Sorting Networks

NAMRATHA SANJAY, MARIA AGUILAR

ACM Reference Format:
Namratha Sanjay, Maria Aguilar. 2020. Sorting Networks. 1, 1 (March 2020), 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Sorting can be termed as the re arrangement of data on arrays or lists according to a comparison
operator on their elements, these comparison operators are used to decide the new order of elements
in the respective data structure. While performing sorting in practice, the numbers to be sorted
are rarely isolated values. Each number is generally part of a data collection called a record. Each
record contains a key, which is the value to be sorted. Remainder of the record consists of satellite
data, which are usually carried around with the key. Usually when a sorting algorithm rearranges
the keys, it must rearrange the satellite data as well.

By definition, a sorting network is a combination of comparison and swap operations where
the number of elements to be sorted is required to perform the operations and fix the sequence
of comparisons [Christophides2008]. Sorting is one of the most widely studied algorithms as it
is computational building block of fundamental importance. The importance of sorting has led
to efficient sorting algorithms for variety of parallel architectures e.g. Batcher odd-even merge
sort, bitonic sort etc. Database systems make extensive use of sorting operations. Sorting routines
are also used in computer graphics where construction of spatial data structures is essential as
well as geographic information systems. Efficient sort routines are also useful building blocks in
implementing algorithms like sparse matrix multiplication and parallel programming patterns such
as MapReduce. It is therefore important to provide efficient sorting routines on practically any
programming platform, and as computing evolve there is a continuing need to explore efficient
architectures to improve sorting algorithm performance.

Sorting networks have a wide range of applications on a variety of hardware architectures, how-
ever in this paper we limit to multi core CPU and GPU implementation and how performance is
comparatively better on a GPU architecture than CPU. This is further discussed in the paper.
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2 SORTING ALGORITHMS

There are several algorithms that have been developed for sorting networks, where the main
difference is the number and type of functions they use for sorting, such as the Bitonic sort and
Odd-Even merge sort algorithms by Kenneth E. Batcher.

Bitonic sort is a comparison-based sorting algorithm that can be run in parallel and can be used
as a type of sorting network. In bitonic sorting a random sequence of numbers is split into two
and is then converted into a bitonic sequence, one that increases monotonically then decreases.
Initially unsorted sequence of numbers enters through input pipes, where a series of comparators
switch two entries to be in either increasing or decreasing order eventually bitonic sequences are
created recursively. It works by breaking the data set down to smaller bitonic sequences that are
then merged, forming longer bitonic sequences. This eventually results in a bitonic sequence that
is monotonically increasing then decreasing. The final step is to create one long sequence that is
monotonically increasing, which is equivalent to a sorted data set.

Serial implementation of the bitonic sorting network completes its work in O(nlog?n) comparisons,
which fail the ideal comparison-based sort efficiency of O(nlogn). Parallel implementation of the
sort, however, can lead to dramatic speedups, depending on the implementation. Although, bitonic
sorting is fastest and provides good speed-ups for a small input size but fails for large inputs the
execution time increased proportionally with the n inputs according to [1].

One of the keys to success in sorting algorithms development is taking advantage of parallelism
by threads and SIMD (Single Instruction Multiple Data) instructions in multi-core processors to
achieve high performance. Furthermore, most of the works suggest the shared-memory model
and the use of processors over which a min and a max instruction could run[3]. Note that these
operations are supported by x86-64 architectures.

Much of the work found that improvements might be focus on reducing key size. Furthermore,
better results can be achieved by the combination of algorithms.

3 SURVEY - ARCHITECTURE ANALYSIS

Available research exists on a sorting-network implementation over a multi-core CPU and many
core GPU, taking advantage of full programmability offered by CUDA (Compute Unified Device
Architecture). The specifications are as follows, a Quad — Core i7 CPU, where each core has 4-wide
SSE (SIMD) and two SMT (Simultaneous multithreading) threads. The threads share 32KB L1 cache
and 256KB L2 cache. Within this model, about 17 SSE instructions are needed to perform 4-wide
steps of bitonic merge. Overall, a total of 4.25 instructions/element are produced by 4 elements,
obtaining a performance of 2.5 cycles/element/iteration per core. On the other hand, a GPU imple-
mentation was performed over the multicore NVIDIA GPU GTX 280, where each core can have up
to 32 threads. This configuration led to 2 instructions/element needed by 16-wide bitonic network.
Considering 4 cycles needed by instruction, it results on a performance of 9 cycles/element/iteration
per core [5].

According to the results reported above, there is a considerable performance improvement running
the merging-sort algorithm over a GPU than CPU. Moreover, Table 1 shows the best reported
running times of a comparison, played by Satish[5], for sorting networks algorithm implemented
over the CPU and GPU platforms described.
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CPU GPU
BW [Gbps] 30.0 141.7
GFlops 103.0 1933.3
256 K 1.2 ms 1.3 ms
1M 15.3 ms 5.0 ms
4 M 23.3 ms 21.6 ms
16 M 101.5 ms 94.5 ms
64 M 439.7 ms 1381.8 ms

Table 1. Performance comparison of merge sort algorithm over two different architectures
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Fig. 1. Roofline models for CPU and GPU

The roofline model depicts the differences between CPU and GPU architectures for sorting algo-
rithm. Some assumptions have been considered such as cache blocking to help sorting. One of the
most important facts from the roofline model is the memory bandwidth, which is noticeable higher
in GPU than CPU. This advantage leads to better computation rates [4].A total of (n + nlog,(n/4))
comparisons are performed by the algorithm to sort a sequence of length n. According to the
number of instructions per model reported before, the merge-sort algorithm is considered compute
bound for both CPU and GPU architectures[2][4].

