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Preface

In the context of computer systems, scheduling theory is concerned with the efficient
allocation of computational resources, which may be available in limited amounts,
amongst competing demands in order to optimize specified objectives. Real-time
scheduling theory deals with resource allocation in real-time computer systems,
which are computer systems in which certain computations have a timing correctness
requirement in addition to a functional one—the correct value must be computed, at
the right time.

Computer systems, real-time and otherwise, are increasingly coming to be im-
plemented upon multiprocessor and multicore platforms. The real-time systems
research community has certainly recognized this reality, and has responded with
enthusiasm and gusto: A large body of research has been performed addressing the
various issues, challenges, and opportunities arising from this move towards mul-
tiprocessor platforms. A substantial fraction of this body of work is devoted to the
scheduling-theoretic analysis of multiprocessor real-time systems.

We started out with the objective of distilling the most relevant ideas, techniques,
methodologies, and results from this body of work into a foundational intellectual
core for the discipline of multiprocessor real-time scheduling theory. However, the
process of identifying such a core proved to be very challenging and trying. We soon
discovered that we could not possibly provide comprehensive coverage of all the
important ideas; indeed the sheer volume of excellent research that has been pro-
duced by the community meant that we could not even guarantee to at least mention
every good idea that we came across. We have therefore instead chosen to select a
self-contained collection of topics from the vast body of research literature on multi-
processor real-time scheduling theory, and to provide a cohesive, relatively deep, and
complete coverage of this collection of topics. Our choice of topics was governed
by (i) their relevance to the discipline; (ii) the depth of knowledge and understand-
ing that has been acquired regarding them; and (iii) their cohesiveness—i.e., that all
taken together they should comprise a complete narrative for a substantial and impor-
tant subset of multiprocessor real-time scheduling theory. With these goals in mind,
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viii Preface

we chose to focus the coverage in the book upon the real-time scheduling of spo-
radic1 task systems upon preemptive identical multiprocessor platforms, generally
describing positive results (such as efficient algorithms for analysis) in preference to
negative ones (lower bounds, impossibility proofs, etc.)

Organization

Broadly speaking, the chapters of this book are organized into the following four
categories.

1. Background material. Chapters 1–3 provide background and context, and de-
fine many of the terms used during the remainder of the book. They additionally
serve to demarcate the scope of this book, and explain the reasoning that guided
our choice of this particular scope. Chapter 4 provides a brief review of some
uniprocessor scheduling theory results that will be used during our study of
multiprocessor scheduling.

2. Liu and Layland systems. The Liu and Layland task model (described in de-
tail in Chap. 2) is a simple formal model for representing real-time workloads
that is widely used, and has been very widely studied. Chapters 5–9 provide a
fairly detailed coverage of a selection of topics dealing with the scheduling and
schedulability analysis of Liu and Layland task systems.

3. Three-parameter sporadic task systems. This generalization to the Liu and Lay-
land task model (also described in detail in Chap. 2) has been the focus of a lot
of the research in multiprocessor real-time scheduling theory. A substantial por-
tion of this book—Chaps. 10–20—is devoted to discussing the multiprocessor
scheduling of real-time systems that are represented using the three-parameter
sporadic task model.

4. Emerging topics. Many additional topics have come to be recognized as being
extremely important and relevant to the development of a comprehensive the-
ory of multiprocessor real-time scheduling. Some preliminary research has been
conducted upon these topics and a few results obtained, but the state of our knowl-
edge is not as deep or as comprehensive for the topics discussed in Chaps. 1–20.
We briefly review what is known about a few such topics towards the end of the
book. Chapter 21 discusses the sporadic DAG tasks model. Chapter 22 discusses
real-time scheduling upon heterogeneous multiprocessor platforms.

For further information. As stated above, we have chosen to cover only a selection of
the wide range of topics that have been studied in multiprocessor real-time scheduling
theory. To get a more complete sense of the scope of the discipline, we recommend
that the reader browse through the proceedings from recent years of conferences such
as the IEEE Real-Time Systems Symposium (RTSS). and the EuroMicro Conference
on Real-Time Systems (ECRTS).

1 We will formally define all these terms—sporadic, preemptive, identical, and efficient—in Chap. 1.
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Chapter 1
Introduction: Background, Scope, and Context

Motivated by both vastly increased computational demand of real-time workloads
and the trend in hardware toward multicore and multiprocessor CPUs, real-time
systems are increasingly coming to be implemented upon multiprocessor platforms.
Multiprocessor real-time scheduling theory, the subject of this book, is concerned
with the development of techniques and methodologies that enable the correct
and resource-efficient implementation of real-time systems upon multiprocessor
platforms.

This chapter starts out with a brief overview in Sect. 1.1 of the main causes for
the rise of multicore systems, explaining the consequences that such a transition has
in terms of software development, performance, and timing analysis.

After presenting this background and context, the remainder of this chapter is de-
voted to delineating the scope of this book. The discipline of multiprocessor real-time
scheduling theory has seen tremendous advances over the past couple of decades,
and significant advances continue to occur at a very rapid pace. We cannot hope
to cover all of multiprocessor real-time scheduling theory in this book; instead, we
have chosen to focus upon a fundamental core of techniques and results concern-
ing the hard-real-time (Sect. 1.4) scheduling of systems of recurrent sporadic tasks
(Sect. 1.3) upon identical (Sect. 1.2) multiprocessor platforms. After briefly describ-
ing these terms, we will further discuss the organization and scope of this book in
Sect. 1.5.

1.1 Background and Motivation

Since the beginning of this century the computer chip market has experienced an
unprecedented phenomenon, referred to as the multicore revolution, that is push-
ing all major chip producers to switch from single core to multicore platforms. In
particular, on May 17th, 2004, Intel, the world’s largest chip maker, canceled the
development of the Tejas processor, Intel’s successor to the Pentium4-style Prescott
processor, due to extremely high power consumption. After more than three decades

© Springer International Publishing Switzerland 2015 1
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profitably producing single core devices, the company decided to switch to multi-
processor chips, following the example of Advanced Micro Devices. The retirement
of the Pentium brand was marked by the official release of the first wave of Intel
Core Duo processors, on July 27, 2006.

