Chapter 2
Reliability and fault tolerance

2.1 Reliability, failure and faults 2.8 Dynamic redundancy and

2.2 Failure modes exceptions
2.3 Fault prevention and fault 2.9 Measuring and predicting
tolerance the reliability of software
2.4 N-version programming 2.10 Safety, reliability and
2.5 Software dynamic dependability
redundancy Summary
2.6 The recovery block Further reading
approach to software fault Exercises
tolerance

2.7 A comparison between
N-version programming and
recovery blocks

Reliability and safety requirements are usually much more stringent for real-time
and embedded systems than for other computer systems. For example, if an ap-
plication which computes the solution to some scientific problem fails then it may
be reasonable to abort the program, as only computer time has been lost. How-
ever, in the case of an embedded system, this may not be an acceptable action.
A process control computer, for instance, responsible for the operation of a large
gas furnace, cannot afford to close down the furnace as soon as a fault occurs.
Instead, it must try to provide a degraded service and prevent a costly shutdown
operation. More importantly, real-time computer systems may endanger human
lives if they abandon control of their application. An embedded computer con-
trolling a nuclear reactor must not let the reactor run out of control, as this may
resultin a core meltdown and an emission of radiation. A military avionics system
should at least allow the pilot to eject before permitting the plane to crash!

It is now widely accepted that the society in which we live is totally depen-
dent on the use of computer-based systems to support its vital functions. It is,
therefore, imperative that these systems do not fail. Without wishing to define
precisely what is meant by a system failure or a fault (at the moment), there are,
in general, four sources of faults which can result in an embedded system failure.

(1) Inadequate specification. It has been suggested that the great majority
of software faults stem from inadequate specification (Leveson, 1986).

27

28 RELIABILITY AND FAULT TOLERANCE

Included in this category are those faults that stem from misunderstanding
the interactions between the program and the environment.

(2) Faults introduced from design errors in software components.

(8) Faults introduced by failure of one or more hardware components of the
embedded system (including processors).

(4) Faults introduced by transient or permanent interference in the supporting
communication subsystem.

It is these last three types of fault which impinge on the programming language
used in the implementation of an embedded system. The errors introduced by
design faults are, in general, unanticipated (in terms of their consequences),
whereas those from processor and network failure are, in some senses, pre-
dictable. One of the main requirements, therefore, for any real-time program-
ming language, is that it must facilitate the construction of highly dependable
systems. In this chapter, some of the general design techniques that can be
used to improve the overall reliability of embedded computer systems are con-
sidered. Chapter 3 will show how exception-handling facilities can be used to
help implement some of these design philosophies, particularly those based on
fault tolerance.

2.1 Reliability, failure and faults

Before proceeding, more precise definitions of reliability, failures and faults are neces-
sary. Randell et al. (1978) define the reliability of a system to be:

a measure of the success with which the system conforms to some authori-
tative specification of its behaviour.

Ideally, this specification should be complete, consistent, comprehensible and unambigu-
ous. It should also be noted that the response times of the system are an important part
of the specification, although discussion of the meeting of deadlines will be postponed
until Chapter 11. The above definition of reliability can now be used to define a system
failure. Again, quoting from Randell et al.:

When the behaviour of a system deviates from that which is specified for i,
this is called a failure.

Section 2.9 will deal with the metrics of reliability; for the time being, highly reliable
will be considered synonymous with a low failure rate.

The alert reader will have noticed that our definitions, so far, have been concerned
with the behaviour of a system; that is, its external appearance. Failures result from
unexpected problems internal to the system which eventually manifest themselves in
the system’s external behaviour. These problems are called errors and their mechanical
or algorithmic causes are termed faults. A faulty component of a system is, therefore,
a component which, under a particular set of circumstances during the lifetime of the
system, will result in an error. Viewed in terms of state transitions, a system can be
considered as a number of external and internal states. An external state which is not

RELIABILITY, FAILURE AND FAULTS 29

| activation | propagation 1 causation
Fault . Error : Failure

A 4

> Fault

Figure 2.1 Fault, error, failure, fault chain.

specified in the behaviour of the system is regarded as a failure of the system. The
system itself consists of a number of components, each with their own states, all of which
contribute to the system’s external behaviour. The combined states of these components
are termed the internal state of the system. An internal state which is not specified is
called an error and the component which produced the illegal state transition is said to
be faulty.

A fault is active when it produces an error, and until this point it is dormant. Once
produced, the error can be transformed into other errors via the computational process as
it propagates through the system. Eventually, the error manifests itself at the boundaries
of the system causing a service delivery to fail (Avizienis et al., 2004).

Of course, a system is usually composed of components; each of these may be
considered as a system in its own right. Hence a failure in one system will lead to a fault
in another which will result in an error and potential failure of that system. This in turn
will introduce a fault into any surrounding system and so on (as illustrated in Figure 2.1).

There are many different classifications of fault types depending on the aspect of
interest. For example, whether they are created during development or during operations,
whether they are intentionally or accidentally created, whether they are hardware or
software in origin, etc. From a real-time perspective, the duration of the fault is one of
the most important aspects. Three types of fault can be distinguished.

(1) Transient faults — a transient fault occurs at a particular time, remains in the
system for some period and then disappears. It will initially be dormant but can
become active at any time. Examples of such faults occur in hardware components
which have an adverse reaction to some external interference, such as electrical
fields or radioactivity. After the disturbance disappears so does the fault (although
not necessarily the induced error). Many faults in communication systems are
transient.

(2) Permanent faults — permanent faults start at a particular time and remain in the
system until they are repaired; for example, a broken wire or a software design
error.

(3) Intermittent faults — transient faults that occur from time to time. An example
is a hardware component that is heat sensitive: it works for a time, stops working,
cools down and then starts to work again.

Software faults are usually called bugs and it can be notoriously difficult to isolate and
identify them. Over the years, particular types of bugs have been given names in an infor-
mal classification. Originally two types of software bugs were identified (Gray, 1986).!

I'The names come from analogies with physics. The assertion that most production software bugs are
ephemeral — Heisenbugs that go away when you look at them — is well known to systems programmers.
Bohrbugs, like the Bohr atom, are solid, easily detected by standard techniques.

30 RELIABILITY AND FAULT TOLERANCE

e Bohrbugs — these bugs are reproducible and usually identifiable. Hence they can
easily be removed during testing. If they cannot be removed, then design diversity
techniques can be employed during operation (see Section 2.4).

o Heisenbugs — these are software bugs that only activate under certain rare cir-
cumstances. A good example is code shared between concurrent tasks that is not
properly synchronized. Only when two tasks happen to execute the code concur-
rently will the fault activate and even then the error may propagate a long way
from its source before it is detected. Because of this, they often disappear when
investigated — hence their name.

A particular type of Heisenbug is one that results from ‘software aging’ (Parnas,
1994). In one sense, software can be thought of as not deteriorating with age (unlike
hardware). Whilst this is true, faults can remain dormant for a long time, and only become
active after significant continual use of the software. These faults are normally related to
resources: for example in a dynamic application where memory is constantly allocated
and freed, a fault that doesn’t free unused memory will result in a memory leak. If this
is small, the program may run for a significant period of time before memory becomes
exhausted.

A good example of the effects of software ageing can be found with the use of
the US Patriot missile defence system in the Gulf War in 1991 (see GAO/IMTEC-92-26
Patriot Missile Software Problem at http://www.fas.org/spp/starwars/gao/im92026.htm).
The Patriot system was originally designed for mobile operations in Europe. The design
assumed that it would only operate for a few hours at one location. During the Gulf
War it was used continuously for many hours. Its main battery could last for 100 hours.
After the Patriot’s radar detects an airborne object that has the characteristics of a Scud
missile, the range gate (an electronic detection device within the radar system) calculates
an area in the air space where the system should next look for the detected missile. The
range gate filters out information about airborne objects outside its calculated area and
only processes the information needed for tracking, targeting and intercepting Scuds.
Finding an object within the calculated range gate area confirms that it is a Scud missile. In
February 1991, a Patriot missile defence system failed to track and intercept an incoming
Scud. This Scud subsequently hit an Army barracks, killing 28 people.

