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Networks on chip: Why?

nat do they interconnect?
Ny heeded?

nat are the designh objectives?



Intra chip communication

Network
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Interconnect with a bus
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Bad scalability
to # of
components




Wire delay/gate delay does not scale

Past Now

Distance per cycle Distance per cycle
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Introduction — intra chip
communication

Point-to-Point
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Bad scalability
to # of
components




Important Paradigms for NoC
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Network Interface
Routing Node

l‘l‘l‘! * More scalable

verformance
Resource Re-use

-lexibility



What factors determine which
interconnect solution you pick?

 Performance
— Latency

— Throughput

* Energy efficiency & Power
— Energy per transferred bit

 Other metrics:
— Quality of Service

— Fault tolerance
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On-Chip vs. Off-Chip Differences

Advantages of on-chip

* Wires are “free”

— Can build highly connected networks with wide buses
* Low latency

— Can cross entire network in few clock cycles
* High Reliability

— Packets are not dropped and links rarely fail

Disadvantages of on-chip

* Sharing resources with rest of components on chip
— Area
— Power

* Limited buffering available

* Not all topologies map well to 2D plane



IMM, DTU, Denmark

Network Usage Example

Typical P2P Write Session
(3 comm. events)
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“Networked” Write Session

(4 comm. events)
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Network Abstraction

Source Core
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Application/

Sink Core

Presentation Layers
Core

Interface

Session/

Transport Layer

Network

Interface

Network, Link
and

Physical Layers
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Network Dataflow View

Source Core Sink Core

( Socket ) < Socket )

M | Messages

~S ~S

WW Um— oo

Flit

EDA284, 2020, Lecture on NoCs [. Sourdis, CSE, Chalmers 14



Outline of Lecture

e NoCs basics

* NoCs design alternatives:
— Topologies
— Flow control
— Routing

— Router architecture

e Research on NoCs



Review: Topologies

a1
a1

Topology Crossbar Multistage Logarith. Mesh
Direct/Indirect Indirect Indirect Direct
Blocking/ _ : :
Non-blocking Non-blocking Blocking Blocking
Cost O(N?) O(NlogN) O(N)
Latency O(1) O(logN) O(sqrt(N))
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Flow Control:

Circuit vs. Packet switching

® @

-
-——

Circuit f
(connection |
Oriented) |

®» @ - %
Packet

(connectionless)

Release unused pat

n
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Flow Control:

Circuit vs. Packet switching

Issues

!

\
(L Blocked
K Reserve the entire path
e ® C;%if -~
. . . ,
/

)
Circuit :

® ®

Packet

/
I
L
T Can make progress
Release unused path

' S

®) ®) - - - X
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Review: Flow Control

Store and Forward

Any other
issues?

Head-of-Line
Blocking

L4

Use Virtual
Channels
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Review: Flow Control

Store and Forward S Cut Through / Wormhole

Shrink Buffers

| | o | ) | | b

Reduce latency

Any other
issues?

Head-of-Line
Blocking

L4

Use Virtual
Channels —
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Routing Mechanism

e Arithmetic

— Simple arithmetic to determine route in regular topologies
— Dimension order routing in meshes/tori

 Source Based

— Source specifies output port for each switch in route

+ Simple switches
* no control state: strip output port off header

- Large header

* Table Lookup Based
— Index into table for output port
+ Small header
- More complex switches



Routing Algorithm

* Types

— Oblivious: do not consider network state (e.g.,
random)

* Deterministic: always choose the same path

— Adaptive: adapt to state of the network

* How to adapt

— Local/global feedback
— Minimal or non-minimal paths



No forward
progress

Caused by circulat
dependencies on
resources

Each packet waits
for a buffer
occupied by
another packet
downstream

EDA284, 2020, Lecture on NoCs

Deadlock

B-
' packet 3
0§20

70

packet 4
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packett
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[. Sourdis, CSE, Chalmers

25



Turn Model to Avoid Deadlock

e |dea

— Analyze directions in which packets can turn in the network
— Determine the cycles that such turns can form
— Prohibit just enough turns to break possible cycles

