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1 INTRODUCTION
Encryption encodes information (plaintext) in such a way that third parties can not read it (cipher-
text). Only the sender and recipient are able to access the original message. To do this, additional
information in the form of keys is required. The ciphertext will depend on the key used.
There are two key-based encryption schemes: symmetric and asymmetric. In symmetric key

schemes, the same key is used to both encrypt and decrypt a given message. Asymmetric key
schemes use a public key to encrypt the message and a private key to then decrypt it.
In the current era of cloud computing and distributed databases, data storage and processing

is being outsourced to third parties. With conventional encryption schemes, the data must be
decrypted, processed and re-encrypted whenever it is to be modified. Privacy is thus compromised
at this point and there is no way to guarantee that data is not leaked by the third party.

Homomorphic encryption (HE) is an encryption scheme inwhich encrypted data can be processed
without the third party ever being aware of the actual content. HE extends the basic idea of key-
based cryptography with the concept of an evaluation capability that allows computations to be
performed directly on ciphertext without the need to decrypt it. Any evaluation will produce a new
ciphertext, and decrypting it will produce a result corresponding to data as if the operations had
been performed on it in plaintext. Thus, in order to outsource computation with HE, it is enough
that the server has an encrypted version of the data and that the client merely sends the desired
function for manipulating the data. As a side note, computations are also called circuits in HE
literature, as all desired computations (or functions) can be represented by boolean or arithmetic
circuits. Despite the name, these can be of arbitrary depth and complexity.
The practical use of HE has the potential to revolutionise certain applications in which data is

too sensitive to be allowed to leak, but is desired to be shared or outsourced for processing. This is
particularly true in highly regulated industries where privacy concerns are paramount, such as
online banking.
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The main computational challenge of HE is the fact that the primitive functions (described later
in the paper) utilize multiplication and addition with operands on the order of millions of bits. This
is inefficient and time-consuming on most platforms.

2 BACKGROUND ON HOMOMORPHIC ENCRYPTION
Conventional cryptographic systems usually contain the following three algorithms:

• KeyGen(𝜆) : A key k, used to transform plaintext into ciphertext and vice versa, is generated.
𝜆 is a security parameter that will determine the security strength of the key and therefore
the cipher.

• Encrypt(k, m) : The messagem is encrypted by using the encryption key k. The output is
the ciphertext c.

• Decrypt(k, c) : The ciphertext c is transformed back into plaintext by applying the decryption
key k.

HE schemes extend the traditional encryption approach by adding the function Evaluate (Eval):

• Eval(C, (𝑐1, ..., 𝑐𝑛), k): By using the key k, the circuit (or desired computation) C is applied to
the ciphertexts (𝑐1, ..., 𝑐𝑛) and returns the produced ciphertext c.

An encryption scheme is called homomorphic over an operation ★ if it supports the following
equation: 𝐸 (𝑚1) ★ 𝐸 (𝑚2) = 𝐸 (𝑚1 ★𝑚2),∀𝑚1,𝑚2 ∈ 𝑀, where E is the encryption algorithm and M
is the set of all possible messages [1].

Homomorphic Encryption schemes can be classified into three categories [1]:

• Partially homomorphic encryption (PHE) can only perform one type of operation (either
addition or multiplication) on ciphertext, but an unlimited number of times. Arbitrary com-
putations can therefore not be performed, limiting its practical use to algorithms that can
be implemented with only one of these operations. One example of a suitable application is
e-voting, which in its most basic form only requires the tallying of votes (ie. addition) but
where privacy concerns can not be overstated.

• Somewhat homomorphic encryption (SWHE) can perform several types of operations, en-
abling arbitrary computations, but only a limited number of times since the the ciphertext
grows with each homomorphic operation, and beyond some threshold the data can not be
recovered anymore. Beyond the obvious limit imposed by a monotonically growing cipher-
text, it is the notion of cryptographic noise, introduced by this scheme, that causes the data
to degrade to the point that it can no longer be discerned.

• Fully homomorphic encryption (FHE) allows arbitrary computations on ciphertext an unlim-
ited number of times. With the help of so-called bootstrapping (to ’refresh’ the ciphertext and
reduce noise levels) and squashing (to reduce the requirements needed for the bootstrapping
phase) techniques, the limit on number of operations is effectively removed, and any SWHE
scheme can thus be converted into an FHE scheme.

A breakthrough in the field, headed by Craig Gentry in his seminal PhD thesis, suggested a
feasible technique to implement FHE using ideal lattices [6], though the computational requirements
were later shown to be astronomical in an implemented system and the performance was typically
on the order of 1 second per processed bit [7]. The key size was also on the order of gigabytes;
unacceptable for practical use, in other words.

The main barriers (in terms of computational requirements) of FHE is the bootstrapping operation
required, which involves evaluating its own decryption algorithm circuit, as well as the cost of
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homomorphic multiplications. It is the latter that is the main target for potential speedup in
dedicated hardware solutions.

