU

multithreadin
? multiple sockets (ccNUMA)

Chip Multiprocessors

Clusters

Lectures 7 - 10 Overview

LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

LECTURE 11
Message Passing Hardware

OUTLINE (Lecture 7)

Why Multithreading
Block Multithreading
Interleaved Multithreading

Simultaneous Multithreading

Multithreading

AMD Zen SMT

IBM POWER 5 SMT

64K I-Cache 4 way Lﬁll.ll-:éu Branch Prediction S T OVERVI EW Branch prediction Ir[l)s);nrua;:omn
selection Shared
Shared :
Decode Op-Cache All structures fully available in 1T mode fo,:,? ﬁ{;".?,f;‘ Ttasé:(n I;:L%‘: qij:aée:s exzzxgon
prmmge Front End Queues are round robin with tables | | I | I | | l | | | | | | I | |] | I | | | | I | l | Data Data
Vertcaly Threade | G ops dspatched priority overrides LLEEE Translation Cache
Increased throughput from SMT i . buffer 0 Group formation I I H] [l] I l” I I I [l” I I I l I“] I
INTEGER FLOATING nstruction Instruction decode |—= ¢ —= o — . —s Group Store
POINT cache Dispatch queue
—— astig P b (I
Throad (L (T 7 (i LT
Schedulers Scheduler pnonty Shared- Read Write
Competitively shared structures register shared- shared-
mappers register files register files

Integer Physical Register File

FP Register File

Competitively shared and SMT Tagged

2x AGUs ‘ 4x ALUs MuL ADD
I statically Partitioned

512K
32K D-Cache L2 (1+D) Cache
8 Way

Load Queue DTLB 8 Way

15 | HOTCHIPS28 | AUGUST 23,2016

Intel Hyperthreading

How Hyper-Threading Technology Works

Physical Logical processor Physical processor Throughput
Processors visible to OS resource allocation
% Time
3 e B |-
Qc
I5 Resource 2 I
Eg
3 Resource 3 |-
L
>
()
)
rworee [)
c
| -
3 o2 __| I
=
: v
I

Competitively shared with Algorithmic Priority

[Shared by two threads [Thread 0 resources [l Thread 1 resources |

SUN NIAGARA Multithreading

| | | H ﬂ

Memory M Writeback

Decode H Execute

Fetch H Thread select ‘

Register
file
x4
. } -
IC?ESE Ins;'ruchon ALU DCache
I buffer x 4 Thread MUL DTLB Crossbar
select = Decode [—#= Shift store interface
Mux dho buffers x 4
DIV -
{~=-—— Instruction type
Thread selects Thread o Misses
select
logic ~ [=+—— Traps and interrupts
<— Resource conflicts

Figure 3. Sparc pipeline block diagram. Four threads share a six-stage single-issue pipeline with local instruction
and data caches. Communication with the rest of the machine occurs through the crossbar interface.

and GPGPUs!

6

Why Core Multithreading??

Cache miss in the 5-stage pipeline

On a miss, the processor clock is stopped, the miss is handled and then the clock

is restarted
IF u D [Ex M vMem [l wB

PC
IDEA: make use
of idle resources
via multithreading

Register &4 ALU =3 D-cache "= Register

-cache ‘=

20cycles 20cycles 200cycles
L A A A A A N | A >

compute YL1 miss Ycompute ¥ L1 miss Ycompute ! L2 miss Ycompute | L1 miss
P P

EXAMPLE: 20 cycles L1-miss latency/200 cycles L2 miss latency

 CPl without cache misses (CPI) is 1
« L1- MPI (miss per instruction) is .05; L2-MPI is .005
« Q: Whatis the time to execute 200 instructions, with and without cache misses?

* Without misses: 200 instructions — 200 cycles
With misses: 200(inst)*1 (CPI) + 200*0.05*20 + 200*0.005*200 = 200 + 200 + 200 = 600 cycles

CPI degrades 3x -> microprocessor resources severely underutilized!