Finally, ongoing research on sorting optimization refers to hardware improvements, especially
parallelism of memory access via GPU. Another trend is considering hybrid architecture allowing
multiple CPU cores to simultaneously send data to a single GPU.

4 DISCUSSION

In this section we discuss about the performance, energy efficiency of algorithms and its impact
due to various hardware features and also merits of the architecture.

As the advent-of advancement in hardware architectures is inevitable the performance of al-
gorithms are decided on the basis of how they utilize the hardware features. We now discuss on
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some of the architectural advancements and their impact on sorting performance in context of
database operations.

4.1 Thread-Level and Data-Level Parallelism

Thread-Level Parallelism (TLP) is easier to exploit for most of the algorithms as current processors
have increased compute power by adding more cores to exploit TLP and adding SIMD units to
exploit DLP. Many algorithms that sort in parallel have been proposed for multi-core systems such
as merge sort and quick sort naturally involve combining or splitting different blocks of data in
parallel

Data-Level Parallelism is harder to exploit in certain sorting algorithms. To effectively utilize the
SIMD units in a multi-core system the data to be sorted needs to be contiguously laid out in memory.
In the absence of contiguous accesses, gather/scatter to memory are required, which are slow on
most architectures. However as SIMD widths have been increasing, sorts implemented using SIMD
are becoming more efficient.

4.2 Memory Bandwidth

Sorting involves rearrangement of data residing in memory and thus it is typically memory intensive.
The bandwidth of memory has not much improvement as much as the computational capacity of
modern day processors. Therefore algorithms that require high memory bandwidth are likely to
become bandwidth bound and hence stop scaling as they can’t match up to the increasing number
of cores and SIMD width. In order to overcome this bandwidth dependency of certain algorithm or
application, architectures have introduced on-chip local storage in the form of cache hierarchies on
CPUs and shared memory on GPUs.

4.3 Latency Effects/ILP (Instruction Level Parallelism)

Inefficient or low utilization of functional units due to instructions with high latency are because
they block the execution of dependent instructions. This is observed due to last level cache misses
that have long latency memory accesses. In addition to cache misses, misses to auxiliary structure
called Translation Lookaside Buffer (TLB) which is used to perform a conversion from virtual to
physical memory addresses, can also result in significant performance degradation. In order to
overcome this drawback caches and TLBs are organized such that they have minimal misses when
physically contigious regions of memory are accesssed such accesses are called streaming accesses.
Algorithms that have streaming access pattern therefore have minimal impact from cache and TLB
misses. Among sorting algorithms, merge sort has a streaming access pattern, resulting in low
misses.

Since sorting algorithms are working on large data sets and have memory bandwidth constraints it
is easier to fall on the memory bound side, in order to avoid becoming memory bound as it might
dominate the compute requirements of the merge network, merge sort can perform the first few
iterations in cache when array size is small, the passes only read and write data to cache with a
single read of data from/to main memory. In case of large size of array which is too large to reside
in cache then use multi-way scheme data only needs to be read and written once more from main
memory this is the case for a CPU multi-core system. However this is not necessary for a GPU
platform, because the number of compute instructions is higher on GPU due to overhead of shuffle
operation and also the bandwidth-to-compute ratio of the GPU platforms is higher than CPUs.
Even a simple implementation is about 4X away from bandwidth bound.
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5 POTENTIAL DESIGN PROPOSAL

Our proposal for design of architectural feature is based on the trend with continuous increase
in number of cores in the processors and the GPU. Although the core count is not projected to
grow along with the memory bandwidth, it is one of the ways some recent works point out for
performance improvement, considering power constraints. Furthermore, some distinguished archi-
tectural features, such as arbitrary gather/scatter, general interleave instructions and unaligned
memory access support should be considered for better performance in future architectures which
are intended to increase SIMD width up to 64-wide and beyond[6].

In order to reach an effective GPU sort, the improvements must be centered on either increasing the
effective use of on-chip memory and registers, or decreasing memory contention on the algorithm

(2]
6 CONCLUSION

Sorting networks capable of sorting thousands of items in the order of microseconds can be con-
structed with present-day hardware. Such fast sorting capability can be used to manipulate large
sets of data quickly and solve some of the communications problems associated with large scale
computing systems.

Much of the research related to sorting algorithms is focused on hardware improvements instead
of software optimizations to take advantage of parallelism. Architectural features may be exploited
for better performance. In modern processors, some authors recommend take advantage of cache
blocking, SIMD vectoring, work partitioning, load balancing, and multi-way merging. Some ob-
tained improvements have been latency decreasing, compute density increasing, and bandwidth
bound stages elimination (for large input sizes).

Even though the gap narrows between CPUs and GPUs, and synchronization and coalesced global
memories represent barriers on GPUs, they are still the most suitable option to perform sorting
algorithms since most of the works show they got better performance with many-core GPUs against
multi-core CPUs.
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