Sorting Networks

NAMRATHA SANJAY, MARIA AGUILAR

ACM Reference Format:
Namratha Sanjay, Maria Aguilar. 2020. Sorting Networks. 1, 1 (March 2020), 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Sorting can be termed as the re arrangement of data on arrays or lists according to a comparison
operator on their elements, these comparison operators are used to decide the new order of elements
in the respective data structure. While performing sorting in practice, the numbers to be sorted
are rarely isolated values. Each number is generally part of a data collection called a record. Each
record contains a key, which is the value to be sorted. Remainder of the record consists of satellite
data, which are usually carried around with the key. Usually when a sorting algorithm rearranges
the keys, it must rearrange the satellite data as well.

By definition, a sorting network is a combination of comparison and swap operations where
the number of elements to be sorted is required to perform the operations and fix the sequence
of comparisons [Christophides2008]. Sorting is one of the most widely studied algorithms as it
is computational building block of fundamental importance. The importance of sorting has led
to efficient sorting algorithms for variety of parallel architectures e.g. Batcher odd-even merge
sort, bitonic sort etc. Database systems make extensive use of sorting operations. Sorting routines
are also used in computer graphics where construction of spatial data structures is essential as
well as geographic information systems. Efficient sort routines are also useful building blocks in
implementing algorithms like sparse matrix multiplication and parallel programming patterns such
as MapReduce. It is therefore important to provide efficient sorting routines on practically any
programming platform, and as computing evolve there is a continuing need to explore efficient
architectures to improve sorting algorithm performance.

Sorting networks have a wide range of applications on a variety of hardware architectures, how-
ever in this paper we limit to multi core CPU and GPU implementation and how performance is
comparatively better on a GPU architecture than CPU. This is further discussed in the paper.

Author’s address: Namratha Sanjay, Maria Aguilar.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
croft
Comment on Text
Good explanation!

croft
Comment on Text
This citation is in an inconsistent style to the others.

croft
Underline
a

croft
Comment on Text
Stylistic comment, but etc... should generally be avoided if possible.

croft
Comment on Text
Good that you motivate the need for sorting with different algorithms, but they seem picked rather arbitrarily. ie. you have not motivated the need for the algorithms!
This is not a major criticism, however.

croft
Comment on Text
evolves

croft
Comment on Text
limit ourselves/the scope to...

croft
Comment on Text
This is a conclusion.
Not sure if it belongs here, else one might think the paper was a bit biased :)

2 Namratha Sanjay, Maria Aguilar

2 SORTING ALGORITHMS

There are several algorithms that have been developed for sorting networks, where the main
difference is the number and type of functions they use for sorting, such as the Bitonic sort and
Odd-Even merge sort algorithms by Kenneth E. Batcher.

Bitonic sort is a comparison-based sorting algorithm that can be run in parallel and can be used
as a type of sorting network. In bitonic sorting a random sequence of numbers is split into two
and is then converted into a bitonic sequence, one that increases monotonically then decreases.
Initially unsorted sequence of numbers enters through input pipes, where a series of comparators
switch two entries to be in either increasing or decreasing order eventually bitonic sequences are
created recursively. It works by breaking the data set down to smaller bitonic sequences that are
then merged, forming longer bitonic sequences. This eventually results in a bitonic sequence that
is monotonically increasing then decreasing. The final step is to create one long sequence that is
monotonically increasing, which is equivalent to a sorted data set.

Serial implementation of the bitonic sorting network completes its work in O(nlog?n) comparisons,
which fail the ideal comparison-based sort efficiency of O(nlogn). Parallel implementation of the
sort, however, can lead to dramatic speedups, depending on the implementation. Although, bitonic
sorting is fastest and provides good speed-ups for a small input size but fails for large inputs the
execution time increased proportionally with the n inputs according to [1].

One of the keys to success in sorting algorithms development is taking advantage of parallelism
by threads and SIMD (Single Instruction Multiple Data) instructions in multi-core processors to
achieve high performance. Furthermore, most of the works suggest the shared-memory model
and the use of processors over which a min and a max instruction could run[3]. Note that these
operations are supported by x86-64 architectures.

Much of the work found that improvements might be focus on reducing key size. Furthermore,
better results can be achieved by the combination of algorithms.

