5 UNIVERSITY OF GOTHENBURG

CHALMERS | {

Dependable
<. Real-Time Systems
Lecture #3

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

UNIVERSITY OF GOTHENBURG

PSTIRN
fof A
CHALMERS | (@)
& %

UNIVERSITY OF TECHNOLOGY TTIe

Scheduling

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

Scheduling is used in many disciplines:
(a.k.a. "operations research”)

e Production pipelines (“Ford’s automotive assembly line”)

Actors: workers + car parts

Goal: generate schedules that maximizes system throughput
(cars per time unit)

Technique: job- and flow-shop scheduling

e Real-time systems

Actors: processors, data structures, /O hardware + tasks
Goal: generate schedules that meet timing constraints
(deadlines, periods, jitter)

Technique: priority-based task scheduling

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

Scheduling is used in many disciplines:
(a.k.a. "operations research”)

e Classroom scheduling

Actors: classrooms, teachers + courses
Goal: generate periodic schedules within 7-week blocks
Technique: branch-and-bound algorithms

e Airline crew scheduling

Actors: aircraft, staff + routes

Goal: generate periodic schedules that minimizes the number of
aircraft and staff used, and fulfill union regulations for staff
Technique: advanced branch-and-bound algorithms

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

Scheduling:

e Implementation:

— A scheduling algorithm generates a schedule for a given set
of tasks and a certain type of run-time system.

— The scheduling algorithm is implemented by a scheduler that
uses a ready queue, where tasks are sorted according to
desired execution order.

— A dispatcher starts the execution of the task in the front of
the ready queue, whenever a task switch is possible.

scheduling

task termination

preemption

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

Classification of scheduling constraints:

e Processor-related constraints:

— How may tasks be executed when multiple processors are
available?

e Dispatch-related constraints:

— What information is known regarding the current and future
task set, and how may the dispatcher act based on that
information?

e Preemption-related constraints:

— What other tasks, if any, may preempt the currently-executing
task?

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling constraints

Processor-related constraints:

e No processor sharing:
— A processor can only execute one task at a time
— Each core in multi-core processor viewed as separate processor

e No dynamic task parallelism:
— A task can only execute on one processor at a time
— Realistic assumption for any practical programming model

e No task migration:

— A task can only execute on one given processor, or cannot
change processor once it has started its execution

— Assumption made for distributed systems, and also for some
AUTOSAR multi-core processor designs

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

Scheduling constraints

Dispatch-related constraints:

e Myopic scheduling:
— Scheduling algorithm only knows about currently ready tasks

e Clairvoyant scheduling:
— Scheduling algorithm knows all future arrival times of all tasks

e \Work-conserving scheduling:

— As long as there are tasks in the ready queue the dispatcher
must execute a task on a processor

e Non-work-conserving scheduling:

— Although there are tasks in the ready queue the dispatcher
may choose not to execute a task (“inserted idle time”)

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Scheduling constraints

Preemption-related constraints:

e Fully preemptive scheduling:
— An executing task can be preempted by other tasks at any time

e Non-preemptive scheduling:

— Once a task has started executing, it cannot be preempted by
any other task

e Greedy scheduling:

— Once a task has started executing, it cannot be preempted by
a lower-priority task

e [air scheduling:

— Although a task has started executing, lower-priority tasks
receive a guaranteed time quantum per time unit for execution

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Preemption constraints

Fully preemptive scheduling:

e Advantages:
— Gives highest flexibility in making scheduling decisions

e Disadvantages:

— Guaranteeing mutual exclusion requires special run-time
support (e.g., semaphores)

— Typically incurs higher number of ready queue operations
(e.g., insert, remove, dispatch) than for non-preemptive
scheduling

— WCET analysis becomes more complicated since cache and
pipeline contents will be affected by a task switch

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Preemption constraints

Non-preemptive scheduling:

e Advantages:

— The only practical approach to implement scheduling of
messages on communication networks

— Guaranteeing mutual exclusion becomes a trivial problem,
and can be solved without special run-time support

— Results from WCET analysis correspond very well with real
WCET behavior (“undisturbed execution” assumption)

e Disadvantages:

— Once a task starts executing, all other tasks on the same
processor will be blocked until execution is complete

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Preemption constraints

Greedy scheduling:

e Approach: "traditional” priority scheduling

— Once a task has started executing, it cannot be preempted by
tasks with priorities lower than the currently executing task

— Note: this is a fundamental assumption in all single- and multi-
processor feasibility tests presented so far

e Advantages:
— Run-time scheduler relatively simple to implement

e Disadvantages:
— Lower-priority tasks may starve and hence miss their deadlines

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

Preemption constraints

Fair scheduling:

e Approach: p-fair scheduling (Baruah et al. 1996)

— Although a task has started executing, lower-priority tasks
receive a guaranteed time quantum per time unit for execution

— Hence: all tasks make some kind of progress per time unit

e Advantages:

— Multiprocessor schedulability guaranteed for 100% task load
(assuming that task-switch cost is negligible)

e Disadvantages:
— Requires a more advanced run-time scheduler
— Requires a more advanced approach to feasibility testing
— Incurs significantly more task switches than greedy scheduling

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Preemption constraints (recent results)

Limited preemption scheduling: (see Buttazzo et al. 2013)

e Preemption thresholds:

— Allows a task to disable preemption by tasks with priorities
lower than a specified threshold

— Special case: “traditional” (greedy) priority scheduling, where
the threshold is the priority of the currently executing task
o Deferred preemption:
— Allows a task to postpone preemption for a given amount of time
— Special case: non-preemptive scheduling (“postpone until done”)
e Fixed preemption points:

— Allows a task to specify that preemption can only occur at given
places in the program code (a k a “cooperative scheduling”)

(&%) UNIVERSITY OF GOTHENBURG

Scheduling algorithms revisited

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Scheduling algorithms revisited

Methods for generating schedules:

e Cyclic executives:

— Schedule generated "off-line” before the tasks becomes ready,
sometimes even before the system is in mission.