Origins: Software Multithreading

 Used since the 1960’s to hide the latency of I/O operations

« Multiple processes or threads are active
 Virtual memory space allocated
* Process control block allocated

* On an /O operation
* Process is preempted and removed from ready list

 1/O operation is started
 In the meantime, another active process is picked from the ready list and run

 When I/O completes, put the preempted process back in the ready list

.T

context switch

network |/O
Application/ Application/
Thread Thread
Process requs\ : Resume Request processing Process requesx : Resume Request processing
CPUl APP1 APP1 — CPU[APP1 APP 2 APP1
I

Waiting for Network 10 |

|
| Waiting for Network 10 |
t1 2 t 2

Time Time

>

8
http://venkateshcm.com/2014/04/Reactor-Pattern-Part-1-Non-blocking-I-O/

How software multithreading works

e Context switch
» Trap processor--flush pipeline

« Save process state in process control block
* Includes register file(s), PC, interrupt vector, Page Table Base Register, etc

» Restore process state of a different process

» Start execution--fill pipeline

* Order of microseconds on modern systems
 Also triggered on

» Shared resource conflict (e.g., Semaphores)

« Timer interrupts (fairness)

Very high switching overhead. Ok, since wait is very long.
Can we apply this to handle cache misses? How?

Hardware Multithreading

Run multiple threads on the same core at the same time

Fetch instructions from another thread when a thread is blocked
on:

Unsuccessful synchronization

L1 or L2 cache misses

TLB misses

Exceptions

Even while waiting for operands (latency of operation)

N\

SN

llll

/

http://key-to-programming.blogspot.com/2016/06/multi-threading-in-java-source-code.html

Hardware Multithreading

 Minimum required hardware support: replicate architectural state

 All running threads must have their own thread context

* Multiple register sets in the processor
» Multiple state registers (PC, PTBR, IV, CF, etc..)*

« They must not be allowed to observe each others data

Three types of hardware multithreading:
* Block multithreading aka coarse-grain multithreading
e Interleaved multithreading aka fine-grain multithreading

e Simultaneous multithreading

(*) PC = Program Counter, PTBR = Page Table Base
Register, IV = Interrupt Vector, CF = Condition Flags
11

Block (Coarse-grain) Multithreading

Each running thread executes in turn until a long latency event (cache miss)
o Similar to software multithreading but at a different scale
o Only one thread in the pipeline at the same time. Where is the parallelism?

Five stage pipeline with two threads:

IF |

D I-cache - Register
; el};ecat:r miss completion signals(Thread#)
Switching
THREAD T1 K0verhead
computepml 1 miss ompute pm L1 miss ompute L2 ml-ss—m
I !compufem iﬂ miss Ecomputg L1 miss! compute

THREAD T2 de Time

TID :=thread ID, PC := program counter. Seen as two independent CPUs by the OS
Each context switch due to L1 miss causes overhead to flush and refill pipeline
o 15 cycles compute, 5 cycles to refill pipeline, overlapped with 20 cycles L1 miss
o cache miss is handled in writeback stage

12

Block multithreading (Five stage pipeline)

e Both L1 and L2 must be lockup-free
« Must handle two cache accesses (one hit and one miss, or two misses)

e Use more threads to cover more idle times

* more state replication

 more complex thread selection

» scale up TLB and cache sizes to accommodate working sets
 diminishing returns, limited number of runnable threads

* Fictive timeline in previous example
« cache misses happen at highly variable times
* |atencies are variable
« overlap is never as perfect as in the example

Switching

THREAD T1 KOverhead
computepml 1 miss pcompute pm L1 miss pmcompute g L2 miss compute
micomputels computelsll | 1 miss b= c-onTpEte- -_

THREAD T2 Ge Time

Block multithreading examples

e IBM RS64-ll (1998)
o called HMT (hardware MT)
o 4-way superscalar IO (in-order) processor with a 5-stage pipeline
o designed for commercial workloads
o two threads: foreground and background
o switch threads on cache misses + time-out mechanism
e INTEL MONTECITO (2006)
o called TMT (temporal MT)
o two EPIC (in-order) cores with two threads per core

o Events: L3 cache misses/data return, expiration of quantum, thread switch hint
provided by software (instruction that forces the thread to yield the core)

o thread urgency level based on occurrence of events

o thread switching occurs when the urgency level of suspended thread is higher
than that of the running thread

e Think: what are the problems of block multithreading?
e How can we reduce the costly pipeline flushes?

14

Interleaved (fine-grained) multithreading

e Dispatch instructions from different threads in each cycle
« different ready threads dispatch in turn in every cycle
 hides small latencies, such as instruction latencies causing pipeline
bubbles (in addition to long latencies)

taken branch exception
WE

Two running threads

Five running threads

 Two threads: penalty of a taken branch is one clock and penalty of
an exception is three clocks.