3 SURVEY - ARCHITECTURE ANALYSIS

Available research exists on a sorting-network implementation over a multi-core CPU and many
core GPU, taking advantage of full programmability offered by CUDA (Compute Unified Device
Architecture). The specifications are as follows, a Quad — Core i7 CPU, where each core has 4-wide
SSE (SIMD) and two SMT (Simultaneous multithreading) threads. The threads share 32KB L1 cache
and 256KB L2 cache. Within this model, about 17 SSE instructions are needed to perform 4-wide
steps of bitonic merge. Overall, a total of 4.25 instructions/element are produced by 4 elements,
obtaining a performance of 2.5 cycles/element/iteration per core. On the other hand, a GPU imple-
mentation was performed over the multicore NVIDIA GPU GTX 280, where each core can have up
to 32 threads. This configuration led to 2 instructions/element needed by 16-wide bitonic network.
Considering 4 cycles needed by instruction, it results on a performance of 9 cycles/element/iteration
per core [5].

According to the results reported above, there is a considerable performance improvement running
the merging-sort algorithm over a GPU than CPU. Moreover, Table 1 shows the best reported
running times of a comparison, played by Satish[5], for sorting networks algorithm implemented
over the CPU and GPU platforms described.

, Vol. 1, No. 1, Article . Publication date: March 2020.

croft
Comment on Text
What is a "pipe" in this context?

croft
Comment on Text
You seem to have decided to focus on this one alone. Maybe mention that somewhere.

Also, is it "bitonic sort" or "bitonic mergesort". This may be an important distinction to the reader.

croft
Comment on Text
How might this be done?
According to the intro, the key is the value to be sorted, right? In what sense can it be reduced?

croft
Comment on Text
This is intriguing, though not explored.
This and the previous sentence would benefit from sources.
These two paragraphs were in general very good.

croft
Comment on Text
:

croft
Comment on Text
It is still unclear what this means.
As I mentioned last time, it has a specific (obscure) meaning in the source material that the reader cannot be expected to know.

croft
Comment on Text
bitonic "merge"sort?

croft
Comment on Text
Is this better?
It is hard to interpret.

The CPU has 2.5 cycles/elem/iter/core (over 4 cores and 2 threads/core) whereas the GPU has 9 (over ? cores and 32 threads/core).

As you can see, the results are not straightforward to interpret...
Is higher better in this case?

croft
Comment on Text
bitonic mergesort?
Please be more consistent with the terminology or it gets a bit ambiguous.

croft
Cross-Out

croft
Comment on Text
I think you should comment a bit more on the table.
It seems to contradict the notion of a considerable performance increase...

They seem about even until the input size grows too large.

Sorting Networks

CPU GPU
BW [Gbps] 30.0 141.7
GFlops 103.0 1933.3
256 K 1.2 ms 1.3 ms
1M 15.3 ms 5.0 ms
4 M 23.3 ms 21.6 ms
16 M 101.5 ms 94.5 ms
64 M 439.7 ms 1381.8 ms

Table 1. Performance comparison of merge sort algorithm over two different architectures

Roofline Model

128.00
112.00

96.00

80.00 ceu

GPU

GFlops

©4.00

48.00

32.00

16.00

0.00 2.00 4.00 6.00 8.00 12.00 14.00 16.00 18.00

Arithmetic Intensity

10.00

Fig. 1. Roofline models for CPU and GPU

The roofline model depicts the differences between CPU and GPU architectures for sorting algo-
rithm. Some assumptions have been considered such as cache blocking to help sorting. One of the
most important facts from the roofline model is the memory bandwidth, which is noticeable higher
in GPU than CPU. This advantage leads to better computation rates [4].A total of (n + nlog,(n/4))
comparisons are performed by the algorithm to sort a sequence of length n. According to the
number of instructions per model reported before, the merge-sort algorithm is considered compute
bound for both CPU and GPU architectures[2][4].

Finally, ongoing research on sorting optimization refers to hardware improvements, especially
parallelism of memory access via GPU. Another trend is considering hybrid architecture allowing
multiple CPU cores to simultaneously send data to a single GPU.

4 DISCUSSION

In this section we discuss about the performance, energy efficiency of algorithms and its impact
due to various hardware features and also merits of the architecture.