1.1.1 Why the Move to Multicore?

To understand the reasons behind this choice, it is necessary to go back to the sixties,
when Gordon Moore, Intel’s founder, predicted that the density of transistors on a
chip was going to double every 24 months. Since then, this law, referred to Moore’s
Law, has not been violated. The exponential increase in the number of transistors on
a die was made possible by the progressive reduction of the integrating process, from
the micrometer resolutions of past decades (with tens of thousands of transistors/chip
in the 1980’s), until the recent achievement of resolution below a hundred nanometers
(with more than a hundred million transistor/chip). Today, hardware producers are
selling devices realized with technologies down to 90 and 65 nm, and are exploring
even lower resolutions.

The benefit of reducing dimensions lies not only in the higher number of gates
that can fit on a chip, but also in the higher working frequency at which these devices
can be operated. If the distance between the gates is reduced, signals have a shorter
path to cover, and the time for a state transition decreases, allowing a higher clock
speed. At the launch of Pentium 4, Intel expected single processor chips to scale up
to 10 GHz using process technologies below 90 nm. However, they ultimately hit
a frequency ceiling far below expectations, since the fastest retail Pentium 4 never
exceeded 4 GHz. Why did that happen?

The main reason is related to power dissipation in CMOS integrated circuits,
which is mainly due to two causes: dynamic power and static power.

Dynamic power has two components: a transient power consumption (Pswitch),
consumed when the device changes logic states (from 0 to 1 or vice versa), and a
capacitive load power (Pcap), consumed to charge the load capacitance. It can be
expressed as

Pdyn = Pswitch + Pcap = (C + CL)V 2
dd · f · N3 (1.1)

where C is the internal capacitance of the chip, CL is the load capacitance, f is the
frequency of operation, and N is the number of bits that are switching. Note that
dynamic power increases with the frequency of the chip and is closely tied to the
number of state changes.

On the other hand, static power is due to a quantum phenomenon where mobile
charge carriers (electrons or holes) tunnel through an insulating region, creating a
leakage current independent of the switching activity. Static power consumption is
always present if the circuit is powered on. As devices scaled down in size, gate
oxide thicknesses decreased, resulting in larger and larger leakage currents due to
tunneling.
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Fig. 1.1 Increase of static and dynamic power in CMOS circuits

Figure 1.1 shows how static and dynamic power components in CMOS circuits
increased over the years as the gate length scaled down. Dynamic power dissipation
was the dominant factor (about 90 % of total circuit dissipation) in digital CMOS
circuits with gate length up to 180 nm [2]. After the year 2005, below the scale
of 90 nm, static power became comparable with dynamic power, and today it is
predominant.

A side effect of power consumption is heat, which, if not properly dissipated, can
damage the chip. If processor performance would have improved by increasing the
clock frequency, as suggested by Eq. 1.1, the chip temperature would have reached
levels beyond the capability of current cooling systems.

The solution followed by all major hardware producers to keep the Moore’s law
alive exploited a higher number of slower logic gates, building parallel devices made
with denser chips that work at lower clock speeds.

It is interesting to note that the number of transistors continued to increase ac-
cording to Moore’s Law, but the clock speed and the performance experienced a
saturation effect.

In summary, since a further increase of the operating frequency of current
computing devices would cause serious heating problems and considerable power
consumption, chip makers moved to the development of computing platforms
consisting of multiple cores operating at lower frequencies.
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1.1.2 New Issues in Multicore Systems

The efficient exploitation of multicore platforms poses a number of new problems that
only recently started to be addressed in the research community, thus a great amount
of investigation is still needed in the future. When porting a real-time application from
a single core to a multicore platform, the following key issues have to be addressed
in order to better exploit the available computational capabilities:

1. How to split the executable code into parallel segments that can be executed
simultaneously?

2. How to allocate such segments to the different cores?

Code parallelization can be done at different levels. Typically, at the instruction level
some decisions can be taken automatically by the compiler, but at the high level,
code splitting requires more specific information from the programmer. So another
problem to be solved is:

How to express parallelism in the source code?
Parallel programming represents a full research topic that is out of the scope of

this book. In this context, it suffices to mention two different approaches.

• Parallel programming languages. They are languages specifically designed to
program algorithms and applications on parallel computers. There are plenty of
languages, based on different paradigms (e.g., Ada, Java, CAL).

• Code annotation. This approach does not require a special programming language
to address parallelism, since the information on parallel code segments and their
dependencies is inserted in the source code of a sequential language by means of
special constructs analyzed by a pre-compiler. An example of this approach is the
OpenMP library [1], which adds annotations into C++ programs by means of the
pragma construct.

Beside these issues, there are other important concerns that need to be taken into ac-
count when moving to a multicore system. To better understand these issues, we have
to consider that the application software of complex embedded systems is typically
structured as a set of concurrent tasks interacting through shared resources (mainly
memory and I/O devices). In single core systems, such concurrent tasks are sequen-
tially executed on the processor, although some interleaving (virtual parallelism) is
permitted among them in order to be able to give greater priority to incoming tasks
with higher importance. The sequential execution implies that the access to physi-
cal resources is implicitly serialized, so, for instance, two tasks can never cause a
contention for a simultaneous memory access.

The situation is quite different when multiple tasks can run simultaneously on
different cores sharing physical resources. Figure 1.2 illustrates the possible resource
contentions that may occur in a dual core processor when multiple tasks share the
main memory [161]. Once a processing element gains access to the main memory,
any other device requesting access is blocked, and hence experiences a delay. As a
consequence, resource contention introduces additional blocking times during task
execution, limiting the available parallelism offered by the hardware.
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Fig. 1.2 Sources of interference in a multicore platform

Note that the contention on physical resources not only increases the response
time of a task by inserting extra blocking delays, but also affects its worst-case
execution time (WCET)! An experimental study carried out at Lockheed Martin on
an 8-core platform shows that the WCET of a task can increase up to 6 times when
the same code is executed on the same platform when an increasing number of cores
are active [163].