— Schedule is generated by (i) simulating a pseudo-parallel
scheduler or (ii) applying a search algorithm that finds a
feasible schedule (whenever one exists) by considering all
possible execution scenarios.

e Pseudo-parallel execution:

— Schedule generated "on-line” as a side effect of tasks being
executed by the run-time system.

— Resource conflicts at run-time are resolved by using priorities,
possible combined with time quanta.

(&%) UNIVERSITY OF GOTHENBURG

NP-completeness revisited

UNIVERSITY OF GOTHENBURG

PSTIRN
fof A
CHALMERS (A
& %

UNIVERSITY OF TECHNOLOGY TTIe

NP-completeness revisited

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

NP-completeness revisited

Example: The Traveling Salesman Problem:

Is there a “tour” of all the cities in C having a total
length of no more than B?

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

NP-completeness revisited

Deterministic algorithm: (Deterministic Turing Machine)
e Finite-state control:

— The algorithm can pursue only one computation at a time

— Given a problem instance I, some solution S
is derived by the algorithm

— The correctness of S is inherent in the algorithm

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

NP-completeness revisited

Non-deterministic algorithm: (Non-Deterministic Turing Machine)

1. Guessing stage:

— Given a problem instance I, some solution S is “guessed”.

— The algorithm can pursue an unbounded number of
independent computational sequences in parallel.

2. Checking stage:

— The correctness of S is verified in a normal deterministic manner

CHALMERS | ¢

§ UNIVERSITY OF GOTHENBURG

NP-completeness revisited

Reducibility:
e A problem IT is reducible to problem II if, for any
instance of IT', an instance of II can be constructed in

polynomial time such that solving the instance of 11 will
solve the instance of IT" as well.

When IT is reducible to I1, we write IT « I1

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Relationship between P and NP

Observations:

1.PS NP

— Proof: use a polynomial-time deterministic algorithm as the
checking stage and ignore the guess

2.P#NP

— This is a wide-spread belief, but ...

— ... ho proof of this conjecture exists!

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

Strong NP-completeness

Pseudo-polynomial time complexity:

e Number problems
— This is a special type of NP-complete problems for which
the largest number (parameter value) in a problem instance
is not bounded by the input length (size) of the problem.

e Number problems are often quite tractable
— If the time complexity of a number problem can be shown to
be a polynomial-time function of both the input length and
the largest number, that number problem is said to have
pseudo-polynomial time complexity.

That is, the time-complexity function is proportional to p(max,n) for
some polynomial function p, where max is the largest number and

n is the input length.

UNIVERSITY OF GOTHENBURG

PSTIRN
fof A
CHALMERS (A
& %

UNIVERSITY OF TECHNOLOGY TTIe

Strong NP-completeness

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Strong NP-completeness

NP-complete problems that are number problems ...

e ... but are NP-complete in the strong sense regardless
— Multiprocessor scheduling (partitioned and global)

— Uniprocessor scheduling of asynchronous tasks, or
synchronous tasks with dynamic task priorities

— 3-Partition, Simultaneous Congruences, Traveling Salesman

e ... and that do have pseudo-polynomial time complexity
— Uniprocessor scheduling of synchronous constrained-deadline
tasks with static priorities (using response-time analysis)
— Uniprocessor scheduling of synchronous constrained-deadline
tasks with dynamic task priorities and total utilization U < 1
(using processor-demand analysis)

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Co-NP-complete problems

Class co-NP:

e Complement problem:

— The complement of a decision problem IT is the problem II¢
having the same solution domain as II, but with the outcome
from solving the problem logically reversed.

— That is, given the same problem instance, a “yes” outcome
from solving problem IT would imply a “no” outcome from
solving problem II¢ (and vice versa)

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Co-NP-complete problems

NP vs co-NP:

e Problems in NP
— The class of problems for which there exists a polynomial-time
algorithm that can verify a solution that makes the binary
problem statement true (“yes” outcome).

e Problems in co-NP

— The class of problems for which there exists a polynomial-time
algorithm that can verify a counterexample solution that makes
the binary problem statement false (“no” outcome).

e Co-NP-complete problems

— Decision problems for which it applies that their complement
problem is an NP-complete problem.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Co-NP-complete problems

The Complement Traveling Salesman Problem:

Does every “tour” of all the cities in C have a total
length that exceeds B?

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Co-NP-complete problems

The Complement Traveling Salesman Problem:

e Verifying a “yes” outcome
— Requires checking that all possible solutions ("tours”) to the
problem instance fulfills the problem statement. Can in general
only be done in exponential time (need to show that every
possible “tour” length > B).

e Verifying a “no” outcome
— Requires checking that one solution (the counterexample “tour”)
to the problem instance does not fulfil the problem statement.
Can be done in polynomial time (only need to show that the
counterexample “tour” length < B).

— This corresponds exactly to verifying a “yes” outcome in the
original Traveling Salesman Problem (which is NP-complete).

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Co-NP-complete problems

The Complement Traveling Salesman Problem:

Does every “tour” of all the cities in C have a total
length that exceeds 307

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Co-NP-complete problems

The Original Traveling Salesman Problem:

Is there a “tour” of all the cities in C having a total
length of no more than 307?

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Proving NP-completeness

Proving NP-completeness for a decision problem IT:

1. Show that IT is in NP
2. Select a known NP-complete problem IT’

3. Construct a transformation o« from IT’ to I1

4. Prove that « is a (polynomial) transformation