* Glass and Ni, “The Turn Model for Adaptive Routing,”

ISC‘ \ 199 2 U] ‘ I | l FiG, 2. The possible turns and simple cycles i a two-dimen
j t stonal mesh.,
| I— —

-l .- " P —
. L]
. L] ‘
. . y " e
. l . Fia. 3. The four turns allowed by the xv routing algorithm,
. ’
L] .
LI I S

‘ - |
A
' " i, 4. Six turns that complete the
- « -

cyeles and allow deadlock
]! Il ‘

A B SV

(a) (b) (c)

\
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On-chip Networks

PE PE PE PE
,f’a:- ----------------------------------------- :
i i R—_=="R | Input Port with Buffers )
L+~ : == :
PE PE - J’E’ PE I VC Identifier Control Logic :
. i From Eat I_*/* Routing Unit :
R R : R | . RQ |
\ [ H VC 2>/ VC Allocator 1
PE PE \| PE PE : == (VA I
- ! [ A PN | U Switeh l
R R \ - R R i From West 1l | Allocator(SA) i
PE ‘ PE ‘ N ! > . ' |
PE 1, PE ! e V! |, To East |
iFrom North [
R R R R : P —To West |
\ : N g L »To North|
S ! y N > To Southi
\ H > o Southi
\ rrom South ! [ To PE i

\
Router \ ) S Crossbaf5 x 5) i
\ ' A N

. \ : From PE b :
PE | Processing Element N o H P :
(Cores, L2 Banks, Memory Controllers e&) H___ Pl :
_________________________________________ |
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Router Design:
Functions of a Router

=

. . - N ———
Buffering (of flits) From East Routing Unit
Route computation ::

Arbitration of flits (i.e. FromWest,| (1,
prioritization) when :D:
contention From North % | ::
— Called packet scheduling NP L -
. . /-:I—»\ > Y
Switching From South [ 1| [
— From input port to output \‘:*/J
d N
pOFt From PE %
o I

Z



Router Pipeline

* Five logical stages
— BW: Buffer Write

Allocation

BW RC VA SA ST
4
FromEast=
N
/
— RC: Route computation from West,
N
— VA: Virtual Channel y
FromNort!;
N
— SA: Switch Allocation From South [

— ST: Switch Traversal
— LT: Link Traversal

From PE >

LT

Routing Unit

l

N

LT I O L e



Wormhole Router Timeline

Head | pw RC VA SA ST LT

Body 1 BW SA ST LT

Body 2 BW SA ST LT

Tail BW SA ST LT

* Route computation performed once per packet
* Virtual channel allocated once per packet

Body and tail flits inl hic inf ccorm head fli




Dependencies in a Router

Decode + Routing Switch Arbitration Crossbar Traversal

Wormhole Router

Decode + Routing VC Allocation Switch Arbitration Crossbar Traversal

Virtual Channel Router

VC Allocation
Decode + Routing 4 Speculative Switch » Crossbar Traversal

Arbitration

Speculative Virtual Channel
Router

Dependence between output of one module and input of another

 Determine critical path through router
e Cannot bid for switch port until routing performed
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Pipeline Optimizations: Lookahead Routing

e At current router perform routin%T

B . R V. SA LT
compl\ﬂatlon ?or nexAt router

— Overlap with BW

BW

A A T LT
RC V S S

— Precomputing route allows flits to compete for
VCs immediately after BW

— RC decodes route header

— Routing computation needed at next hop
e Can be computed in parallel with VA

e Galles, “Spider: A High-Speed Network
Interconnect,” IEEE Micro 1997.