For the same reasons, the performance of an application can vary significantly
depending on how tasks are allocated and scheduled on the various cores. There-
fore, the following problems have to be also addressed when dealing with multicore
systems:

• How to allocate and schedule concurrent tasks in a multicore platform?
• How to analyze real-time applications to guarantee timing constraints, taking into

account communication delays and interference?
• How to optimize resources (e.g., minimizing the number of active cores under a

set of constraints)?
• How to reduce interference?
• How to simplify software portability?

Assuming we are able to express the parallel structure of our source code, the next
questions are:

• How much performance can we gain by switching from 1 core to m cores?
• How can we measure the performance improvement?

1.1.3 Performance Improvement

The performance improvement that can be achieved on a multicore platform is strictly
related to how the application code is parallelized and can be measured by the so
called speedup factor.
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Fig. 1.3 Completion time of a program on a single core and a set of m cores, assuming no
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Definition 1.1 The Speedup factor is a metric that measures the relative perfor-
mance improvement achieved when executing a task on a new computing platform,
with respect to an old one. If Rold and Rnew are the task response times when ex-
ecuting on the old and new platform, respectively, the Speedup factor S is defined
as

S = Rold

Rnew
. (1.2)

If the old architecture is a single core platform and the new architecture is a
platform with m cores (each having the same speed as the single core one), the
Speedup factor can be expressed as a function of m, as follows:

S(m) = completion time on 1 processor

completion time on m processors
(1.3)

To express the speedup factor, consider a program of length L and assume that
only a fraction γ of the program can be executed in parallel on m cores, as shown
in Fig. 1.3. If s is the speed of each core, it follows that the response time on a
single core is R1 = L/s, while the response time on the m-core platform is (ideally)
Rm = L[(1 − γ ) + γ /m]/s.

Hence, the speedup factor results to be not only a function of the number of cores,
but also a function of the percentage of parallel code:

S(m, γ ) = R1

Rm

= 1

1 − γ + γ /m
. (1.4)

This formula is known as Amdahl’s Law. To understand the implications of this
result, consider a program in which only 50 percent of the code can be parallelized
(γ = 0.5). When running this program on a platform with 100 cores (m = 100),
the theoretical speedup with respect to a single core given by Eq. 1.4 is only S = 2.
Figure 1.4 shows how the speedup factor varies as a function of γ in a platform with
m cores.
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Figure 1.5 shows how the speedup factor varies as a function of m for different
values of γ . It is worth observing that every time a processor is added to the platform,
the performance gain gets lower. For a given value of γ , the speedup factor tends to
saturate to a limit for a large number of cores. This limit is equal to:

Sm→∞(γ ) = 1

1 − γ
. (1.5)

For instance, with a program having 95 % of parallel code, the speed up factor
cannot be higher than 20, no matter how many cores are used.

The result stated in Eq. 1.5 poses a strong limitation on the performance improve-
ment achievable in a multicore platform. In fact, even assuming that the majority of
application software can be parallelized, there will always be portions of code that
must be executed sequentially (e.g., I/O operations on specific devices, distribution
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of input data, collection of output results), hence the factor γ can never equal 1.0.
Moreover, considering communications costs, memory and bus conflicts, and I/O
bounds, the situation gets worse.

In summary, parallel computing can be effectively exploited for limited numbers
of processors and highly parallel applications (high values of γ ). On the contrary,
applications characterized by intensive I/O operations and including tasks that fre-
quently exchange data and contend for shared resources, or include series of pipeline
dependent calculations, are not suited for running on a multicore platform.

1.2 Multiprocessor Platforms

“Traditional” scheduling theory (of the kind studied in the Operations Research
community and covered in, for example, the excellent text-books by Baker and
Trietsch [16] and Pinedo [155]) has come up with the following classification of
multiprocessor platforms:

Identical: These are multiprocessor platforms in which all the processors are iden-
tical, in the sense that each processor in the platform has the same computing
capabilities as every other processor.

Uniform: By contrast, each processor in a uniform (or related) multiprocessor
platform is characterized by its own computing capacity, with the interpretation
that a job that executes on a processor of computing capacity s for t time units
completes s × t units of execution.

Unrelated: In an unrelated multiprocessor, a different execution rate may be spec-
ified for each job upon each processor, with the interpretation that if a job has an
execution rate r specified for a processor than executing it on that processor for
t time units completes r × t units of execution.

(Observe that identical multiprocessors are a special case of uniform multiprocessors,
and uniform multiprocessors are a special case of unrelated multiprocessors.)

Much of multiprocessor real-time scheduling theory research thus far has focused
upon identical multiprocessor platforms, and so will much of this book. (We will see
a use of the uniform multiprocessor platform model in Sect. 8.1, where it is used as
an abstraction to facilitate the derivation of certain properties regarding scheduling
on identical multiprocessors).

However, there is an increasing trend in industry toward heterogeneous multicore
CPUs containing specialized processing elements such as digital signal processing
cores (DSPs), graphics processing units (GPUs), etc., in addition to general-purpose
processing cores. Since such heterogeneous multicore CPUs are better modeled
using the unrelated multiprocessors model, there is an increasing recognition in
the real-time scheduling community that the unrelated multiprocessors model needs
further study, and we are beginning to see some work being done on developing a
scheduling-theoretic framework for the analysis of real-time systems implemented
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upon unrelated multiprocessors. The current state of knowledge is rather primitive
here when compared to what we know regarding identical multiprocessor; we will
briefly describe some of this knowledge in Chap. 22.

1.3 Sporadic Tasks

One of the main differences between real-time scheduling theory and “traditional”
scheduling theory (of the kind studied in the Operations Research community) is
that in real-time scheduling theory, the workload is typically characterized as being
generated by a finite collection of recurrent tasks or processes. Each such recurrent
task may model a piece of code that is embedded within an infinite loop, or that
is triggered by the occurrence of some external event. Each execution of the piece
of code is referred to as a job; a task therefore generates a potentially unbounded
sequence of jobs.