The reason for the failure of the Patriot’s systems is explained by considering the
range gate’s prediction software, which used the Scud’s velocity and the time of the last
radar detection. Time is kept continuously by the system’s internal clock in tenths of
seconds held as an integer variable. The longer the system has been running, the larger
the number representing time. To predict where the Scud will next appear, both time and
velocity must be expressed as real numbers. The registers in the Patriot computer are
only 24 bits long, and the conversion of time results in a loss of precision causing a less
accurate time calculation. The effect of this inaccuracy on the range gate’s calculation is
directly proportional to the target’s velocity and the length of time the system has been
running. Consequently, performing the conversion after the Patriot has been running
continuously for extended periods causes the range gate to shift away from the centre of
the target, making it less likely that the target missile will be successfully intercepted.
Table 2.1 shows the effect of this inaccuracy. After 20 hours, the target becomes outside
the range gate. As with all software ageing problems, restarting the system (in this case
before 20 hours of continual operational time) would clear the problem.

FAILURE MODES 31

Calculated time Inaccuracy Approximate shift in

Hours Seconds (seconds) (seconds) range gate (meters)
0 0 0 0 0
1 3600 3599.9966 .0034 7
8 28800 28799.9725 .0025 55
20 72000 71999.9313 .0687 137
48 172800 172799.8352 .1648 330
72 259200 259199.7528 2472 494
100 360000 359999.6667 .3433 687

Table 2.1 Effect of extended run-time on Patriot operation (taken from http://www.fas.org/
spp-starwars/gao/im92026.htm).

To create reliable systems, all types of fault must be prevented from causing erro-
neous system behaviour (that is failure). The difficulty this presents is compounded by
the indirect use of computers in the construction of safety-critical systems. For example,
in 1979 an error was discovered in a program used to design nuclear reactors and their
supporting cooling systems. The fault that this caused in the reactor design had not been
found during installation tests as it concerned the strength and structural support of pipes
and valves. The program had supposedly guaranteed the attainment of earthquake safety
standards in operating reactors. The discovery of the bug led to the shutting down of five
nuclear power plants (Leveson, 1986).

2.2 Failure modes

A system can fail in many different ways. A designer who is using system X to implement
another system, Y, usually makes some assumptions about X’s expected failure modes.
If X fails differently from that which was expected then system Y may fail as a result.

A system provides services. It is, therefore, possible to classify a system’s failure
modes according to the impact they have on the services it delivers. Two general domains
of failure modes can be identified:

e value failure — the value associated with the service is in error;

e time failure — the service is delivered at the wrong time.

Combinations of value and timing failures are often termed arbitrary.

In general, a value error might still be within the correct range of values or be
outside the range expected from the service. The latter is equivalent to a typing error in
programming languages and is called a constraint error. It is usually easy to recognize
this type of failure but its consequence can still be devastating. (Witness the cause of the
Arianne 5 disaster where an exception was caused during execution of a data conversion
from 64-bit floating point to 16-bit signed integer value. The floating point number
which was converted had a value greater than what could be represented by a 16-bit
signed integer — see ‘ARIANE 5, Flight 501 Failure, Report by the Inquiry Board’ at
http://klabs.org/richcontent/Reports/Failure_Reports/ariane/ariane501.htm.)

32

RELIABILITY AND FAULT TOLERANCE
Failures in the time domain can result in the service being delivered:

too early — the service is delivered earlier than required;

too late — the service is delivered later than required (often called a performance
error);,

infinitely late — the service is never delivered (often called an omission failure).

One further failure mode should be identified, which is where a service is delivered
that is not expected. This is often called a commission or impromptu failure. It is, of
course, often difficult to distinguish a failure in both the value and the time domain from
a commission failure followed by an omission failure. Figure 2.2 illustrates the failure
mode classification.

Given the above classification of failure modes, it is now possible to make some

assumptions about how a system might fail.

Fail uncontrolled — a system which can produce arbitrary errors in both the value
and the time domains (including impromptu errors).

Fail late — a system which produces correct services in the value domain but may
suffer from a ‘late’ timing error.
Fail silent — a system which produces correct services in both the value and time

domains until it fails; the only failure possible is an omission failure and when this
occurs all following services will also suffer an omission failure.

Fail stop — a system which has all the properties of fail silent, but also permits
other systems to detect that it has entered the fail-silent state.

Fail controlled — a system which fails in a specified controlled manner.

Fail never — a system which always produces correct services in both the value
and the time domain.

Other assumptions and classifications are clearly possible, but the above list will suffice
for this book.

Failure mode
Value domain Timing domain Arbitrary
(fail uncontrolled)
Constraint error Value error Early Omission Late
Fail silent Fail stop Fail controlled

Figure 2.2 Failure mode classification.

FAULT PREVENTION AND FAULT TOLERANCE 33

2.3 Fault prevention and fault tolerance

Two approaches that can help designers improve the reliability of their systems can
be distinguished (Anderson and Lee, 1990). The first is known as fault prevention;
this attempts to eliminate any possibility of faults creeping into a system before it goes
operational. The second is fault tolerance; this enables a system to continue functioning
even in the presence of faults. Both approaches attempt to produce systems which have
well-defined failure modes.

2.3.1 Fault prevention

There are two stages to fault prevention: fault avoidance and fault removal.
Fault avoidance attempts to limit the introduction of potentially faulty components
during the construction of the system. For hardware this may entail (Randell et al., 1978):

o the use of the most reliable components within the given cost and performance
constraints;

e the use of thoroughly-refined techniques for the interconnection of components
and the assembly of subsystems;

e packaging the hardware to screen out expected forms of interference.

The software components of large embedded systems are nowadays much more complex
than their hardware counterparts. It is virtually impossible in all cases to write fault-free
programs. However the quality of software can be improved by:

e rigorous, if not formal, specification of requirements (for example, B or Z);

o the use of proven design methodologies (for example, those based on UML, such
as Real-Time UML (Douglass, 1999));

e the use of analysis tools to verify key program properties (such as model checkers
or proof checkers to ensure multitask programs are free from deadlock);

e the use of languages with facilities for data abstraction and modularity (for exam-
ple, Ada or Java);

o the use of software engineering tools to help manipulate software components and
thereby manage complexity (for example, configuration management tools such
as CVS).

In spite of fault avoidance techniques, faults will inevitably be present in the system
after its construction. In particular, there may be design errors in both hardware and
software components. The second stage of fault prevention, therefore, is fault removal.
This normally consists of procedures for finding and then removing the causes of errors.
Although techniques such as design reviews, program verification and code inspections
may be used, emphasis is usually placed on system testing. Unfortunately, system test-
ing can never be exhaustive and remove all potential faults. In particular, the following
problems exist.

e A test can only be used to show the presence of faults, not their absence.

34 RELIABILITY AND FAULT TOLERANCE

e It is sometimes impossible to test under realistic conditions — one of the major
causes for concern over the American Strategic Defense Initiative (SDI)> was the
impossibility of testing any system realistically except under battle conditions.
Most tests are done with the system in simulation mode and it is difficult to
guarantee that the simulation is accurate. The last French nuclear testing at Mururao
in the Pacific during 1995 was allegedly to allow data to be collected so that future
tests would not be necessary but could be simulated accurately.

e Errors that have been introduced at the requirements stage of the system’s de-
velopment may not manifest themselves until the system goes operational. For
example, in the design of the F18 aircraft an erroneous assumption was made
concerning the length of time taken to release a wing-mounted missile. The prob-
lem was discovered only during operation when the missile failed to separate
from the launcher after ignition, causing the aircraft to go violently out of control
(Leveson, 1986).

In spite of all the testing and verification techniques, hardware components will fail; the
fault prevention approach will, therefore, be unsuccessful when either the frequency or
duration of repair times are unacceptable, or the system is inaccessible for maintenance
and repair activities. An extreme example of the latter is the crewless spacecraft Voyager.

2.3.2 Fault tolerance

Because of the inevitable limitations of the fault prevention approach, designers of

embedded systems must consider the use of fault tolerance. Of course, this does not

mean that attempts at preventing faulty systems from becoming operational should be

abandoned. However, this book will focus on fault tolerance rather than fault prevention.
Several different levels of fault tolerance can be provided by a system.

e Full fault tolerance — the system continues to operate in the presence of faults,
albeit for a limited period, with no significant loss of functionality or performance.

e Graceful degradation (or fail soft) — the system continues to operate in the
presence of errors, accepting a partial degradation of functionality or performance
during recovery or repair.

e Fail safe — the system maintains its integrity while accepting a temporary halt in
its operation.