From East

From West
—_—

From North
—_—

From South

From PE -

Routing Unit
RO

L) QL)L) CIE



Pipeline Optimizations:
Speculation

Assume that Virtual Channel
Allocation stage will be

successful

— Valid under low to moderate
loads

Entire VA and SA in parallel

BW VA

LT
RC SA ST

If VA unsuccessful (no virtual
channel returned)
— Must repeat VA/SA in next cycle

Prioritize non-speculative
requests

From East|

From West

AN

N\ £

\ £

From Nort!;

From Soutb|

From PE |

\ £

\ £

YA

T I O 0L e

Routing Unit

NN




Pipeline Optimizations: Bypassing

* When no flits in input
buffer

— Speculatively enter ST

— On port conflict,
speculation aborted

VA
RC ST LT
Setup

— In the first stage, a free VC
is allocated, next routing is
performed and the
crossbar is setup

From East

From West |

From N ort!;

From Soutbl

From PE |

LT T I I e

Routing Unit

NN




Freq. of Comm. Events

Application Layer Traffic
Characterization

. uP, Dedicated
hlgh H d r
araware DSP, Application
— |
w\\eciﬁc Blocks
Memory /
I/O (sensors,
low wired/wireless)

small large

Communication Msg. Size



Traffic Distribution

high

‘Normal’ (bulk) traffic

suruedIS

Bandwidth Utilization

Control, interrupts,
low
requests, et al?

»
>

low high
QoS
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ing

: Packet Scheduli

The Problem

Routing Unit

“
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o I

NHLVC2 |

:From N ort!;
From South

38
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ing

: Packet Scheduli

The Problem

o — A
g ¥ .
8 Ere emerenos
@ O e, ;EEm
R B BNE N
_M_W._N._S 1 = B
£ g £ S
1 £ 1 ¢ 1 ¢ 1 ¢ 1 &
e
(¢}
2
o 2
o 2
o >
o
@)
EEEE
(=)
5
]
~

“

d X

From EastI
AT

1:1'omWest| ‘I:}"
P
AT

g
AP

o I
N
AP

From PEI ‘:’"
o I

NHLVC2 |

:From N ort!;
From South

39

O Appl  App2  App3 ) App4

- App3B App6 @ App7 [ App8

I. Sourdis, CSE, Chalmers

EDA284, 2020, Lecture on NoCs



The Problem: Packet Scheduling
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Interconnection Network
Performance

Throughput
given by flow
control

Zero load latency Throughput
(topology+routing+flow given by routing

control)

Throughput
given by
topology

Min latency given
by routing
algorithm

Offered Traffic (bits/sec)
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Tilera Networks

AAA A *AAAA
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Figure 3. A 3 X 3 array of tiles connected by networks. (MDN: memory dynamic network;
TDN: tile dynamic network; UDN: user dynamic network; IDN: I/O dynamic network; STN:
static network.)
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2D Mesh
Five networks

* Four packet switched

Dimension order routing,
wormhole flow control

TDN: Cache request packets
MDN: Response packets

IDN: I/O packets

UDN: Core to core messaging

One circuit switched

STN: Low-latency, high-
bandwidth static network

Streaming data
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Research Topics in NoCs

Plenty of topics in on-chip networks. Examples:

Performance:
— Reduce packet latency
— Improve Throughput

Energy/power efficient/proportional design
Adaptivity: Ability to adapt to different access patterns
QoS, performance isolation, prioritization

— Reducing and controlling interference, admission control
— Request prioritization, priority inversion, coherence, ...

Co-design of NoCs with other shared resources
— End-to-end performance, QoS, power/energy optimization

Scalable topologies to many cores
Fault tolerance
New technologies (optical, 3D, ...)
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NoC research at Chalmers

* Freeway NoC
* RQNoC



HighwayNoC:
Objectives And Key Concepts

Primary objective is to improve performance:
* |Improve network throughput

* Reduce packet latency
FreewayNoC is based on two concepts:

1. Operate datapath (ST, LT) at DDR to maximize its utilization

2. Provide a simplified pipeline stage bypassing to reduce latency

Bba#383, 2029, Lectyre oh No€s l. Sourdis, CSE, Chalmers
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NoCs Datapath Is Underutilized

Router
Critical
Path

Clock Cycle |

Lookahead Route
Computation

340 ps
340 ps

Virtual Channel
Allocation

Switch Allocation 480 ps

Switch Traversal

Link Traversal

Motivati

on . . .
How to minimize

bandwidth waste??
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Operate Datapath In DDR