3 SCOPE
In this project we will focus on FHE schemes. Other schemes such as SWHE have already been
shown to be fast enough to potentially be practical [1], if limited in application (see earlier drawbacks
of SWHE). FHE is still prohibitively expensive in terms of efficiency [1] and thus benefits most
from any potential speedup that can be wrought from architecture-level optimisations.

Several FHE implementations have been developed after Gentry’s first proposal of a lattice-based
FHE scheme in 2009. Even though his idea was very promising, it proved to be inefficient in terms of
its computational costs and thus applicability in real life [1]. Multiple other schemes have emerged
since then with better efficiencies as the most computationally expensive parts of the procedure
are addressed.

Ideal Lattice-based
(Gentry 2009)[6]

Over Integers
(van Dijk 2010)[11]

(R)LWE-based
(Vaikuntanathan 2011)[4]

NTRU-like
(López-Alt 2012)[8]

FHE

Fig. 1. The Main FHE Families

In terms of software, we will focus on the (R)LWE1-based system, since all publicly available
HE libraries are based on it. Furthermore, we will utilise HElib, which is a software library that
implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme [3], as
a reference.

4 ALGORITHM DESCRIPTION AND EVALUATION
5 EXISTING COMPUTER ARCHITECTURES
There are several different approaches in order to make FHE more efficient using different hardware
platforms. Each has their own tradeoffs in terms of cost, performance, flexibility, complexity and
energy-efficiency. This section discusses the different approaches in a high-level manner.

5.1 Performance of FHE on a general purpose CPU
Acar et al. [1] conducted a survey on the theory and implementation of software-based HE schemes,
tested on commodity hardware.

Advantages: General purpose systems are cheap and easily accessible. Furthermore, they are the
most flexible in terms of programmability. In contrast with GPUs and FPGAs, algorithms will not
need special tailoring to run on regular processors (unless one wishes to leverage special CPU
features, such as SIMD instructions). Multiple software libraries that are aimed at regular CPUs are
available.

1(Ring) Learning With Erros
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Disadvantages: The inherent generality of CPUs makes them unsuited to highly specialized work-
loads such as this. Clever changes to algorithms can be made to attempt to improve performance,
but CPUs can generally not compete with hardware that is more inherently suited to the problem
(ie. massive parallellism, arithmetic on very long operands etc...)

Conclusion: They do not provide a feasible alternative for FHE computations.

5.2 FPGA Implementations
Field Programmable Gate Arrays (FPGAs) are a great asset for the secure and efficient implementa-
tion of cryptographic algorithms due to their potential to accelerate a wide range of applications
[10]. Cilardo et al. [5] designed and implemented an FPGA-based accelerator to speed up large inte-
ger multiplication. They utilise the Schönhag-Strasse algorithm [9] which provides an advantage
for operands in the order of 100.000 bits [5].

Advantages: Arbitrary functions can be implemented in hardware. Cryptographic schemes regularly
have peculiarities (ie. bit-level manipulation) that may be less supported on CPU/GPUs. FPGAs
usually also contain dedicated and optimised multiply-accumulate (MAC) units that can be utilised
when multiplying large operands, a common bottleneck in FHE schemes. FPGA implementations
focusing on the FFT multiplier block have been shown to be twice as fast as a competitive GPU-
based one and significantly faster than software-only implementations on general purpose CPUs
[5].

Disadvantages: FPGAs have relatively high per-unit cost and overall energy consumption, as well as
relatively low clock speed when compared to ASICs and GPUs. This comes as a consequence of the
hardware needed to support the reconfigurability. Also, it may be impractical to fully implement
FHE. Rather, FPGA implementations in literature target key bottleneck areas and are intended
for use in conjunction with more conventional computers. Furthermore, hardware designs are
generally not beholden to any standard, making interfacing potentially challenging.

Conclusion:

5.3 Utilising a GPU
Another approach to accelerate FHE is the use of a graphics processing unit (GPU) for that purpose.
Wang et al. [12] based their work on the Gentry-Halevi FHE scheme [11] by computing the costly
million-bit modular multiplication in two steps:
1. To efficiently calculate large number multiplication, the Schönhage-Strassen algorithm [9] is
used to recursively calculate FFT. The computations utilise the massive parallelism on a GPU
2. Barrett reduction is applied to perform modulo reduction [2].

Advantages: FHE schemes are highly parallelisable with respect to data, which has the potential to
take advantage of the inherently parallel operation of GPUs.

Disadvantages: Algorithms must be tailored to make use of GPU architecture features and to avoid
unsupported operations such as recursion[12].

Conclusion: The GPU implementation described in [12] yielded a speedup of 7X for the FHE
primitives (encryption, recryption and decryption) over the reference CPU-based implementation
described in [7]. This is as significant improvement, but still too inefficient to be deployable in
commercial applications.
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