The level of fault tolerance required will depend on the application. Although in the-
ory most safety-critical systems require full fault tolerance, in practice many settle for
graceful degradation. In particular, those systems which can suffer physical damage,
such as combat aircraft, may provide several degrees of graceful degradation. Also, with
highly complex applications which have to operate on a continuous basis (they have high
availability requirements) graceful degradation is a necessity, as full fault tolerance is

2This was proposed by President Reagan in the 1980s. Its goal was to use ground-based and space-based
systems to protect the US from attacks by ballistic missiles. It was never fully developed or deployed.

FAULT PREVENTION AND FAULT TOLERANCE 35

Full functionality within
required response time

Minimum functionality Emergency functionality
required to maintain P to provide separation
basic air traffic control between aircraft only

Adjacent facility backup:
used in the event of a
catastrophic failure, such |

as an earthquake

G R SR LSS

Figure 2.3 Graceful degradation and recovery in an air traffic control system.

not achievable for indefinite periods. For example, the Federal Aviation Administration’s
Advanced Automation System, which provides automated services to both en route and
terminal air traffic controllers throughout the USA, has three levels of graceful degrada-
tion for its area control computer couplers (Avizienis and Ball, 1987). This is illustrated
in Figure 2.3.

In some situations, it may simply be necessary to shut down the system in a safe
state. These fail-safe systems attempt to limit the amount of damage caused by a failure.
For example, the A310 Airbus’s slat and flap control computers, on detecting an error on
landing, restore the system to a safe state and then shut down. In this situation, a safe state
is having both wings with the same settings; only asymmetric settings are hazardous in
landing (Martin, 1982).

Early approaches to the design of fault-tolerant systems made three assumptions.

(1) The algorithms of the system have been correctly designed.
(2) All possible failure modes of the components are known.

(3) All possible interactions between the system and the environment have been
foreseen.

However, the increasing complexity of computer software and the introduction of multi-
core hardware components mean that it is no longer possible to make these assumptions
(if it ever was). Consequently, both anticipated and unanticipated faults must be catered
for. The latter include both hardware and software design faults.

36 RELIABILITY AND FAULT TOLERANCE

2.3.3 Redundancy

All techniques for achieving fault tolerance rely on extra elements introduced into the
system to detect and recover from faults. These components are redundant in the sense
that they are not required for the system’s normal mode of operation. This is often called
protective redundancy. The aim of fault tolerance is to minimize redundancy while
maximizing the reliability provided, subject to the cost, size and power constraints of
the system. Care must be taken in structuring fault-tolerant systems because the added
components inevitably increase the complexity of the overall system. This itself can
lead to less reliable systems. For example, the first launch of the Space Shuttle was
aborted because of a synchronization difficulty with the replicated computer systems
(Garman, 1981). To help reduce problems associated with the interaction between redun-
dant components, it is therefore advisable to separate out the fault-tolerant components
from the rest of the system.

There are several different classifications of redundancy, depending on which sys-
tem components are under consideration and which terminology is being used. Software
fault tolerance is the main focus of this chapter and therefore only passing reference will
be made to hardware redundancy techniques. For hardware, Anderson and Lee (1990)
distinguish between static (or masking) and dynamic redundancy. With static redun-
dancy, redundant components are used inside a system (or subsystem) to hide the effects
of faults. An example of static redundancy is Triple Modular Redundancy (TMR).
TMR consists of three identical subcomponents and majority voting circuits. The cir-
cuits compare the output of all the components, and if one differs from the other two
that output is masked out. The assumption here is that the fault is not due to a common
aspect of the subcomponents (such as a design error), but is either transient or due to
component deterioration. Clearly, to mask faults from more than one component requires
more redundancy. The general term N Modular Redundancy (NMR) is therefore used
to characterize this approach.

Dynamic redundancy is the redundancy supplied inside a component which indi-
cates explicitly or implicitly that the output is in error. It therefore provides an error
detection facility rather than an error-masking facility; recovery must be provided by an-
other component. Examples of dynamic redundancy are checksums on communication
transmissions and parity bits on memories.

For fault tolerance of software design errors, two general approaches can be iden-
tified. The first is analogous to hardware masking redundancy and is called N-version
programming. The second is based on error detection and recovery; it is analogous to
dynamic redundancy in the sense that the recovery procedures are brought into action
only after an error has been detected.

2.4 N-version programming

The success of hardware TMR and NMR has motivated a similar approach to software
fault tolerance. Here, the approach is used to focus on detecting design faults. In fact,
this approach (which is now known as N-version programming) was first advocated by
Babbage in 1837 (Randell, 1982):

When the formula is very complicated, it may be algebraically arranged for
computation in two or more distinct ways, and two or more sets of cards

N-VERSION PROGRAMMING 37

may be made. If the same constants are now employed with each set, and if
under these circumstances the results agree, we may then be quite secure of
the accuracy of them all.

N-version programming is defined as the independent generation of N (where N is greater
than or equal to 2) functionally equivalent programs from the same initial specification
(Chen and Avizienis, 1978). The independent generation of N programs means that N
individuals or groups produce the required N versions of the software without interaction
(for this reason N-version programming is often called design diversity). Once designed
and written, the programs execute concurrently with the same inputs and their results
are compared by a driver process. In principle, the results should be identical, but in
practice there may be some difference, in which case the consensus result, assuming
there is one, is taken to be correct.

N-version programming is based on the assumptions that a program can be com-
pletely, consistently and unambiguously specified, and that programs which have been
developed independently will fail independently. That is, there is no relationship between
the faults in one version and the faults in another. This assumption may be invalidated if
each version is written in the same programming language, because errors associated with
the implementation of the language may be common between versions. Consequently,
different programming languages and different development environments should be
used. Alternatively, if the same language is used, compilers and support environments
from different manufacturers should be employed. Furthermore, in either case, to protect
against physical faults, the N versions must be distributed to separate machines which
have fault-tolerant communication lines. On the Boeing 777 flight control system, a sin-
gle Ada program was produced but three different processors and three distinct compilers
were used to obtain diversity.

The N-version program is controlled by a driver process which is responsible for:

e invoking each of the versions;
e waiting for the versions to complete;

e comparing and acting on the results.

So far it has been implicitly assumed that the programs or processes run to completion
before the results are compared, but for embedded systems this often will not be the
case; such processes may never complete. The driver and N versions must, therefore,
communicate during the course of their executions.

It follows that these versions, although independent, must interact with the driver
program. This interaction is specified in the requirements for the versions. It consists of
three components (Chen and Avizienis, 1978):

(1) comparison vectors;
(2) comparison status indicators;
(3) comparison points.

How the versions communicate and synchronize with the driver will depend on the pro-
gramming language used and its model of concurrency (see Chapters 4, 5 and 6). If
different languages are used for different versions, then a real-time operating system

38 RELIABILITY AND FAULT TOLERANCE

e T — P ,

1

| |
Version 1 \ Version 2 ; Version 3

Figure 2.4 N-version programming.

will usually provide the means of communication and synchronization. The relationship
between the N versions and the driver for an N =3 version system is shown diagram-
matically in Figure 2.4.

Comparison vectors are the data structures which represent the outputs, or votes,
produced by the versions plus any attributes associated with their calculation; these must
be compared by the driver. For example, in an air traffic control system, if the values
being compared are the positions of aircraft, an attribute may indicate whether the values
were the result of a recent radar reading or calculated on the basis of old readings.

The comparison status indicators are communicated from the driver to the ver-
sions; they indicate the actions that each version must perform as a result of the driver’s
comparison. Such actions will depend on the outcome of the comparison: whether the
votes agreed and whether they were delivered on time. Possible outcomes include:

e continuation;
e termination of one or more versions;

e continuation after changing one or more votes to the majority value.