A recurrent task is said to be periodic if successive jobs of the task are required to
be generated a constant duration apart, and sporadic if a lower bound, but no upper
bound, is specified between the generation of successive jobs. For reasons that are
discussed in Sect. 2.3.1, we will, for the most part, restrict our attention to sporadic
task systems in this book.

Various models have been proposed for representing such sporadic tasks; some
of the more widely-used models include the Liu and Layland model [137], and the
three-parameter model [132, 133, 147].

In recent years, the real-time systems community has increasingly come to rec-
ognize that the kinds of workloads encountered in actual real-time systems are
characterized not merely by the fact that they are typically generated by recur-
rent tasks, but that they may additionally possess intra-task parallelism. Hence,
directed acyclic graph (DAG) based models have been proposed [38, 63, 135, 166]
for representing the recurrent processes that comprise real-time systems.

Much of this book is devoted to the study of sporadic task systems represented
using the Liu and Layland and the three-parameter models. We decided to focus
primarily upon these models because this is where most progress has been reported
with regards to research on multiprocessor real-time scheduling. 1 There has recently
been some progress with regards to the scheduling of systems represented using the
DAG-based models; we will briefly discuss some of this work in Chap. 21.

1 It is (probably apocryphally) claimed that theAmerican bank robberWillie Sutton replied “because
that’s where the money is,” when asked by a reporter, upon his arrest, why he had chosen to rob
banks.
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1.4 Hard Real-time

Real-time computer systems are required to satisfy a dual notion of correctness:
not only must the correct value be determined, this value must be determined at
the correct time. In hard real-time systems, certain pieces of computation have
deadlines associated with them, and it is imperative for the correctness of the system
that all such pieces of computation complete by their deadlines. (In contrast, soft
and firm real-time systems may allow for an occasional deadline to be missed, or for
a deadline to be missed by no more than a certain amount, etc.) This book focuses
almost exclusively upon the scheduling of hard real-time systems; the large body of
excellent research results on soft- and firm-real-time systems that has been generated
over the past decade or so falls outside the scope of this book.

1.5 Scope of This Book

As stated above, this book is primarily focused upon the multiprocessor scheduling
of hard-real-time systems of recurrent sporadic tasks upon identical multiprocessor
platforms. This is still an enormous topic, and we cannot hope to do justice to all of
it. We have therefore chosen to further restrict the scope of coverage, as follows.

Preemptive Scheduling We will, for the most part, consider preemptive
scheduling—we will assume that an executing job may be preempted at any instant
in time, and its execution resumed later.2 There has indeed been some interesting
work on non-preemptive and limited-preemptive scheduling upon multiprocessors
(see, e.g., [52, 74, 101, 122, 146, 169]); however, this body of results is dwarfed by
the amount of results concerning preemptive scheduling, and aside from occasional
references as appropriate, we will not discuss them further in this book.

Runtime Efficiency Considerations Along with the many useful scheduling and
schedulability analysis algorithms that we will cover in this book, the real-time
scheduling theory community has generated a vast body of results showing the
intractability of several basic multiprocessor scheduling problems. We will, for the
most part, not detail the derivation of such results (except to occasionally point them
out, perhaps to explain why we are not presenting a solution to some problem).

To be more specific, we will for the most part only describe schedulability anal-
ysis algorithms that have a worst-case run-time computational complexity that is
polynomial or pseudo-polynomial in the representation of a problem specification.

2 While we will not assign a penalty to such preemption, we are cognizant of the fact that preemptions
may incur a cost in an implemented system. Hence, we will point out if some scheduling strategies
we describe may result in an inordinately large number of preemptions; for others, we indicate upper
bounds, if such bounds are known, on the number of preemptions that may occur in a schedule
generated by that strategy—see, e.g., Sect. 2.3.3.
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Note that the acceptance of pseudo-polynomial run-time implies that we do not
necessarily have to consider problems that are merely shown to be NP-hard as in-
tractable, since such problems may have psdeuo-polynomial time solutions. To show
that a problem is unlikely to have a pseudo-polynomial time solution, it must be
shown that the problem is NP-hard in the strong sense (see, e.g., Theorem 4.1 in
Sect. 4.4). And all is not necessarily lost even for problems that are shown to be
NP-hard in the strong sense: there remains the possibility of polynomial or pseudo-
polynomial time algorithms for solving these problems approximately — see, e.g.,
the polynomial-time approximation algorithms in Sect. 6.3 for solving the strongly
NP-hard problem of partitioning Liu & Layland task systems.

One consequence of this decision to only look for polynomial or pseudo-
polynomial run-time algorithms is that we do not generally exploit the large body of
research that exists in the traditional (i.e., Operations Research) scheduling commu-
nity, on solving scheduling problems based on integer linear programming (ILP).This
is because solving ILPs is known to be NP-hard in the strong sense. (We will however
see some use of ILPs in Chap. 22, where polynomial-time techniques for solving
ILPs approximately are used to obtain approximate solutions to some scheduling
problems.)

Communication Costs We will discuss both partitioned scheduling (in which in-
dividual tasks are restricted to executing only upon a single processor) and global
scheduling (in which a task may execute upon different processors at different points
in time. However, when considering global scheduling we ignore the cost and delay
in communicating between processors, and make the simplifying assumption that
interprocessor communication incurs no cost or delay. This is a significant short-
coming of much of the existing body of research into multiprocessor scheduling
theory today; although this shortcoming is starting to be addressed in extended plat-
form models that consider, for example, routing issues for networks-on-chip (see,
e.g., [65, 108]), this work is not really mature enough for us to be able to cover with
any degree of authority.

1.6 Organization of This Book

Chapters 1–4 can be thought of constituting the introductory part of the book. Chap-
ter 2 describes the workload and platform models we will by considering for much
of this book, and seeks to justify this choice of models. Chapter 3 discusses some of
the considerations that go into determining the quality and effectiveness of strategies
for multiprocessor real-time scheduling. Chapter 4 briefly reviews some important
concepts and results from uniprocessor real-time scheduling theory.