Clock Cycle | |

Clock Cycle | | |
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HighwayNoC:
Improve DDRNoC Latency Using
Pipeline Bypassing

Router Pipeline

Flits bypass allocation - NRC
ort A VA|ST|LT

stage SA

if router resources free




Pipeline Bypassing: Conflict Check

Conflict Check logic
needed to deal with
concurrent incoming
flits

FreewayNoC
cannot afford the
delay of Conflict
Check logic:
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HighwayNoC:
Simplified Pipeline Bypassing

Solution:
Allow bypassing

only when flits go
straig

: SA
e
State

s Idi
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HighwayNoC Simplified Pipeline
Bypassing: Performance Implications

- Slower tumns " \ @ i % !

« Independent of hop \ N

oo e
™)

count

53
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The DDRNoC vs. ShortPath

Mesh Size: 32x32
—&— HighwayNoC

Clock Frequency: 80
e ShortPath: 2.38 GHz
 HighwayNoC: 1.47 GHz
Traffic Pattern: Uniform Random

—f— ShortPath

N
o

Throughput
22% higher

Latency (ns)
N
o

HighwayNoC vs ShortPath

No
o

Latency
10% Lower

Throughput: 22-25% higher

Latency: up to 9% lower 0 0.1 0.2 03 0.4
Injection Rate (Flits/node/ns)

A. Psarras et al., "ShortPath: A Network-on-Chip Router with Fine-Grained Pipeline Bypassing”, in JEEEF
Transactions on Computers, 2016
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Background: NoC

] Microarchitectural Fault Tolerance
technique
I Tolerating faults at routers and links

= We are explicitly targeting permanent faﬁ I

) Service-Oriented NoC

= Supporting multiple
traffic classes

o

ROUTER

requirements, e.g.

Selector

latency and throughout.

NI
Credits /4 ‘ ; ; ; |
Input Stage Switching Stage Output
Stage
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RQNOC: A Resilient Service-Oriented NoC

The Core Idea: S e e
Allowing service redirection| | |

(In presence of a faulty resource on the path)
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RQNOC: A Resilient Service-Oriented NoC

The Core Idea: S e e
Allowing service redirection| | |

(In presence of a faulty resource on the path) E

) Through alternative path on the
same service:

= Service Detour (SDetour)

— Longer alternative path i DR e DI s DR
+ Maintaining service isolation @ 4& 4& JE
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RQNOC: A Resilient Service-Oriented NoC

The Core Idea: [

Allowing service redirection|

(In presence of a faulty resource on the path) E

|
|

) Through alternative path on the
same service:

= Service Detour (SDetour)
— Longer alternative path
+ Maintaining service isolation

) Through resources of another service:

= Service Merge (SMerge)

+ Shorter path
— Breaching service isolation

=
LI
T

o E

"
!
o]
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Summary of Part 2

.. A.Malek et.al.,
D ObleCtlve: TECS’16

To design and evaluate a service-oriented NoC that
enables us to trade service isolation for fault tolerance.

(J RQNoC supports two alternatives for service redirection:
] SDetour: Use alternative resources on the same service
J SMerge: Share resources with another service

« SDetour » SMerge

= Requires 9% more resources vs. Baseline = Requires 22.4% more resources vs. Baseline

= Latency increased up to 24% and throughput up = Latency increased up to 3.8x and throughput up
to 50% reduced to 70% reduced

= Maintains 41% connectivity in presence of 32 = Maintains 90% connectivity in presence of 32
fault faults

Sharing resources between traffic classes imposes

considerable latency and throughput penalty but improves
the to a very high degree
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Summary of Lecture
Reading:

* Principles and Practices of
Interconnection Networks,

* NoCs basics
* NoCs design alternatives:

— Topologies Book by Bill Dally and Brian
— Flow control Towles
— Routing

— Router architecture
— Packet scheduling

e Research on NoCs
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