The comparison points are the points in the versions where they must communicate
their votes to the driver process. As Hecht and Hecht (1986) point out, an important
design decision is the frequency with which the comparisons are made. This is the
granularity of the fault tolerance provision. Fault tolerance of large granularity, that
is, infrequent comparisons, will minimize the performance penalties inherent in the
comparison strategies and permit a large measure of independence in the version design.
However, a large granularity will probably produce a wide divergence in the results
obtained because of the greater number of steps carried out between comparisons. The
problems of vote comparison or voting (as it is often called) are considered in the
next subsection. Fault tolerance of a fine granularity requires commonality of program
structures at a detailed level, and therefore reduces the degree of independence between

N-VERSION PROGRAMMING 39

versions. A frequent number of comparisons also increase the overheads associated with
this technique.

2.4.1 Vote comparison

Crucial to N-version programming is the efficiency and the ease with which the driver
program can compare votes and decide whether there is any disagreement. For applica-
tions which manipulate text or perform integer arithmetic there will normally be a single
correct result; the driver can easily compare votes from different versions and choose
the majority decision.

Unfortunately, not all results are of an exact nature. In particular, where votes
require the calculation of real numbers, it will be unlikely that different versions will
produce exactly the same result. This might be due to the inexact hardware representation
of real numbers or the data sensitivity of a particular algorithm. The techniques used for
comparing these types of results are called inexact voting. One simple technique is to
conduct a range check using a previous estimation or a median value taken from all N
results. However, it can be difficult to find a general inexact voting approach.

Another difficulty associated with finite-precision arithmetic is the so-called con-
sistent comparison problem (Brilliant et al., 1987). The trouble occurs when an appli-
cation has to perform a comparison based on a finite value given in the specification; the
result of the comparison then determines the course of action to be taken. As an exam-
ple, consider a process control system which monitors temperature and pressure sensors
and then takes appropriate actions according to their values to ensure the integrity of
the system. Suppose that when either of these readings passes a threshold value some
corrective course of action must be taken. Now consider a 3-version software system
(Vi, V,, V3) each of which must read both sensors, decide on some action and then vote
on the outcome (there is no communication between the versions until they vote). As a
result of finite-precision arithmetic, each version will calculate different values (say 77,
T,, Ts for the temperature sensor and Py, P,, P; for the pressure sensor). Assuming that
the threshold value for temperature is 7;;, and for pressure P, the consistent comparison
problem occurs when both readings are around their threshold values.

The situation might occur where 7; and T, are just below 7;, and T3 just above;
consequently V; and V, will follow their normal execution paths and V3 will take some
corrective action. Now if versions V; and V, proceed to another comparison point, this
time with the pressure sensor, then it is possible that P; could be just below and P, just
above P,;,. The overall result will be that all three versions will have followed different
execution paths, and therefore produce different results, each of which is valid. This
process is represented diagrammatically in Figure 2.5.

At first sight, it might seem appropriate to use inexact comparison techniques
and assume that the values are equal if they differ by a tolerance A, but as Brilliant
et al. (1987) point out, the problem reappears when the values are close to the threshold
value £A.

Still further problems exist with vote comparison when multiple solutions to the
same problem naturally exist. For example, a quadratic equation may have more than
one solution. Once again disagreement is possible, even though no fault has occurred
(Anderson and Lee, 1990).

40

RELIABILITY AND FAULT TOLERANCE
T1l Tzl Tsl
@ Yes
lNo
Py a
No

v
vy Vo V3

Figure 2.5 Consistent comparison problem with three versions.

2.4.2 Principal issues in N-version programming

It has been shown that the success of N-version programming depends on several issues,
which are now briefly reviewed.

ey

2

Initial specification — it has been suggested that the great majority of software
faults stem from inadequate specification (Leveson, 1986). Current techniques are a
long way from producing complete, consistent, comprehensible and unambiguous
specifications, although formal specification methods are proving a fruitful line of
research. Clearly a specification error will manifest itself in all N versions of the
implementation.

Independence of design effort — some experiments (Knight et al., 1985; Avizienis
et al., 1988; Brilliant et al., 1990; Eckhardt et al., 1991; Hatton, 1997) have been
undertaken to test the hypothesis that independently produced software will display
distinct failures; however, they produce conflicting results. Knight et al. (1985)
have shown that for a particular problem with a thoroughly refined specification,
the hypothesis had to be rejected at the far from adequate 99% confidence level. In
contrast, Avizienis et al. (1988) found that it was very rare for identical faults to be
found in two versions of a six-version system. In comparing their results and those
produced by Knight et al., they concluded that the problem addressed by Knight
et al. had limited potential for diversity, the programming process was rather
informally formulated, testing was limited, and the acceptance test was totally
inadequate according to common industrial standards. Avizienis et al. claim that
the rigorous application of the N-version programming paradigm would have led
to the elimination of all of the errors reported by Knight et al. before the acceptance
of the system. However, there is concern that where part of a specification is
complex this will inevitably lead to a lack of understanding of the requirements by

SOFTWARE DYNAMIC REDUNDANCY 41

all the independent teams. If these requirements also refer to rarely occurring input
data, then common design errors may not be caught during system testing. In more
recent years, studies by Hatton (1997) found that a three-version system is still
around five to nine times more reliable than a single-version high-quality system.

(3) Adequate budget — with most embedded systems, the predominant cost is soft-
ware. A three-version system will therefore almost triple the budget requirement
and cause problems for maintenance personnel. In a competitive environment, it
is unlikely that a potential contractor will propose an N-version technique unless
it is mandatory. Furthermore, it is unclear whether a more reliable system would
be produced if the resources potentially available for constructing N versions were
instead used to produce a single version.

It has also been shown that in some instances it is difficult to find inexact voting algo-
rithms, and that unless care is taken with the consistent comparison problem, votes will
differ even in the absence of faults.

Although N-version programming may have a role in producing reliable software
it should be used with care and in conjunction with other techniques; for example, those
discussed below.

2.5 Software dynamic redundancy

N-version programming is the software equivalent of static or masking redundancy,
where faults inside a component are hidden from the outside. It is static because each
version of the software has a fixed relationship with every other version and the driver;
and because it operates whether or not faults have occurred. With dynamic redundancy,
the redundant components only come into operation when an error has been detected.

This technique of fault tolerance has four constituent phases (Anderson and Lee,
1990).

(1) Error detection — most faults will eventually manifest themselves in the form of
an error; no fault tolerance scheme can be utilized until that error is detected.

(2) Damage confinement and assessment — when an error has been detected, it must
be decided to what extent the system has been corrupted (this is often called
error diagnosis); the delay between a fault occurring and the manifestation of the
associated error means that erroneous information could have spread throughout
the system.

(3) Error recovery — this is one of the most important aspects of fault tolerance.
Error recovery techniques should aim to transform the corrupted system into a
state from which it can continue its normal operation (perhaps with degraded
functionality).

(4) Fault treatment and continued service —an error is a symptom of a fault; although
the damage may have been repaired, the fault may still exist, and therefore the error
may recur unless some form of maintenance is undertaken.

Although these four phases of fault tolerance are discussed under software dynamic
redundancy techniques, they can clearly be applied to N-version programming. As

42 RELIABILITY AND FAULT TOLERANCE

Anderson and Lee (1990) have noted: error detection is provided by the driver which
does the vote checking; damage assessment is not required because the versions are in-
dependent; error recovery involves discarding the results in error, and fault treatment is
simply ignoring the version determined to have produced the erroneous value. However,
if all versions have produced differing votes then error detection takes place, but there
are no recovery facilities.

The next sections briefly cover the above phases of fault tolerance. For a fuller
discussion, the reader is referred to Anderson and Lee (1990).

2.5.1 Error detection

The effectiveness of any fault-tolerant system depends on the effectiveness of its error
detection techniques. Two classes of error detection techniques can be identified.

o Environmental detection — these are the errors which are detected in the environ-
ment in which the program executes. They include those that are detected by the
hardware, such as ‘illegal instruction executed’, ‘arithmetic overflow’ and ‘protec-
tion violation’. They also include errors detected by the run-time support system
for the real-time programming language; for example, ‘array bounds error’, ‘null
pointer referenced’ and ‘value out of range’. These types of error will be considered
in the context of the Ada and Java programming languages in Chapter 3.

e Application detection — these are the errors that are detected by the application
itself. The majority of techniques that can be used by the application fall into the
following broad categories.

— Replication checks — it has been shown that N-version programming can be
used to tolerate software faults and that the technique can be used to provide
error detection (by using two-version redundancy).