As the advent-of advancement in hardware architectures is inevitable the performance of al-
gorithms are decided on the basis of how they utilize the hardware features. We now discuss on

, Vol. 1, No. 1, Article . Publication date: March 2020.

croft
Comment on Text
Still not clear that the left column is "input size", but good nevertheless.

croft
Sticky Note
The roofline model looks plausible :)

In the lectures logarithmic axes were used, however. There is also a lot of unnecessary empty space to the right.

It would also be good if you could show the values at points of interest, such as the line intersections (ie. the machine-balance).

You haven't shown how you computed the values in this graph, so I can't comment on that...

croft
Comment on Text
Sources?

croft
Cross-Out
Strange usage here. :)

4 Namratha Sanjay, Maria Aguilar

some of the architectural advancements and their impact on sorting performance in context of
database operations.

4.1 Thread-Level and Data-Level Parallelism

Thread-Level Parallelism (TLP) is easier to exploit for most of the algorithms as current processors
have increased compute power by adding more cores to exploit TLP and adding SIMD units to
exploit DLP. Many algorithms that sort in parallel have been proposed for multi-core systems such
as merge sort and quick sort naturally involve combining or splitting different blocks of data in
parallel

Data-Level Parallelism is harder to exploit in certain sorting algorithms. To effectively utilize the
SIMD units in a multi-core system the data to be sorted needs to be contiguously laid out in memory.
In the absence of contiguous accesses, gather/scatter to memory are required, which are slow on
most architectures. However as SIMD widths have been increasing, sorts implemented using SIMD
are becoming more efficient.

4.2 Memory Bandwidth

Sorting involves rearrangement of data residing in memory and thus it is typically memory intensive.
The bandwidth of memory has not much improvement as much as the computational capacity of
modern day processors. Therefore algorithms that require high memory bandwidth are likely to
become bandwidth bound and hence stop scaling as they can’t match up to the increasing number
of cores and SIMD width. In order to overcome this bandwidth dependency of certain algorithm or
application, architectures have introduced on-chip local storage in the form of cache hierarchies on
CPUs and shared memory on GPUs.

4.3 Latency Effects/ILP (Instruction Level Parallelism)

Inefficient or low utilization of functional units due to instructions with high latency are because
they block the execution of dependent instructions. This is observed due to last level cache misses
that have long latency memory accesses. In addition to cache misses, misses to auxiliary structure
called Translation Lookaside Buffer (TLB) which is used to perform a conversion from virtual to
physical memory addresses, can also result in significant performance degradation. In order to
overcome this drawback caches and TLBs are organized such that they have minimal misses when
physically contigious regions of memory are accesssed such accesses are called streaming accesses.
Algorithms that have streaming access pattern therefore have minimal impact from cache and TLB
misses. Among sorting algorithms, merge sort has a streaming access pattern, resulting in low
misses.

Since sorting algorithms are working on large data sets and have memory bandwidth constraints it
is easier to fall on the memory bound side, in order to avoid becoming memory bound as it might
dominate the compute requirements of the merge network, merge sort can perform the first few
iterations in cache when array size is small, the passes only read and write data to cache with a
single read of data from/to main memory. In case of large size of array which is too large to reside
in cache then use multi-way scheme data only needs to be read and written once more from main
memory this is the case for a CPU multi-core system. However this is not necessary for a GPU
platform, because the number of compute instructions is higher on GPU due to overhead of shuffle
operation and also the bandwidth-to-compute ratio of the GPU platforms is higher than CPUs.
Even a simple implementation is about 4X away from bandwidth bound.

, Vol. 1, No. 1, Article . Publication date: March 2020.

croft
Comment on Text
Good to state the scope!

croft
Comment on Text
Ambiguous.
CPU, GPU, both?

croft
Comment on Text
Introduce the acronym here.

croft
Comment on Text
, and naturally...

croft
Comment on Text
Interesting!

Do the 2nd and 3rd sentences really follow on from each other though (as "however" would imply)?

croft
Comment on Text
Be consistent with your terminology.
Later you use "memory-bound".

croft
Comment on Text
Is this a new innovation?
Sounds quite standard.

croft
Comment on Text
Great! Clear and informative.

croft
Comment on Text
Unclear.
4X relative to what?
What units would this have?

croft
Comment on Text
This sentence is very unclear and needs a bit of work.
It lacks punctuation, at the least.

croft
Comment on Text
This is also a bit unclear due to the previous part being unclear.

croft
Comment on Text
This sentence is somewhat clear, but way too long. Break it up for clarity.