* Five threads: penalty of a taken branch is zero and penalty of an
exception is one clock.

15

Interleaved multithreading

D

PC+TID

MEM |

D-cache

IF |
mln I-cache

;‘:';e;::r miss completion signals(Thread#)

Multiple threads can be active in the pipeline

Register

Same architecture as for block multithreading except:
a. Data forwarding must be thread aware, context ID is carried by forwarded values

b. Stage flushing must be thread aware. On an miss exception, taken branch or
software exception IF, ID, EX and MEM cannot be flushed indiscriminately

c. Thread selection algorithm is different
e a different thread is selected in each cycle (round-robin)

e o0n along latency event the selector puts the thread aside and removes it
from selection

16

Interleaved multithreading - Example

« SPARC T1 AND T2 (“NIAGARA”, 2005)

PC1
IF

T I-cache
PC2

long latency event
(thread T1 or T2)

Thread
* In-order pipeline with add-ons: thread selection stage; store buffers;
IFQ & architectural state replicated to manage four threads

* IFQ to smooth out instruction delivery when I-cache misses

 Thread selector selects the thread to fetch/decode in every cycle
« Typically round-robin
« If long latency event, the selection of the thread is suspended
 Flushing and forwarding are thread aware

. Can we simplify this hardware?
17

Barrel Processors

 Enough threads so that the pipeline is filled with instructions
from different threads
* no need to forward or to detect hazards!

 there can be so many ready threads that there is no need for a cache
 or cache can be very large with high hit latency

 control hazards are also solved by multithreading
* high throughput but very low single thread performance

Thread
Selector

18

Examples of Barrel processors

e DENELCOR HEP (EARLY 1980s)
« up to 16 processors
» 8-stage pipeline
« different threads in the pipeline (needs at least 8 threads)
* no forwarding, no hazard detection unit, no stalling and no flushing
* Nno cache
 throughput for one thread 1.25 MIPS. Eight threads: 10 MIPS

19

Examples of barrel processors

 TERA MTA (1999)

* MP with up to 256 processors
« 128 I-streams per processor, 128 PCs and 4096 registers

* No hardware support for data hazards:
 an instruction in an |-stream can issue if it has no dependencies with
previous instructions
 a lookahead field is added to every instruction. It indicates the number
of following instructions that have no dependency with it

« multiple (independent) instructions from the same thread can be in
flight (unlike HEP)

20

How to provide both high
single-thread performance and high
resource utilization?

1. Use Out-of-Order execution (Oo0O) for
single-thread processing

2. Use interleaved multithreading for
improved efficiency

Simultaneous Multithreading (SMT)

21

000 Pipeline with Speculative Execution

1. In-order Fetch and Dispatch
2. Out-of-Order Execution and WriteBack
3. In-order Commit via ReOrder Buffer (ROB)

Instruction lifetime in Tomasulo algorithm with speculative execution:

BPE ROB

& |-fatch
BTB

FRONT-END

|
- INSrUCTION famm—
integer fatch
registers queue

FP
registers

-

CDB
el floating-point
e g-p
|} |
|} |

tags

CDBE

] | I
Store
queue
| D-Cache

NEW STRUCTURES:
*REORDER BUFFER (ROB)

*BRANCH PREDICTION
BUFFER (BPB)

«BRANCH TARGET
BUFFER (BTB)

ROB:

« KEEPS TRACK OF
PROCESS ORDER (FIFO)

*HOLDS SPECULATIVE
RESULTS

*NO MORE SNOOPING
BY REGISTERS

REGISTER VALUES
*PENDING IN BACK-END
* SPECULATIVE IN ROB

*COMMITTED IN THE
REGISTER FILE

USE ROB ENTRY # AS

TAG TO RENAME
REGISTER

22

Simultaneous Multithreading (SMT)

 Dispatch instructions from different threads in consecutive cycles
- If superscalar, may dispatch from different threads in the same cycle
- Long latency events redirect dispatch to other threads