— Timing checks — two types of timing check can be identified. The first in-
volves a watchdog timer process that, if not reset within a certain period by a
component, assumes that the component is in error. The software component
must continually reset the timer to indicate that it is functioning correctly.
Inembedded systems, where timely responses are important, a second type of
check is required. These enable the detection of faults associated with missed
deadlines. Where deadline scheduling is performed by the underlying run-
time support system, the detection of missed deadlines can be considered to
be part of the environment. For example, with the Real-Time Specification
for Java it is the real-time JVM that detects deadline misses. However, an
Ada programmer must detect such an error in the application. The issue of
tolerating timing faults is covered in detail in Chapter 13.

Of course, timing checks do nor ensure that a component is functioning
correctly, only that it is functioning on time! Time checks should therefore
be used in conjunction with other error detection techniques.

— Reversal checks — these are feasible in components where there is a one-to-
one (isomorphic) relationship between the input and the output. Such a check
takes the output, calculates what the input should be, and then compares the
value with the actual input. For example, for a component which finds the
square root of a number, the reversal check is simply to square the output

SOFTWARE DYNAMIC REDUNDANCY 43

and compare it with the input. (Note that inexact comparison techniques may
have to be used when dealing with real numbers.)

- Coding checks — coding checks are used to test for the corruption of data.
They are based on redundant information contained within the data. For
example, a value (checksum) may be calculated and sent with the actual
data to be transmitted over a communication network. When the data is
received, the value can be recalculated and compared with the checksum.

— Reasonableness checks — these are based on knowledge of the internal
design and construction of the system. They check that the state of data or
value of an object is reasonable, based on its intended use. Typically with
modern real-time languages, much of the information necessary to perform
these checks can be supplied by programmers, as type information associated
with data objects. For example, in Ada integer objects which are constrained
to be within certain values can be represented by subtypes of integers which
have explicit ranges. Range violation can then be detected by the run-time
support system.

Sometimes explicit reasonableness checks are included in software compo-
nents; these are commonly called assertions and take a logical expression
which evaluates at run-time to true if no error is detected.

— Structural checks — structural checks are used to check the integrity of data
objects such as lists or queues. They might consist of counts of the number
of elements in the object, redundant pointers or extra status information.

- Dynamic reasonableness checks — with output emitted from some digital
controllers, there is usually a relationship between any two consecutive out-
puts. Hence an error can be assumed if a new output is too different from
the previous value.

Note that many of the above techniques may be applied also at the hardware level and
therefore may result in ‘environmental errors’.

2.5.2 Damage confinement and assessment

As there can be some delay between a fault occurring and an error being detected, it
is necessary to assess any damage that may have occurred. While the type of error that
was detected will give the error-handling routine some idea of the damage, erroneous
information could have spread throughout the system and into its environment. Thus
damage assessment will be closely related to the damage confinement precautions that
were taken by the system’s designers. Damage confinement is concerned with structuring
the system so as to minimize the damage caused by a faulty component. It is also known
as firewalling.

There are two techniques that can be used for structuring systems which will
aid damage confinement: modular decomposition and atomic actions. With modular
decomposition the emphasis is simply that the system should be broken down into
components where each component is represented by one or more modules. Interaction
between components then occurs through well-defined interfaces, and the internal details
of the modules are hidden and not directly accessible from the outside. This makes it
more difficult for an error in one component to be indiscriminately passed to another.

44 RELIABILITY AND FAULT TOLERANCE

Modular decomposition provides a static structure to the software system in that
most of that structure is lost at run-time. Equally important to damage confinement is the
dynamic structure of the system as it facilitates reasoning about the run-time behaviour
of the software. One important dynamic structuring technique is based on the use of
atomic actions.

The activity of a component is said to be atomic if there are no interactions
between the activity and the system for the duration of the action.

That is, to the rest of the system an atomic action appears to be indivisible and takes
place instantaneously. No information can be passed from within the atomic action
to the rest of the system and vice versa. Atomic actions are often called transactions
or atomic transactions. They are used to move the system from one consistent state
to another and constrain the flow of information between components. Where two or
more components share a resource then damage confinement will involve constraining
access to that resource. The implementation of this aspect of atomic actions, using the
communication and synchronization primitives found in modern real-time languages,
will be considered in Chapter 7.

Other techniques which attempt to restrict access to resources are based on pro-
tection mechanisms, some of which may be supported by hardware. For example, each
resource may have one or more modes of operation each with an associated access list (for
example, read, write and execute). An activity of a component, or process, will also have
an associated mode. Every time a process accesses a resource, the intended operation
can be compared against its access permissions and, if necessary, access is denied.

In the time domain, damage confinement techniques focus on resource reservation
techniques. Budgets can be given to processes that can be policed at run-time. This topic
is covered in detail in Chapter 13.

2.5.3 Error recovery

Once an error situation has been detected and the damage assessed, error recovery
procedures must be initiated. This is probably one of the most important phases of any
fault-tolerance technique. It must transform an erroneous system state into one which can
continue its normal operation, although perhaps with a degraded service. Two approaches
to error recovery have been proposed: forward and backward recovery.

Forward error recovery attempts to continue from an erroneous state by making
selective corrections to the system state. For embedded systems, this may involve making
safe any aspect of the controlled environment which may be hazardous or damaged be-
cause of the failure. Although forward error recovery can be efficient, it is system specific
and depends on accurate predictions of the location and cause of errors (that is, damage
assessment). Examples of forward recovery techniques include redundant pointers in
data structures and the use of self-correcting codes, such as Hamming Codes. An abort,
or asynchronous exception, facility may also be required during the recovery action if
more than one process is involved in providing the service when the error occurred.

Backward error recovery relies on restoring the system to a safe state previous
to that in which the error occurred. An alternative section of the program is then exe-
cuted. This has the same functionality as the fault-producing section, but uses a different
algorithm. As with N-version programming, it is hoped that this alternative approach

SOFTWARE DYNAMIC REDUNDANCY 45

will not result in the same fault recurring. The point to which a process is restored is
called a recovery point and the act of establishing it is usually termed checkpointing.
To establish a recovery point, it is necessary to save appropriate system state information
at run-time.

State restoration has the advantage that the erroneous state has been cleared and
that it does not rely on finding the location or cause of the fault. Backward error recovery
can therefore be used to recover from unanticipated faults including design errors. How-
ever, its disadvantage is that it cannot undo any effects that the fault may have had in the
environment of the embedded system; it is difficult to undo a missile launch, for exam-
ple. Furthermore, backward error recovery can be time-consuming in execution, which
may preclude its use in some real-time applications. For instance, operations involving
sensor information may be time dependent, therefore costly state restoration techniques
may simply not be feasible. Consequently, to improve performance incremental check-
pointing approaches have been considered. The recovery cache is an example of such a
system (Anderson and Lee, 1990). Other approaches include audit trails or logs; in these
cases, the underlying support system must undo the effects of the process by reversing
the actions indicated in the log.

With concurrent processes that interact with each other, state restoration is not
as simple as so far portrayed. Consider two processes depicted in Figure 2.6. Process
Py establishes recovery points Ry, Ry, and R;3. Process P, establishes recovery points
R and Ry,. Also, the two processes communicate and synchronize their actions via
IPC,, IPC,, IPCs and IPC4. The abbreviation /PC is used to indicate Inter-Process
Communication.

Te Time of error detection v

H Py
1
1
!
1
E Ri4
! IPC
i 4 ----------- LI
!
1
1
1
i
1
i IPC,
ot S GEREREEEEEEEEE PR >
El
£ Ry
51 IPCy
31 e 5 S SRR S me s o] >
X
w
i Ha
1
: IPC,
1
! s e i e e s s >
i
1
1
1
)
1
1
1
1
1
1
i
1
v

Figure 2.6 The domino effect.

46 RELIABILITY AND FAULT TOLERANCE

If P, detects an error at 7, then it is simply rolled back to recovery point R;s.
However, consider the case where P, detects an error at T,. If P is rolled back to R,
then it must undo the communication /PC, with P;; this requires P; to be rolled back
to R,. But if this is done, P, must be rolled back to R,; to undo communication /PCs,
and so on. The result will be that both processes will be rolled back to the beginning of
their interaction with each other. In many cases, this may be equivalent to aborting both
processes! This phenomenon is known as the domino effect.