Sorting Networks 5

5 POTENTIAL DESIGN PROPOSAL

Our proposal for design of architectural feature is based on the trend with continuous increase
in number of cores in the processors and the GPU. Although the core count is not projected to
grow along with the memory bandwidth, it is one of the ways some recent works point out for
performance improvement, considering power constraints. Furthermore, some distinguished archi-
tectural features, such as arbitrary gather/scatter, general interleave instructions and unaligned
memory access support should be considered for better performance in future architectures which
are intended to increase SIMD width up to 64-wide and beyond[6].

In order to reach an effective GPU sort, the improvements must be centered on either increasing the
effective use of on-chip memory and registers, or decreasing memory contention on the algorithm

(2]
6 CONCLUSION

Sorting networks capable of sorting thousands of items in the order of microseconds can be con-
structed with present-day hardware. Such fast sorting capability can be used to manipulate large
sets of data quickly and solve some of the communications problems associated with large scale
computing systems.

Much of the research related to sorting algorithms is focused on hardware improvements instead
of software optimizations to take advantage of parallelism. Architectural features may be exploited
for better performance. In modern processors, some authors recommend take advantage of cache
blocking, SIMD vectoring, work partitioning, load balancing, and multi-way merging. Some ob-
tained improvements have been latency decreasing, compute density increasing, and bandwidth
bound stages elimination (for large input sizes).

Even though the gap narrows between CPUs and GPUs, and synchronization and coalesced global
memories represent barriers on GPUs, they are still the most suitable option to perform sorting
algorithms since most of the works show they got better performance with many-core GPUs against
multi-core CPUs.

REFERENCES

[1] Nancy M. Amato et al. “A Comparison of Parallel Sorting Algorithms on Different Technical Report 98-029 Department
of Computer Science”. In: November (1996).

[2] Dmitril. Arkhipov et al. “Sorting with GPUs: A Survey”. In: (2017). arXiv: 1709.02520. URL: http://arxiv.org/abs/1709.
02520.

[3] Timothy Furtak, José Nelson Amaral, and Robert Niewiadomski. “Using SIMD registers and instructions to enable
instruction-level parallelism in sorting algorithms”. In: Annual ACM Symposium on Parallelism in Algorithms and
Architectures (2007), pp. 348-357. DOI: 10.1145/1248377.1248436.

[4] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. 5th ed. Amsterdam:
Morgan Kaufmann, 2012. 1sBN: 978-0-12-383872-8.

[5] Nadathur Satish et al. “Fast sort on CPUs and GPUs: A case for bandwidth oblivious SIMD sort”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data October 2014 (2010), pp. 351-362. 1ssN: 07308078. DOI:
10.1145/1807167.1807207.

, Vol. 1, No. 1, Article . Publication date: March 2020.

https://arxiv.org/abs/1709.02520
http://arxiv.org/abs/1709.02520
http://arxiv.org/abs/1709.02520
https://doi.org/10.1145/1248377.1248436
https://doi.org/10.1145/1807167.1807207
croft
Comment on Text
What power constraints? You haven't really discussed any previously.

croft
Comment on Text
Nice to mention, but not really explored or motivated in this report.

croft
Comment on Text
This is still unclear.

croft
Comment on Text
To make them less mem-bound?

croft
Comment on Text
Illustrative, but doesn't seem to be a reliable metric.

Very minor criticism.

croft
Comment on Text
Really?
Not previously mentioned.

croft
Comment on Text
Just as in 5), not really explored or motivated in this context. Nice to mention though.
But to a reader they don't convey much other than a starting point for further research on the topic.

croft
Comment on Text
I still don't understand what this is.
Google gives me nothing.

What unit would it have? Flops/m^3?

croft
Comment on Text
Nice!

croft
Comment on Text
You previously wrote that GPU outperformed the CPU considerably.

croft
Comment on Text
Not really explored. Why are they barriers?

croft
Comment on Text
...most prior work...

croft
Comment on Text
Hard to argue with that :)

Might need to be backed up, though.

	1 Introduction
	2 Sorting Algorithms
	3 Survey - Architecture Analysis
	4 Discussion
	4.1 Thread-Level and Data-Level Parallelism
	4.2 Memory Bandwidth
	4.3 Latency Effects/ILP (Instruction Level Parallelism)

	5 Potential Design Proposal
	6 Conclusion