Chapters 5–9 discuss the multiprocessor real-time scheduling of real-time task
systems that are modeled using the particularly simple (yet widely used) Liu &
Layland task model. Chapter 5 discusses the model, and introduces two metrics—
utilization bound and speedup factor—that are often used to make quantitative
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comparisons between different scheduling algorithms. Chapter 6 discusses the parti-
tioned3 scheduling of Liu & Layland task systems; Chapters 7–9 each deal with global
scheduling when different restrictions are placed upon the form of the scheduling
algorithms that may be used (these restrictions are discussed in Sect. 3.2). Chapter 7
describes an approach to multiprocessor scheduling that is called pfair scheduling,
Chap. 8 discusses approaches that are beaded upon the well-known earliest deadline
first algorithm, and Chap. 9 discusses fixed-task priority algorithms.

Chapters 10–20 discuss the multiprocessor real-time scheduling of real-time task
systems that are modeled using the three-parameter sporadic tasks model. This is
the model that has been the most thoroughly studied in multiprocessor real-time
scheduling theory, and so there is a lot to discuss here. We start out in Chap. 10 with
a description of the model, and define some characterizing attributes and properties.
We then describe algorithms and analyses for partitioned scheduling in Chap. 11.
Chapters 12–20 are devoted to global scheduling; a detailed discussion of the contents
of these chapters is postponed to Chap. 10.

Chapters 21–22 provide brief summaries of known results on selected topics
of emerging importance to multiprocessor real-time scheduling theory. Chapter 21
discusses the multiprocessor scheduling of real time systems represented using
the sporadic DAG tasks model, which is more general than the three-parameter
model. Chapter 22 discusses real-time scheduling upon unrelated multiproces-
sor platforms—these platforms are more general than the identical multiprocessor
platforms that are the focus of the remaining chapters of the book.

3 The terms partitioned and global are formally defined in Sect. 2.2.1.



Chapter 2
Preliminaries: Workload and Platform Models

Multiprocessor real-time scheduling theory studies the scheduling of real-time work-
loads upon multiprocessor platforms. This chapter describes some of the models
that are currently widely used for representing such workloads and platforms, and
provides some explanation and justification for the use of these particular models.

2.1 Workload Models

In choosing a model to represent a hard-real-time computer application system, the
application system’s designers are faced with two—often contradictory—concerns.
On the one hand, they would like the model to be general, in order that it may ac-
curately reflect the relevant characteristics of the application system being modeled.
On the other hand, it is necessary that the model be efficiently analyzable1, if it is to
be helpful in system design and analysis.

Over the years, attempts to balance these two different goals have resulted in
various models being proposed for representing real-time workloads. While these
models differ considerably from each other in their expressive power and in the
computational complexity of their associated analysis problems, most of them share
some common characteristics.

The workload is modeled as being comprised of basic units of work known as
jobs. Each job is characterized by three parameters: an arrival time or release date;
a worst-case execution time (WCET); and a deadline, with the interpretation that it
may need to execute for an amount up to its WCET within a scheduling window that
spans the time interval within its release date and its deadline (see Fig. 2.1). Each
job is assumed to represent a single thread of computation; hence, a job may execute
upon at most one processor at any instant.

Much of the real-time scheduling theory deals with systems in which the jobs are
generated by a finite collection of independent recurrent tasks.

1 Recall our discussion in Sect. 1.5: we seek models for which the analysis problems of interest can
be solved in polynomial or pseudo-polynomial time.

© Springer International Publishing Switzerland 2015 13
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Fig. 2.1 Jobs: terminology. A job is characterized by an arrival (or release) time, a worst-case
execution time, and a deadline. The time-interval between its release time and its deadline is called
its scheduling window. It needs to execute for an amount up to its worst-case execution time within
its scheduling window

The different tasks are independent2 in the sense that the parameters of the jobs
generated by each task are completely independent of the other tasks in the system.
Different models for hard-real-time tasks place different constraints upon the permis-
sible values for the parameters of the jobs generated by each task. We focus here on
what are known as sporadic task models. In such models, lower bounds are specified
between arrivals of successive jobs of the same task; by contrast, periodic and some
other models specify exact separations, or upper bounds on these separations. In this
book, we will look at different sporadic task models. The three-parameter model is
the most widely-studied one; it is described in Sect. 2.1.2. A directed acyclic graph
(DAG)-based model has recently come in for some attention in the context of mul-
tiprocessor systems, because it is better able to model parallelism within workloads
that may be exploited upon multiprocessor platforms; we introduce this model in
Sect. 2.1.3, but a more detailed discussion is postponed to Chap. 21. We start out in
Chaps. 5–9 with an exploration of a restricted version of the three-parameter model
that is commonly referred to as the Liu and Layland (LL) model. Much of the rest of
this book is focused upon the 3-parameter model; we provide a summary of results
concerning the DAG-based model in Chap. 21.

2.1.1 The Liu and Layland (LL) Task Model

This task model was formally defined in a paper [139] coauthored by C. L. Liu and
J. Layland; hence the name. In this model, a task is characterized by two parameters—
a worst-case execution requirement (WCET) Ci and a period (or inter-arrival
separation parameter) Ti . A Liu and Layland task denoted τi is thus represented
by an ordered pair of parameters: τi = (Ci , Ti). Such a task generates a potentially
infinite sequence of jobs. The first job may arrive at any instant, and the arrival times
of any two successive jobs are at least Ti time units apart. Each job has a WCET of
Ci , and a deadline that is Ti time units after its arrival time. A Liu and Layland task
system consists of a finite number of such Liu and Layland tasks executing upon a
shared platform.