Obviously, if the two processes do not interact with each other then there will be
no domino effect. When more than two processes interact, the possibility of the effect
occurring increases. In this case, consistent recovery points must be designed into the
system so that an error detected in one process will not result in a total rollback of all the
processes with which it interacts; instead, the processes can be restarted from a consistent
set of recovery points. These recovery lines, as they are often called, are closely linked
with the notion of atomic actions, introduced earlier in this section. The issue of error
recovery in concurrent processes will be revisited in Chapter 7. For the remainder of this
chapter, sequential systems only will be considered.

The concepts of forward and backward error recovery have been introduced; each
has its advantages and disadvantages. Not only do embedded systems have to be able to
recover from unanticipated errors but they also must be able to respond in finite time; they
may therefore require both forward and backward error recovery techniques. The ex-
pression of backward error recovery in sequential experimental programming languages
will be considered in the next section. Mechanisms for forward error recovery will not
be considered further in this chapter because it is difficult to provide in an application-
independent manner. However, in the next chapter the implementation of both forms of
error recovery is considered within the common framework of exception handling.

2.5.4 Fault treatment and continued service

An error is a manifestation of a fault, and although the error recovery phase may have
returned the system to an error-free state, the error may recur. Therefore the final phase
of fault tolerance is to eradicate the fault from the system so that normal service can be
continued.

The automatic treatment of faults is difficult to implement and tends to be system-
specific. Consequently, some systems make no provision for fault treatment, assuming
that all faults are transient; others assume that error recovery techniques are sufficiently
powerful to cope with recurring faults.

Fault treatment can be divided into two stages: fault location and system repair.
Error detection techniques can help to trace the fault to a component. For a hardware
component this may be accurate enough and the component can simply be replaced.
A software fault can be removed in a new version of the code. However, in most non-
stop applications it will be necessary to modify the program while it is executing. This
presents a significant technical problem, but will not be considered further here.

2.6 The recovery block approach to software fault tolerance

Recovery blocks (Horning et al., 1974) are blocks in the normal programming language
sense except that at the entrance to the block is an automatic recovery point and at

THE RECOVERY BLOCK APPROACH TO SOFTWARE FAULT TOLERANCE 47

Restore
recovery
point |

Enter mosss e E— EXit
recovery)] recovery
block Establish | Execute Discard |pjock
——p{ recovery | next recovery

point alternative point

Fail

recovery
block

Figure 2.7 Recovery block mechanism.

the exit an acceptance test. The acceptance test is used to test that the system is in
an acceptable state after the execution of the block (or primary module as it is often
called). The failure of the acceptance test results in the program being restored to the
recovery point at the beginning of the block and an alternative module being executed.
If the alternative module also fails the acceptance test then again the program is restored
to the recovery point and yet another module is executed, and so on. If all modules fail
then the block fails and recovery must take place at a higher level. The execution of a
recovery block is illustrated in Figure 2.7.

In terms of the four phases of software fault tolerance: error detection is achieved
by the acceptance test, damage assessment is not needed as backward error recovery is
assumed to clear all erroneous states, and fault treatment is achieved by use of a stand-by
spare.

Although no commercially available real-time programming language has lan-
guage features for exploiting recovery blocks, some experimental systems have been
developed (Shrivastava, 1978; Purtilo and Jalote, 1991). A possible syntax for recovery
blocks is illustrated below:

ensure <acceptance test>
by

<primary module>
else by

<alternative module>
else by

<alternative module>

else by
<alternative module>
else error

Like ordinary blocks, recovery blocks can be nested. If a block in a nested recovery block
fails its acceptance tests and all its alternatives also fail, then the outer level recovery
point will be restored and an alternative module to that block executed.

48 RELIABILITY AND FAULT TOLERANCE

To show the use of recovery blocks, the various methods used to find the numer-
ical solution of a system of differential equations are considered. As such methods do
not give exact solutions, but are subject to various errors, it may be found that some
approaches will perform better for certain classes of equations than for others. Un-
fortunately, methods which give accurate results across a wide range of equations are
expensive to implement (in terms of the time needed to complete the method’s execu-
tion). For example, an explicit Kutta method will be more efficient than an implicit
Kutta method. However, it will only give an acceptable error tolerance for particular
problems. There is a class of equations called stiff equations whose solution using an
explicit Kutta leads to an accumulation of rounding errors; the more expensive implicit
Kutta method can more adequately deal with this problem. The following illustrates an
approach using recovery blocks which enables the cheaper method to be employed for
non-stiff equations but which does not fail when stiff equations are given.

ensure rounding_error_within_acceptable_tolerance
by
Explicit Kutta Method
else by
Implicit Kutta Method
else error

In this example, the cheaper explicit method is usually used; however, when it fails the
more expensive implicit method is employed. Although this error is anticipated, this
approach also gives tolerance to an error in the design of the explicit algorithm. If the
algorithm itself is in error and the acceptance test is general enough to detect both types
of error result, the implicit algorithm will be used. When the acceptance test cannot be
made general enough, nested recovery blocks can be used. In the following, full design
redundancy is provided; at the same time the cheaper algorithm is always used if possible.

ensure rounding_error_within_acceptable_tolerance

by
ensure sensible_value
by
Explicit Kutta Method
else by

Predictor-Corrector K-step Method
else error

else by
ensure sensible_value
by
Implicit Kutta Method
else by

Variable Order K-Step Method
else error
else error

In the above, two explicit methods are given; when both methods fail to produce a
sensible result, the implicit Kutta method is executed. The implicit Kutta method will,
of course, also be executed if the value produced by the explicit methods is sensible but
not within the required tolerance. Only if all four methods fail will the equations remain
unsolved.

A COMPARISON BETWEEN N-VERSION PROGRAMMING AND RECOVERY BLOCKS 49

The recovery block could have been nested the other way around as shown be-
low. In this case, different behaviour will occur when a non-sensible result is also not
within acceptable tolerance. In the first case, after executing the explicit Kutta algorithm,
the Predictor Corrector method would be attempted. In the second, the implicit Kutta
algorithm would be executed.

ensure sensible_value

by
ensure rounding_error_within_acceptable_margin
by
Explicit Kutta Method
else by

Implicit Kutta Method
else error
else by
ensure rounding_error_within_acceptable_margin
by
Predictor-Corrector K-step Method
else by
Variable Order K-Step Method
else error
else error

2.6.1 The acceptance test

The acceptance test provides the error detection mechanism which then enables the
redundancy in the system to be exploited. The design of the acceptance test is crucial
to the efficacy of the recovery block scheme. As with all error detection mechanisms,
there is a trade-off between providing comprehensive acceptance tests and keeping the
overhead this entails to a minimum, so that normal fault-free execution is affected as
little as possible. Note that the term used is acceptance not correctness; this allows a
component to provide a degraded service.

All the error detection techniques discussed in Section 2.5.1 can be used to form
the acceptance tests. However, care must be taken in their design as a faulty acceptance
test may lead to residual errors going undetected.

2.7 A comparison between N-version programming
and recovery blocks

Two approaches to providing fault-tolerant software have been described: N-version
programming and recovery blocks. They clearly share some aspects of their basic phi-
losophy, and yet at the same time they are quite different. This section briefly reviews
and compares the two.

e Static versus dynamic redundancy — N-version programming is based on static
redundancy; all versions run in parallel irrespective of whether or not a fault occurs.
In contrast, recovery blocks are dynamic in that alternative modules only execute
when an error has been detected.

o Associated overheads — both N-version programming and recovery blocks incur
extra development cost, as both require alternative algorithms to be developed.

50 RELIABILITY AND FAULT TOLERANCE

In addition, for N-version programming, the driver process must be designed and
recovery blocks require the design of the acceptance test.

At run-time, N-version programming in general requires N times the resources of
a single version. Although recovery blocks only require a single set of resources
at any one time, the establishment of recovery points and the process of state
restoration is expensive. However, it is possible to provide hardware support for
the establishment of recovery points (Lee et al., 1980), and state restoration is only
required when a fault occurs.

o Diversity of design — both approaches exploit diversity in design to achieve toler-
ance of unanticipated errors. Both are, therefore, susceptible to errors that originate
from the requirements specification.

e Error detection — N-version programming uses vote comparison to detect errors
whereas recovery blocks use an acceptance test. Where exact or inexact voting
is possible there is probably less associated overhead than with acceptance tests.
However, where it is difficult to find an inexact voting technique, where multiple
solutions exist or where there is a consistent comparison problem, acceptance tests
may provide more flexibility.

e Atomicity — backward error recovery is criticized because it cannot undo any
damage which may have occurred in the environment. N-version programming
avoids this problem because all versions are assumed not to interfere with each
other: they are atomic. This requires each version to communicate with the driver
process rather than directly with the environment. However, it is entirely possible
to structure a program such that unrecoverable operations do not appear in recovery
blocks.

