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Generating schedules 

Approaches for searching for a feasible schedule:  
•  Guided search 

–  Organize the set of possible solutions in a search tree. 
–  Traverse the search tree in a deterministic fashion. 
–  Capable of finding an optimal solution (if one exists), at the 

price of exponential worst-case time complexity.  

•  Non-guided search 
–  View the set of possible solutions as a search landscape. 
–  Traverse the solution landscape using heuristics with 

elements of randomness. 
–  Tractable time complexity, but no guarantee of optimality. 



Guided search 

Branch-and-bound algorithms: 
•  Basic idea: 

–  A set of solutions to a given problem is organized in a search 
tree.  

–  A vertex in the search tree corresponds to a specific solution 
structure.  

–  A goal vertex corresponds to a complete solution to the problem 
and is located at the highest level of the search tree. 

–  The root vertex corresponds to an initial solution at the lowest 
level of the search tree. 

–  The search for a solution starts with only the root vertex. 
–  Search objective is to find a goal vertex that optimizes a  

given cost (performance metric). 



Guided search 

Branch-and-bound algorithms: 
•  Basic idea (cont’d): 

–  For each vertex, a set of child vertices is generated by modifying 
the structure of the current vertex (”branching”). 

–  To check if a tree branch may lead to an acceptable solution, a 
lower-bound function is applied to each of the child vertices. 

–  If a child vertex looks promising, it will be further investigated. 
–  If a child vertex will only lead to inferior solutions, that entire 

branch is pruned (”bounding”). 

Note: An initial solution could be used for making good bounding 
operations early in the search. When an acceptable goal vertex is 
reached the bounding operation can be made more accurate. 



Guided search 

Branch-and-bound algorithms: 
•  Application to multiprocessor scheduling: 

–  The search tree represents the set of all task-to-processor 
assignments for a given set of tasks and processors.  

–  A vertex in the search tree is a partial or complete assignment 
of tasks to processors.  

–  The root vertex corresponds to an initial (empty or complete) 
schedule. 

–  A goal vertex corresponds to a complete schedule. 
–  The purpose of the lower-bound function is to assess whether  

a child vertex is feasible, that is, whether the corresponding  
branch in the search tree contains a feasible schedule. 



Guided search 

Branch-and-bound for multiprocessor scheduling: 
•  Initial schedule is empty: 

–  At each vertex in the search tree, a set of ready tasks 
(candidates for execution) are available for scheduling.  

–  Generation of a child vertex corresponds to adding one of the 
ready tasks to the schedule in the current vertex. 

•  Initial schedule is complete (but possibly suboptimal): 
–  At each level of the search tree, a set of scheduling changes 

(e.g., modified constraints or assignments) are available. 
–  Generation of a child vertex corresponds to applying one or 

more of the changes to the schedule in the current vertex. 



An example search tree 

{ } { } root vertex     n = 3 tasks 
m = 2 processors 

complexity =O n!⋅mn( )

tasks assigned to processor #1 tasks assigned to processor #2 

{    } { } { } {    } {    } { } { } {    } {    } { } { } {    }  τ1  τ1  τ 2  τ 2  τ 3  τ 3

{    } {    } {        } { } {        } { } {    } {    }  τ 2  τ1  τ 2  τ 3 τ 2 ,τ1  τ 2 ,τ 3

{        } {    } {    } {        } goal vertices {            } { } {        } {    }  τ 2 ,τ1 τ 2 ,τ1,τ 3  τ 3  τ 3  τ 2 τ 2 ,τ1  τ 3,τ1



Guided search 

How do we avoid an exhaustive search? 
•  Bound pruning 

–  use optimistic lower bounds 

•  Redundancy pruning 
–  exploit symmetries in task set and processors 

•  Algorithm configuration 
–  use suitable exploration order for promising vertices 

•  Performance guarantees 
–  solution is within guaranteed bound from optimum 

•  Local optimization 
–  only a subset of child vertices are retained 
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Guided search 

How do we avoid an exhaustive search? 
•  Bound pruning 

–  use optimistic lower bounds 

•  Redundancy pruning 
–  exploit symmetries in task set and processors 

•  Algorithm configuration 
–  use suitable exploration order for promising vertices 

•  Performance guarantees 
–  solution is within guaranteed bound from optimum 
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Additional reading: 
Read the paper by Jonsson and Shin (ICPP’97) 
Study how different vertex selection rules and estimated 

bounds affect the performance of the search algorithm 



{        } { } 

{            } { } 

 τ 3,τ 2

 τ 3,τ 2 ,τ1

{        } { } 

{            } { } 

 τ 3,τ 2

 τ 3,τ 2 ,τ1

An example of bound pruning 

3. Estimate optimistic  
cost for goal vertex 

2. Calculate the real  
goal vertex cost 

4. If all goal vertices  
originating from this 
vertex will have inferior  
costs, no need to further 
branch this vertex 