2 This independence assumption represents a tradeoff between expressiveness and tractability of
analysis; this trade-off is discussed in Sect. 2.3.
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2.1.2 The Three-Parameter Sporadic Tasks Model

This model was proposed as a generalization to the Liu and Layland task model. As
indicated by the name of the model, each task in this model [149] is characterized by
three parameters: a relative deadline Di in addition to the two parameters—WCET
Ci and period Ti—that characterize Liu and Layland tasks. A 3-parameter sporadic
task denoted by τi is thus represented by a 3-tuple of parameters: τi = (Ci , Di , Ti).
Such a task generates a potentially infinite sequence of jobs. The first job may arrive
at any instant, and the arrival times of any two successive jobs are at least Ti time units
apart. Each job has a WCET of Ci , and a deadline that occurs Di time units after its
arrival time. A 3-parameter sporadic task system consists of a finite number of such
3-parameter sporadic tasks executing upon a shared platform. A task system is often
denoted as τ , and described by enumerating the tasks in it: τ = {τ1, τ2, . . . , τn}.

By allowing for the specification of a relative deadline parameter in addition to a
period, the 3-parameter sporadic tasks model offers a means of specifying recurrent
workloads that may occur infrequently (large period), but are urgent (have a small
deadline). This is the model for recurrent tasks that has been most widely studied by
the real-time scheduling theory community; for the most part in this book when we
talk of “sporadic tasks” we mean tasks represented in this model.

Depending upon the relationship between the values of the relative deadline and
period parameters of the tasks in it, a 3-parameter sporadic task system may further
be classified as follows:

• In an implicit-deadline task system, the relative deadline of each task is equal
to the task’s period: Di = Ti for all τi ∈ τ . (Implicit-deadline task systems are
exactly the same as Liu and Layland task systems).

• In a constrained-deadline task system, the relative deadline of each task is no
larger than the task’s period: Di ≤ Ti for all τi ∈ τ .

• Tasks in an arbitrary-deadline task system do not need to have their relative
deadlines satisfy any constraint with regards to their periods.

It is evident from these definitions that each implicit-deadline task system is also a
constrained-deadline task system, and each constrained-deadline task system is also
an arbitrary-deadline task system.

The ratio of the WCET of the task to its period is called the utilization of the task,
and the ratio of the WCET to the smaller of its period and relative deadline is called
its density. The utilization of a task system is defined to be the sum of the utilizations
of all the tasks in the system. We will use the following notation in this book to
represent the utilizations and densities of individual sporadic tasks, and of sporadic
task systems.

Utilization: The utilization ui of a task τi is the ratio Ci/Ti of its WCET to its period.
The total utilization Usum(τ ) and the largest utilization Umax(τ ) of a task system
τ are defined as follows:

Usum(τ )
def=
∑

τi∈τ

ui ; Umax(τ )
def= max

τi∈τ
(ui)
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Density: The density densi of a task τi is the ratio (Ci/min(Di , Ti)) of its WCET to
the smaller of its relative deadline and its period. The total density denssum(τ )
and the largest density densmax(τ ) of a task system τ are defined as follows:

denssum(τ )
def=
∑

τi∈τ

densi ; densmax(τ )
def= max

τi∈τ
(densi)

Parallel Execution The different tasks in a task system are assumed, for the most
part, to be independent of each other; hence, jobs of different tasks may execute
simultaneously on different processors upon a multiprocessor platform. Parallelism
within a single job is forbidden in our model: each job is assumed to represent a
single thread of computation, which may execute upon at most one processor at any
point in time.

As the scheduling windows of different jobs of the same task do not overlap in
implicit-deadline and constrained-deadline task systems, each task in such a system
executes upon at most one processor at each instant in time.

For tasks in arbitrary-deadline task systems that have relative deadline greater
than period, the scheduling windows of multiple successive jobs of the task may
overlap. The default assumption for such tasks is that multiple jobs of the same task
may not execute simultaneously: a job must complete execution before the next job
of the task begins to execute.

Thus, the 3-parameter sporadic task model does not in general allow for the
modeling of parallelism within a single task. This has traditionally not been perceived
as a shortcoming of the model, since the model was first developed in the context of
uniprocessor systems, for which parallel execution is not possible in any case.

More recently, however, the trend toward implementing real-time systems upon
multiprocessor and multicore platforms has given rise to a need for models that are
capable of exposing any possible parallelism that may exist within the workload
to the scheduling mechanism. Therefore, there has been a move in the real-time
scheduling community toward considering new models that allow for partial paral-
lelism within a task, as well as for precedence dependencies between different parts
of each individual task. We describe such a model in Sect. 2.1.3 below.

2.1.3 The Sporadic DAG Tasks Model

Each recurrent task in this model is modeled as a DAG Gi = (Vi , Ei), a (relative)
deadline parameter Di , and a period Ti . Each vertex v ∈ Vi of the DAG corresponds
to a sequential job of the kind discussed above, and is characterized by a WCET.
Each (directed) edge of the DAG represents a precedence constraint: if (v, w) is a
(directed) edge in the DAG then the job corresponding to vertex v must complete
execution before the job corresponding to vertex w may begin execution. Groups
of jobs that are not constrained (directly or indirectly) by precedence constraints in
such a manner may execute in parallel if there are processors available for them to
do so.
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The task is said to release a dag-job at time-instant t when it becomes available for
execution. When this happens, all |Vi | of the jobs are assumed to become available
for execution simultaneously, subject to the precedence constraints. The task may
release an unbounded sequence of dag-jobs during runtime; all |Vi | jobs that are
released at some time-instant t must complete execution by time-instant t + Di . A
minimum interval of duration Ti must elapse between successive releases of dag-
jobs. If Di > Ti it is not required that all jobs of a particular dag-job complete
execution before execution of jobs of the next dag-job may begin—i.e., no precedence
constraints are assumed between the jobs of different dag-jobs.

The sporadic DAGs task model will be discussed further in Chap. 21.

2.2 A Taxonomy of Multiprocessor Platforms

Various details must be provided in order to completely specify a multiprocessor
platform. These include—how many processors comprise the platform? Are all these
processors of the same kind, or do they possess different computing capabilities?
How are the processors connected to each other? etc. In addition, we must specify
whether the platform supports preemption and inter-processor migration.