It perhaps should be stressed that although N-version programming and recovery blocks
have been described as competing approaches, they also can be considered as comple-
mentary ones. For example, there is nothing to stop a designer using recovery blocks
within each version of an N-version system.

2.8 Dynamic redundancy and exceptions

In this section, a framework for implementing software fault tolerance is introduced
which is based on dynamic redundancy and the notion of exceptions and exception
handlers.

So far in this chapter, the term ‘error’ has been used to indicate the manifes-
tation of a fault, where a fault is a deviation from the specification of a component.
These errors can be either anticipated, as in the case of an out of range sensor read-
ing due to hardware malfunction, or unanticipated, as in the case of a design error in
the component. An exception can be defined as the occurrence of an error. Bringing
an exception condition to the attention of the invoker of the operation which caused
the exception is called raising (or signalling or throwing) the exception and the in-
voker’s response is called handling (or catching) the exception. Exception handling
can be considered a forward error recovery mechanism, as when an exception has been
raised the system is not rolled back to a previous state; instead, control is passed to
the handler so that recovery procedures can be initiated. However, as will be shown

DYNAMIC REDUNDANCY AND EXCEPTIONS 51

in Section 3.4, the exception-handling facility can be used to provide backward error
recovery.

Although an exception has been defined as the occurrence of an error, there is
some controversy as to the true nature of exceptions and when they should be used. For
example, consider a software component or module which maintains a compiler symbol
table. One of the operations it provides is to look up a symbol. This has two possible
outcomes: symbol present and symbol absent. Either outcome is an anticipated response
and may or may not represent an error condition. If the lookup operation is used to
determine the interpretation of a symbol in a program body, symbol absent corresponds
to ‘undeclared identifier’, which is an error condition. If, however, the lookup operation
is used during the declaration process, the outcome symbol absent is probably the normal
case and symbol present, that is ‘duplicate definition’, the exception. What constitutes
an error, therefore, depends on the context in which the event occurs. However, in either
of the above cases it could be argued that the error is not an error of the symbol table
component or of the compiler, in that either outcome is an anticipated result and forms
part of the functionality of the symbol table module. Therefore neither outcome should
be represented as an exception.

Exception-handling facilities were not incorporated into programming languages
to cater for programmer design errors; however, it will be shown in Section 3.4 how
they can be used to do just that. The original motivation for exceptions came from
the requirement to handle abnormal conditions arising in the environment in which a
program executes. These exceptions could be termed rare events in the functioning of
the environment, and it may or may not be possible to recover from them within the
program. A faulty valve or a temperature alarm might cause an exception. These are rare
events which, given enough time, might well occur and must be tolerated.

Despite the above, exceptions and their handlers will inevitably be used as a general
purpose error-handling mechanism. To conclude, exceptions and exception handling can
be used to:

e cope with abnormal conditions arising in the environment;
e enable program design faults to be tolerated;

e provide a general-purpose error-detection and recovery facility.

Exceptions are considered in more detail in Chapter 3.

2.8.1 Ideal fault-tolerant system components

Figure 2.8 shows the ideal component from which to build fault-tolerant systems

—(Anderson and Lee, 1990). The component accepts service requests and, if necessary,
calls upon the services of other components before yielding a response. This may be a
normal response or an exception response. Two types of fault can occur in the ideal com-
ponent: those due to an illegal service request, called interface exceptions, and those
due to a malfunction in the component itself, or in the components required to service the
original request. Where the component cannot tolerate these faults, either by forward or
backward error recovery, it raises failure exceptions in the calling component. Before
raising any exceptions, the component must return itself to a consistent state, if possible,
in order that it may service any future request.

52 RELIABILITY AND FAULT TOLERANCE

Service Normal Interface Failure
request response exception exception
A A

Return to
normal service

v |
|
il
Normal activity Exception handler |
i
A v A A
Internal
exception
v
Service Normal Interface Failure
request response exception exception

Figure 2.8 An ideal fault-tolerant component.

2.9 Measuring and predicting the reliability of software

Reliability metrics for hardware components have long been established. Traditionally,
each component is regarded as a representative of a population of identical members
whose reliability is estimated from the proportion of a sample that fail during a specified
interval of time, e.g. during testing. Software reliability prediction and measurement,
however, is not as well established a discipline. It was ignored for many years by those
industries requiring extremely reliable systems because software is assumed not to dete-
riorate with use; software was regarded as either correct or incorrect — a binary property.

Also, in the past, particular software components were used once only, in the sys-
tems for which they were originally intended; consequently, although any errors found
during testing were removed, this did not lead to the development of more reliable compo-
nents which could be used elsewhere. This can be contrasted with hardware components,
which are mass produced; any errors found in the design can be corrected, making the
next batch more reliable.

The view that software is either correct or not correct is still commonly held. If it is
not correct, program testing or program proving will indicate the location of faults which
can then be corrected. This chapter has tried to illustrate that the traditional approach
of software testing, although indispensable, can never ensure that programs are fault-
free, especially with very large and complicated systems where there may be residual
specification or design errors. Furthermore, in spite of the continual advances made in the
field of proof of correctness, the application of these techniques to non-trivial systems,
particularly those involving the concept of time, is still beyond the state of the art. Indeed

SAFETY, RELIABILITY AND DEPENDABILITY 53

it may always be beyond the capability of such techniques due to the tendency to make
systems and programs ever larger and more complex.

It is for all these reasons that methods of improving reliability through the use of
redundancy have been advocated. Unfortunately, even with this approach, it cannot be
guaranteed that systems containing software will not fail. It is therefore essential that
techniques for assessing software reliability are developed.

As hardware is deemed to be subject to random failures it is natural to use a
probabilistic approach for reliability assessment. It is perhaps less clear why systematic
software failures should be characterized similarly. Although systematic in nature, the
process by which any particular demand on the system will give rise to a failure is
essentially non-deterministic (Littlewood et al., 2001). Software reliability can therefore
be considered as the probability that a given program will operate correctly in a specified
environment for a specified length of time.

Several models have been proposed which attempt to estimate software reliability.
These can be broadly classified as (Goel and Bastini, 1985):

e software reliability growth models;
e statistical models.

Growth models attempt to predict the reliability of a program on the basis of its error
history (e.g. when faults are identified and repaired). Other statistical models attempt
to estimate the reliability of a program by determining its success or failure response
to a random sample of test cases, without correcting any errors found. Unfortunately,
Littlewood and Strigini (1993) have argued that testing alone can only provide effective
evidence for reliability estimates of at best 10~ (that is 10~* failures per hour of oper-
ation). This should be compared with the often quoted reliability requirement of 10~°
for avionics systems. To increase the assessment of reliability by an order of magnitude
to 107 would required the observation of 460000 hours (over 50 years) of fault-free
operation (Littlewood et al., 2001).

To estimate the reliability of N-version components is even more difficult as the
level of correlation between the versions is, as indicated earlier, very difficult to estimate.
Even strong advocates of the approach would not argue that two 10~* versions would
combine to give a 1078 service.

2.10 Safety, reliability and dependability

Safety can be defined as freedom from those conditions that can cause death, injury,
occupational illness, damage to (or loss of) equipment (or property), or environmental
harm (Leveson, 1986). However, as this definition would consider most systems which
have an element of risk associated with their use as unsafe, software safety is often
considered in terms of mishaps (Leveson, 1986). A mishap is an unplanned event or
series of events that can result in death, injury, occupational illness, damage to (or loss
of) equipment (or property), or environmental harm.