1. Assume this branch is chosen and  
all tasks are assigned & scheduled 

{    } { } { } {    } {    } { } { } {    } {    } { } { } {    } 

{ } { } 

 τ1  τ1  τ 2  τ 2  τ 3  τ 3

{            } { } 

{        } { }  τ 2 ,τ1

 τ 2 ,τ1,τ 3



An example of redundancy pruning 

3. Redundant branch 
that can be ignored 

2. Assume identical processors 
1. Identify “mirrored” branches 

{    } { } { } {    } {    } { } { } {    } {    } { } { } {    } 

{ } { } 

 τ1  τ1  τ 2  τ 2  τ 3  τ 3

{        } { } 

{        } {    } 

 τ 2 ,τ1

 τ 2 ,τ1  τ 3

{ } {        } 

{    } {        } 

 τ 2 ,τ1

 τ 2 ,τ1 τ 3

{ } {        } 

{    } {        } 

{ } {    } 

 τ 2 ,τ1

 τ 2 ,τ1 τ 3

 τ 2



{    } { } { } {    } {    } { } { } {    } {    } { } { } {    } 

{ } { } 

 τ1  τ1  τ 2  τ 2  τ 3  τ 3{    } { } { } {    } {    } { } { } {    } { } {    }  τ1  τ1  τ 2  τ 3  τ 3

{        } {    } {            } { }  τ 2 ,τ1  τ 3 τ 2 ,τ1,τ 3{            } { }  τ 2 ,τ1,τ 3

{    } {    } {    } {    } {        } { } {        } { }  τ 2 ,τ1  τ 2 ,τ 3 τ 2  τ 2 τ1  τ 3
{    } {    } {    } {    } {        } { }  τ 2 ,τ 3 τ 2  τ 2 τ1  τ 3

An example of local optimization 

 
complexity = O n ⋅m( )

2. There will be only one available goal vertex 
(not guaranteed to be optimal or even feasible) 

1. Keep only one vertex at each level 



Guided search 

Example of a good local-optimization algorithm: 
•  Myopic scheduling: (Ramamritham, Stankovic and Shiah, 1990) 

–  Promising vertices are explored in the order of decreasing 
search-tree level; within each level, exploration order is given  
by a heuristic function that calculates a weighted sum of task 
execution time, deadline, earliest start time and laxity. 

–  Reduces search complexity by investigating only the k child 
vertices with closest deadline within each search-tree level. 

–  Reduces search complexity by limiting the number of allowed 
backtracks (to vertices at lower search-tree levels) 

 
complexity = O k ⋅ n ⋅m( )



Guided search 

Some (optimal) branch-and-bound algorithms: 
•  Single-processor constraint adjustment: (Xu and Parnas, 1990) 

–  Minimizes maximum task lateness 
–  Starts with an initial (complete) single-processor schedule 
–  Modifies preemption, precedence and exclusion constraints of 

selected tasks to improve schedule quality 

•  Multiprocessor constraint adjustment: (Xu, 1993) 

–  Minimizes maximum task lateness 
–  Starts with an initial (complete) multiprocessor schedule 
–  Modifies preemption, precedence and exclusion constraints of 

selected tasks to improve schedule quality 



Guided search 

Some (optimal) branch-and-bound algorithms: 
•  Quick-recovery algorithm: (Krishna and Shin, 1986) 

–  Minimizes cost functions related to task lateness 
–  Starts with an initial (complete) multiprocessor schedule 
–  Examines gaps in the initial schedule and inserts passive 

backups of critical tasks to provide fault tolerance 

•  Replication-constrained allocation: (Hou  and Shin, 1994) 
–  Maximizes probability of no dynamic failure (probability that all 

deadlines are met in the presence of component failures) 
–  Starts with an empty multiprocessor schedule 
–  Inserts active backups of critical tasks, using either spatial or 

temporal replication depending on tightness of task deadline 



Quick-recovery algorithm: (Krishna & Shin, 1986) 

 Replicas of critical tasks are called clones. A primary clone is 
executed in the normal course of things. A ghost clone is a 
passive backup task which lies domant until it is activated to 
take the place of a corresponding primary whose processor  
has failed.  
 For reliability reasons, the system runs a certain number n(i)  
of clones of critical task i in parallel on separate processors.  
 A system is said to sustain up to Nsust failures if, despite the 
failure of up to Nsust processors in any sequence, the system  
is able to schedule critical tasks so that n(i) clones of task i  
can be executed in parallel without deadlines being missed. 

Guided search 



Quick-recovery algorithm: 

Guided search 

  C1: Each critical task must have ghost clones scheduled on  
 Nsust processors, and a ghost and a primary of the same 
 critical task may not be scheduled on the same processor.  