As stated in Sect. 1.2, there is a classification of multiprocessor platforms as iden-
tical, uniform, or unrelated, depending upon the relative computing capabilities of
the different processors; we will, for the most part, focus upon multiprocessor plat-
forms comprised of multiple identical processors (we will briefly summarize some
results concerning real-time scheduling upon unrelated multiprocessors in Chap. 22).
We address the remaining questions below.

2.2.1 Preemption and Migration

Preemptive scheduling permits that a job executing upon a processor may be inter-
rupted by the scheduler (perhaps because the scheduler needs to execute some other
job), and have its execution resumed at a later point in time.

In nonpreemptive scheduling, such preemption is forbidden: once a job begins
execution, it continues to execute until it has completed. (In limited preemp-
tive scheduling, various kinds of restrictions are placed upon the occurrence of
preemptions during scheduling).

Results concerning preemptive scheduling are typically obtained under the sim-
plifying assumption that a preemption incurs no cost. As stated in Sect. 1.5, we will
primarily study preemptive scheduling in this book.

Different algorithms for scheduling systems of recurrent real-time tasks upon
multi-processor platforms place different restrictions as to where different tasks’
jobs are permitted to execute. A global scheduling algorithm allows any job to exe-
cute upon any processor; by contrast, a partitioned scheduling algorithm first maps
each recurrent task on to a particular processor, and only executes jobs of task upon
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the processor to which it has been mapped. Global and partitioned scheduling may
both be considered as special cases of clustered scheduling, in which the processors
comprising the multiprocessor platform are partitioned into clusters, and each recur-
rent task mapped on to a single cluster. Migration of a task’s jobs is only allowed
within the cluster to which the task is mapped.

In addition to the family of scheduling algorithms that may be considered to be
specialized forms of clustered scheduling, there are scheduling algorithms that place
various forms of restriction upon migration without forbidding it outright. Such
algorithms are commonly called semi-partitioned or limited migrative scheduling
algorithms; they may, for example, specify that no individual task is allowed to
migrate between more than two processors, or they may restrict the total number of
migratory tasks in a system, etc.

Inspired by some features that are available in modern multiprocessor operating
systems such as Linux, some work has recently been done [39, 104] on a migrative
model that is called the processor affinities model. In this model, a set of processors
upon which a task may execute is specified for each task, and jobs of the task are
allowed to migrate amongst these processors. The processor affinities model differs
from clustered scheduling in that the sets of processors specified for the different
tasks may overlap and hence not constitute a partitioning or a clustering of the set of
available processors.

Although some interesting results concerning limited-migrative scheduling and
the use of processor affinities have been obtained recently, we do not cover these
paradigms; for the most part, the focus of this book remains on partitioned and global
scheduling. We briefly state a few results concerning the semi-partitioned scheduling
of Liu & Layland task systems in Sect. 6.5, and mention an interesting extension
of partitioned scheduling called federated scheduling in the context of scheduling
systems of sporadic DAG tasks, in Sect. 21.2.

2.3 Discussion

In this section, we attempt to justify some of the restrictions we have chosen to place
upon the range of workload and machine models to be covered in this book. We
particularly address the following questions:

1. Why do we primarily restrict ourselves to sporadic task models?
2. Why do we require independence amongst the tasks?
3. What are the consequences of ignoring preemption and migration costs?

2.3.1 The Restriction to Sporadic Task Models

We had stated, in Sect. 1.3, that we would be considering the scheduling of sporadic,
rather than periodic, task systems in this book. As stated there, the main distinguish-
ing feature of sporadic task systems is that minimum, rather than exact, inter-arrival
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separations are specified between the arrival of different pieces of work (jobs) from
a task.

From a pragmatic perspective, our decision to restrict attention to sporadic models
is driven by our desire, also stated in Chap. 1 (in Sect. 1.5), to only consider problems
for which solutions are tractable—have polynomial or pseudo-polynomial run-time.
It appears that defining a recurrent task model that violates the sporadic assump-
tion in any meaningful way results in scheduling analysis problems that are highly
intractable (nondeterministic polynomial time (NP)-hard in the strong sense)—an il-
lustrative example is provided in Sect. 4.4, where it is shown that a very basic analysis
problem for periodic task systems is highly intractable even upon single-processor
platforms. Thus, our desire for efficiently solvable analysis problems restricts our
choice of task models, and it appears that the various sporadic task models are about
as general as one can get without running up against the intractability barrier (the sep-
aration between tractable and intractable models for uniprocessor scheduling is very
precisely and methodically demarcated in Stigge’s dissertation [168]; see also [169]).

From an application perspective, too, an argument can be made in favor of con-
sidering sporadic task models. Note that in sporadic task models, the different tasks
do not really need a common notion of global time; the only requirement is that they
all share a common notion of duration (i.e., they should all agree on the duration
of “real time” represented by a unit of time). By contrast, stricter notions of recur-
rence such as periodic tasks assume that the different tasks generate jobs at specific
“global” instants in time; one consequence of this is that periodic and similar models
are more sensitive to differences between the notions of time maintained by different
sources that may be responsible for generating the jobs of different tasks. Consider,
for example, a distributed system in which each task (i.e., the associated process)
maintains its own (very accurate) clock, and in which the clocks of different tasks
are not synchronized with each other. The accuracy of the clocks permit us to assume
that there is no clock drift, and that all tasks use exactly the same units for measuring
time. However, the fact that these clocks are not synchronized rules out the use of a
concept of an absolute time scale. This idea is explored further in Sect. 2.3.2 below,
as the second task independence assumption.

We note that, since periodic behavior is one of the possible behaviors of a sporadic
task system with corresponding parameter values, the worst-case behavior of a spo-
radic task system “covers” the behavior of the corresponding periodic task system;
therefore, showing that a sporadic task system will always meet all deadlines implies
that the corresponding periodic task system will also do so (although the converse
of this statement is not true: a periodic task system may meet all deadlines but the
corresponding sporadic task system may not).