Although reliability and safety are often considered as synonymous, there is a
difference in their emphasis. Reliability has been defined as a measure of the success
with which a system conforms to some authoritative specification of its behaviour. This
is usually expressed in terms of probability. Safety, however, is the probability that

54 RELIABILITY AND FAULT TOLERANCE

conditions that can lead to mishaps do not occur whether or not the intended function is
performed. These two definitions can conflict with each other. For example, measures
which increase the likelihood of a weapon firing when required may well increase the
possibility of its accidental detonation. In many ways, the only safe aeroplane is one that
never takes off; however, it is not very reliable. Nevertheless, any system (or subsystem)
whose primary role is to provide safety must itself be sufficiently reliable. For example,
a secondary Nuclear Reactor Protection System (NRPS) is only required to act when
other systems have failed. It provided additional safety and hence is of value if its own
reliability is assessed as being no more than 10~ failures per demand. The primary
NRPS may be assessed to have reliability of only 107>; as long as the primary and
secondary systems are independent this provides an overall reliability of at least 107",
Plant safety is only compromised if these two systems fail and the plant controller itself
suffers a ‘meltdown’ failure — an exceedingly rare event in itself.

As with reliability, to ensure the safety requirements of an embedded system, sys-
tem safety analysis must be performed throughout all stages of its life cycle development.
It is beyond the scope of this book to enter into details of safety analysis; for a general
discussion of reliability and safety issues, the reader is referred to the Further Reading
section at the end of this chapter.

2.10.1 Dependability

The dependability of a system is that property of the system which allows reliance to
be justifiably placed on the service it delivers. Dependability, therefore, includes as
special cases the notions of reliability, safety and security (Laprie, 1995). Figure 2.9,
based on that given by Laprie (1995), illustrates these and other aspects of dependability
(where security is viewed in terms of integrity and confidentiality). In this figure, the
term ‘reliability’ is used as a measure of the continuous delivery of a proper service;
availability is a measure of the frequency of periods of improper service.
Dependability itself can be described in terms of three components (Laprie, 1995):

e threats — circumstances causing or resulting in non-dependability;

e means — the methods, tools and solutions required to deliver a dependable service
with the required confidence;

Dependability

]

Readiness Continuity Absence Absence Absence Ability to
for of service of catastrophic of unauthorized of improper undergo
usage delivery consequences disclosure of alteration of repairs and

l l l information information evolutions
Availability ~ Reliability Safety Confidentiality Integrity Maintainability

Figure 2.9 Aspects of dependability.

SUMMARY 55

— Availability
— Reliability
— Safety

— Attributes | — Confidentiality

— Integrity

'— Maintainability

Dependability

Fault prevention
Fault tolerance
— Means

Fault removal

Fault forecasting

Faults

Errors

‘— Threats

Failures
Figure 2.10 Dependability terminology.

e attributes — the way and measures by which the quality of a dependable service
can be appraised.

Figure 2.10 summarizes the concept of dependability in terms of these three components.

Summary

This chapter has identified reliability as a major requirement for any real-time
system. The reliability of a system has been defined as a measure of the suc-
cess with which the system conforms to some authoritative specification of its
behaviour. When the behaviour of a system deviates from that which is specified
for it, this is called a failure. Failures result from faults. Faults can be accidentally
or intentionally introduced into a system. They can be transient, permanent or
intermittent.

There are two approaches to system design which help ensure that po-
tential faults do not cause system failure: fault prevention and fault tolerance.
Fault prevention consists of fault avoidance (attempting to limit the introduction
of faulty components into the system) and fault removal (the process of finding
and removing faults). Fault tolerance involves the introduction of redundant com-
ponents into a system so that faults can be detected and tolerated. In general,
a system will provide either full fault tolerance, graceful degradation or fail-safe
behaviour.

56 RELIABILITY AND FAULT TOLERANCE

Two general approaches to software fault tolerance have been discussed:
N-version programming (static redundancy) and dynamic redundancy using for-
ward and backward error recovery. N-version programming is defined as the in-
dependent generation of N (where 2 or more) functionally equivalent programs
from the same initial specification. Once designed and written, the programs ex-
ecute concurrently with the same inputs and their results are compared. In princi-
ple, the results should be identical, but in practice there may be some difference,
in which case the consensus result, assuming there is one, is taken to be cor-
rect. N-version programming is based on the assumptions that a program can be
completely, consistently and unambiguously specified, and that programs which
have been developed independently will fail independently. These assumptions
may not always be valid, and although N-version programming may have a role
in producing reliable software it should be used with care and in conjunction with
techniques based on dynamic redundancy.

Dynamic redundancy techniques have four constituent phases: error de-
tection, damage confinement and assessment, error recovery, and fault treat-
ment and continued service. One of the most important phases is error recovery
for which two approaches have been proposed: backward and forward. With
backward error recovery, it is necessary for communicating processes to reach
consistent recovery points to avoid the domino effect. For sequential systems,
the recovery block has been introduced as an appropriate language concept for
expressing backward error recovery. Recovery blocks are blocks in the normal
programming language sense except that at the entrance to the block is an au-
tomatic recovery point and at the exit an acceptance test. The acceptance test
is used to test that the system is in an acceptable state after the execution of
the primary module. The failure of the acceptance test results in the program
being restored to the recovery point at the beginning of the block and an alterna-
tive module being executed. If the alternative module also fails the acceptance
test, the program is restored to the recovery point again and yet another module
is executed, and so on. If all modules fail then the block fails. A comparison
between N-version programming and recovery blocks illustrated the similarities
and differences between the approaches.

Although forward error recovery is system-specific, exception handling has
been identified as an appropriate framework for its implementation. The concept
of an ideal fault-tolerant component was introduced which used exceptions.

Finally in this chapter, the notions of software safety and dependability were
introduced.

Further reading
Anderson, T. and Lee, P. A. (1990) Fault Tolerance, Principles and Practice, 2nd edn.
Englewood Cliffs, NJ: Prentice Hall.

Andrews, J. D. and Moss, T. R. (2002) Reliability and Risk Assessment, 2nd edn.
Chichester: Wiley.

De Florio, V. and Blondia, C. (2008) A survey of linguistic structures for application-level
fault tolerance, ACM Computer Surveys, 40(2).

EXERCISES 57

Herrmann, D. S. (1999) Software Safety and Reliability. Los Alamitos, CA: IEEE Com-
puter Society.

Kritzinger, D. (2006) Aircraft System Safety — Military and Civil Aeronautical Applica-
tions. Cambridge: Woodhead Publishing.

Laprie J.-C. et al. (1995) Dependability Handbook. Toulouse: Cépadues (in French).

Leveson, N. G. (1995) Safeware: System Safety and Computers. Reading, MA: Addison-
Wesley.

Mili, A. (1990) An Introduction to Program Fault Tolerance. New York: Prentice Hall.
Neumann, P. G. (1995) Computer-Related Risks. Reading, MA: Addison-Wesley.

Redmill, F. and Rajan, J. (eds) (1997) Human Factors in Safety-Critical Systems. Oxford:
Butterworth-Heinemann.

Storey, N. (1996) Safety-Critical Computer Systems. Reading, MA: Addison-Wesley.

Exercises

2.1 Isaprogram reliable if it conforms to an erroneous specification of its behaviour?

2.2 What would be the appropriate levels of degraded service for acomputer-controlled
automobile?

2.3 Write a recovery block for sorting an array of integers.

2.4 To what extent is it possible to detect recovery lines at run-time? (See Anderson
and Lee, 1990, Chapter 7.)

2.5 Figure 2.11 illustrates the concurrent execution of four communicating processes
(Py, P>, P; and P;) and their associated recovery points (for example, R,; is the
first recovery point for process Pj).

0__
Ry Ry Ra R
- T b &
< 4
Ri2 R |4 R4z
PP T
: 32
Time
C? g
R |
2 =
| -
13 |4 »
= < >
. Key: Ry
&) Recovery point
v v v v v
<4——» Interprocess
P, Py Py Py communication

Figure 2.11 Concurrent execution of four processes for Exercise 2.5.

58 RELIABILITY AND FAULT TOLERANCE
Explain what happens when an error is detected by:

e Process P; at time f;
e Process P, at time ¢.

2.6 Should the end of file condition that occurs when sequentially reading a file be
signalled to the programmer as an exception?

2.7 Data diversity is a fault-tolerance strategy that complements design diversity. Un-
der what conditions might data diversity be more appropriate than design diversity?
(Hint: see Ammann and Knight, 1988.)

2.8 Should the dependability of a system be judged by an independent assessor?