  C2: Ghosts are conditionally transparent: 
•  two ghost clones may overlap in the schedule if none of their 

corresponding primary clones are scheduled on the same  
processor 

•  primary clones may overlap ghosts on the same processor  
only if there is sufficient slack in the schedule to continue to  
meet the deadlines of all the primary and activated ghosts on  
that processor 

  Necessary and sufficient conditions for reliability guarantee: 



Replication-constrained allocation: (Hou & Shin, 1994)  
 For reliability reasons, certain critical tasks must have Nrepl 
replicas. The value of Nrepl is common for all critical tasks. 
 The replicas can be created in one of two ways: 
  R1: 1 primary and Nrepl - 1 active backups on separate processors  
  R2: 1 primary and Nrepl - 1 active backups on one processor 

 

 Task deadlines decide whether R1 or R2 is used for replication: 
 a)  if task deadline is loose enough to allow for execution of both  

 the primary and the Nrepl - 1 backups before the deadline, R2  
 is chosen 

 b)  otherwise, R1 is chosen.  

Guided search 



Replication-constrained allocation: 

Guided search 

 A B&B algorithm is applied whose objective is to maximize 
the probability of no dynamic failure, PND, which is the 
probability that all tasks within one LCM period meet  
their deadlines even in the presence of processor or 
communication-link failures.  
 Note: When the degree of replication is increased, reliability  
of the system is increased, whereas the schedulability is 
decreased. The probability of no dynamic failure reflects both 
reliability and schedulability with a bias towards schedulability.  

 



Generating schedules 

Approaches for searching for a feasible schedule:  
•  Guided search 
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Non-guided search 

General characteristics: 
•  Each non-guided search is given an initial task-to-

processor assignment from which the search starts.  
•  Within each iteration step during search, different  

derivable alternatives of changing the current  
assignment are examined.  

•  To check whether an alternative is feasible or not, a  
run-time efficient feasibility test has to be used.  

•  In order to help the search find better assignments, the 
number of deadline misses is included as a penalty into 
the function calculating the goodness of the assignment. 



Non-guided search 

Examples: 
•  Simulated annealing  
•  Genetic optimization 

•  Tabu search 
•  Neighbourhood search 
•  ... 

These techniques all have in common that it is sufficient to 
state what makes a good solution, not how to get one! 



Non-guided search 

Simulated annealing: (Kirkpatrick, Gelatt and Vecchi, 1983) 
•  Basic idea: 

–  Simulated annealing is a global optimization technique which 
borrows ideas from statistical physics. The technique is derived 
from observations of how slowly-cooled molten metal can result 
in a regular crystalline structure. 

–  The salient property of the technique is the incorporation of 
random jumps from local minima to potential new solutions. As 
the algorithm progresses, this ability is lessened, by reducing a 
temperature factor, which makes larger jumps less likely.  

–  The main objective of the technique is to find the lowest point in 
an energy landscape. 



Non-guided search 

Simulated annealing: 
•  Application to multiprocessor scheduling: 

–  The set of all task-to-processor assignments for a given set of 
task and processors is called the problem space. A point in the 
problem space is an assignment of tasks to processors.  

–  The neighbor space of a point is the set of points that are 
reachable by moving any single task to any other processor. 

–  The energy of a point in problem space is a measure of the 
goodness of the task assignment represented by that point.  

–  The energy function determines the shape of the problem 
space. It can be visualized as a rugged landscape, with  
deep valleys representing good solutions, and high peaks 
representing poor or infeasible ones. 



Non-guided search 

Simulated annealing: 
•  Algorithm: 

A random starting point is chosen, and its energy Es is evaluated. 
A random point in the neighbor space is then chosen, and its 
energy En is evaluated. This point becomes the new starting 
point if either              , or if               and 

                                    where 
n sE E≤  En > Es

  
ex ≥ random 0,1( ) ( ) /n sx E E C= − −

The control variable C is analogous to the temperature factor in a 
thermodynamic system. During the annealing process, C is 
slowly reduced (cooling the system), making higher energy 
jumps less likely. Eventually, the system freezes into a low 
energy state. 



Non-guided search 

Simulated annealing: 
•  Implementation: (Tindell, Burns & Wellings, 1992)  

Neighbor function: Choose a random task and move it to a 
randomly-chosen processor. 

Energy function: The weighted sum of the following 
characteristics of the assignment:  

• Number of tasks assigned to the wrong processor 
• Number of replicas assigned to the same processor 
• Number of processors with too high a memory utilization 
• Number of tasks which do not meet their deadlines 
• Total communication bus utilization 



Non-guided search 

Genetic optimization: (Goldberg, 1989) 
•  Basic idea: 

–  Based on Darwin’s evolution theory: “Survival of the Fittest” 
–  Solutions to a problem is viewed as individuals forming a 

population. 
–  Pair of individuals can create children (new individuals) 
–  New individuals are created by applying a crossover operator to 

the genes of the parents 
–  Genes of a new individual may mutate 



Non-guided search 

Genetic optimization: 
•  Application to multiprocessor scheduling: 

–  Tasks assignments and orderings are viewed as  
“chromosomes” 

–  Tasks represent “genes” 
–  Mutation means that a task is moved to another processor 