Branch prediction] ir?s);nmac':?n
¥ selection Shared
P Branch| || Return| | Target Shated execution
history stack cache q'3:3§s units
bl
[0 [0 |\ [S [e
Instruction ki I T T Group Store
cache '"Stmgi:‘)gtgzcoae completion| U queue
Instruction P | [D]:m %
translation
B nnnnganng=a 55| (o] IBM POWERS
priority Shared- Read Write translation | |cache . .
register shared- shared- SMT plpellne
mappers register files register files lf
cache

| [Shared by two threads [Thread 0 resources [l Thread 1 resources l

« Dispatching, scheduling, flushing and forwarding must be thread aware

* In addition to architectural state, must typically replicate: ROB ("Group
completion”, IBM POWERS5), IFQ ("Instruction Buffer"), SB ("Store Queue")

e A miss does not trigger an exception
* |t simply waits in the LSQ & ROB
* No flushing of instructions in the back-end

23

Block multithreading vs SMT in OoO cores

COST OF SWITCHING THREADS WITH BLOCK MULTITHREADING

1. complete all instruction prior to event in thread order
2. flush all instructions following the event

EXAMPLE

THREAD 1 EXPERIENCES A LONG LATENCY EVENT AT INST X5

 thread switch is triggered when X5 reaches the top of ROB
» must flush large amount of instructions

24

e 000 PROCESSORS

Block multithreading

« 2-way dispatch, 2-way issue (1 issue Q of size 4), 2 CDBs, 2-way commit

X1(2) 1(1)
X2(2) 1(2) 4 5 6 7 8 9
X3(4) 2(3) 4 5 6 9 10 11
X4(2) 2(4) 6 7 10 11 12 13
X5(1,20) 9(3) 10 11 12" 12 13
Flush
Y1(2) 15(1) 16 17 18 19 20
Y2(3) 15(2) 18 19 20 22 23
Y3(2) 16(3) 21 22 23 24 25
Y4(2) 16(4) 23 24 25 26 27
Y5(3) 24(3) 25 26 27 29 30
Y6(1) 24(4) 28 29 30 30 31
X5(1,1) 32(3) 33 34 35 35 36 37
X6(1) 32(3) 34 35 36 36 37 38

CPI =2.7 (= 32 cycles / 12 instructions)

21
24
26
28
31

32

Replay

25

Execution in two-way OoO processor with SMT

X1(2) 1(1)

Y1(2) 1(2) 2 3 4 5 6 7

X2(2) 2(3) 4 5 6 7 8 9

¥2(3) 2(4) 4 5 6 8 9 10

X3(4) 7(3) 8 9 10 13 14 15

Y3(2) 7(4) 8 9 10 11 12 13

X4(2) 10(3) 12 13 14 15 16 17

Y4(2) 10(4) 11 12 13 14 15 16
X5(1,20) 15(2) 16 17 18* 37 38 39 No Flush!

Y5(3) 15(3) 16 17 18 20 21 22

X6(1) 17(2) 36 37 38 38 39 40

Y6(1) 17(3) 19 20 21 21 22 23

CPIl =17/11 = 1.55, compared to CPI = 2.7 with Block Multithreading 26

How Hyper-Threading Technology Works

Logical processor Physical processor Throughput

WITHOUT
HT Technology

WITH
HT Technology

Physical
Processors

MODERN SMT EXAMPLES

IBM POWER 5

Intel Hyperthreading

visible to OS

Branch prediction]

resource allocation

Program
counter

Time

Branch
history
tables

Resource |

- _] _J - A"ema‘e
I I I - l— Instruction
cache
Instruction
translation

rr

Resource 2

|
Resource 3 | - | I |

Resource | - - _] _J -
Resource 2 | uﬂ . ! _J
Resource 3 - _] _J l!l

AMD Zen / Ryzen

“r,r.

=

SMT OVERVIEW

All structures fully available in 1T m

Front End Queues are round robin with
priority overrides

Increased throughput from SMT

Instruction
I buffer 0 I

f

Return| | Target
stack cache

Dynamic
instruction
selection Shay
Shared execution
issue un ts
queues

Group formation

Dispatch

Instruction decode —*

LLLLL (D 1 == [ED] Trnslaion Gache

LI (T HIHH

- m Group
completion

Data

Store
queue

UL OOy m[[[ﬂ]]

Thread
priority Shared- Read [cAL] Write
register shared- shared-
mappers register files register files
[__JShared by two threads [Thread 0 resources [Thread 1 resources I

No fetch, decode and
dispatch instructions

None of these implements
“true” SMT:

from multiple threads in

the same cycle

Guarantee access to all

core resources in
single-thread mode

27

Summary: multithreading

Block Multithreading
Interleaved Multithreading
Barrel Processors

Simultaneous Multithreading

Execution Pipeline