A further note: upon uniprocessor platforms, the difference between periodic and
sporadic behavior is sometimes brushed aside (see, e.g., [140, p. 40], which claims
that scheduling analysis results for periodic task models remain valid even if the
period parameters are reinterpreted to represent minimum inter-arrival separations).
The rationale for this (backed by some empirical evidence) is that the worst-case be-
havior of the sporadic task system is evidenced when it behaves as a periodic system;
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Fig. 2.2 a A 2-processor schedule for the job arrivals of task system τ of Example 2.1, interpreted as
a periodic task system—repeat this schedule over all intervals [6k, 6(k + 1)) for all k = 0, 1, 2, . . . .
Each up arrow denotes a job arrival: job-arrivals of τ1 (at time-instants 0, 2, and 5) are depicted
by the bottom-most row of up arrows, job-arrivals of τ2 (at time-instants 0 and 3) by the middle
row of up arrows, and the sole job-arrival of τ3 (at time-instant 0) is depicted by the up arrow on
the topmost row. b An infeasible sequence of job arrivals of the same task system interpreted as a
sporadic task system

for example, it is known that a system of 3-parameter sporadic tasks is infeasible—
cannot always be scheduled to meet all deadlines—on a single processor if and only
if the arrival sequence for the equivalent periodic task system is also infeasible. But
this is not necessarily true upon multiprocessors; consider the following example.

Example 2.1 As shown in Fig. 2.2, the task system τ comprised of the following
three tasks

τ1 = (1, 1, 2), τ2 = (1, 1, 3), τ3 = (5, 6, 6)

is feasible on two processors under global scheduling if interpreted as periodic tasks,
but not if interpreted as sporadic tasks (we cannot meet all deadlines for the sporadic
task system if τ1’s second job arrives 3 time units after the first rather than arriving
the minimum of 2 time units after).

2.3.2 The Task Independence Assumption

A pair of conditions collectively called the task independence assumptions were
specified in [41]. These assumptions, listed below, dictate the process by which jobs
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are generated by the tasks in the system; once generated, the jobs (each characterized
by an arrival time, an execution requirement, and a deadline) are independent of each
other. That is, while the task independence assumptions restrict the job-generation
process, they make no assertions about the interactions of the jobs once they have
been generated.

1. The runtime behavior of a task should not depend upon the behavior of other tasks.
That is, each task is an independent entity, perhaps driven by separate external
events. It is not permissible for one task to generate a job directly in response to
another task generating a job.

2. The workload constraints are specified without referencing “absolute” time.
Hence, specifications such as “Task T generates a job at time-instant 3” are
forbidden.
(Note that periodic task systems in which an initial offset is specified for each
task—see Sect. 4.4—violate the task independence assumption since these offsets
are defined in terms of an absolute time scale).

In terms of sets of jobs that may legally be generated by a task system, the first task
independence assumption implies that a set of jobs generated by an entire task system
is legal in the context of the task system if and only if the jobs generated by each
task are legal with respect to the constraint associated with that task. Examples of
task systems not satisfying this assumption include systems where, for example, all
tasks are required to generate jobs at the same time instant, or where it is guaranteed
that certain tasks will generate jobs before certain other tasks. (To represent such
systems in a manner satisfying this assumption, the interacting tasks must instead be
modeled as a single task which is assumed to generate the jobs actually generated
by the interacting tasks).

Letting an ordered 3-tuple (a, e, d) represent a job with arrival time a, execution
requirement e, and deadline d , the second task independence assumption implies
that if {(ao, eo, do), (a1, e1, d1), (a2, e2, d2) . . . } is a legal arrival set with respect to the
workload constraint for some task in the system, then so is the set {(ao − x, eo, do −
x), (a1 − x, e1, d1 − x), (a2 − x, e2, d2 − x) . . . }, where x may be any real number.

The task independence assumptions are extremely general and are satisfied by
a wide variety of the kinds of task systems one may encounter in practice. The
various flavors of sporadic task systems discussed in Sect. 2.1 above satisfy these
assumptions, as do “worst-case” periodic task systems—periodic task systems where
each task may choose its offset.

So does a distributed system in which each task executes on a separate node (jobs
correspond to requests for time on a shared resource), and which begins execution
in response to an external event. All temporal specifications are made relative to the
time at which the task begins execution, which is not a priori known.

It is noteworthy that answering interesting schedulability-analysis questions (such
as determining feasibility) for many nontrivial task systems not satisfying the task
independence assumptions (such as periodic task systems with deadlines not equal to
period) turns out to be computationally difficult (often NP-hard in the strong sense),
and hence of limited interest from the perspective of efficient analysis.



22 2 Preliminaries: Workload and Platform Models

2.3.3 Preemption and Migration Costs

As stated in Sect. 2.2.1 above, in this book we are, for the most part, assuming
a preemptive model of computation: a job executing on the processor may have its
execution interrupted at any instant in time and resumed later, with no cost or penalty.
In a similar vein, when we permit inter-processor migration in global scheduling, we
assume that there is no cost or penalty associated with such migration. These are both
clear approximations: in most actual systems, we would expect both a preemption
and a migration to incur some delay and computational cost (we recommend the
excellent discussions in Brandenburg’s dissertation [65] for a detailed look at some of
the issues arising in attempting to account for such overhead costs in actual computer
systems).

There is a class of scheduling algorithms called priority-driven algorithms (Def-
inition 3.3) that we will discuss in greater detail in Chap. 3; for now, it suffices to
state that very many of the scheduling algorithms that we will look at in this book
are priority-driven ones. Priority-driven algorithms possess the pleasing properties
that

1. The number of preemptions in any preemptive schedule generated by such
algorithms is strictly less than the number of jobs that are being scheduled, and

2. The number of job interprocessor migrations in any preemptive global schedule
generated by such algorithms is also strictly less than the number of jobs that are
being scheduled.

Hence, one can account for the overhead cost of preemptions and migrations by
simply inflating the WCET parameters by the worst-case cost of one preemption and
one migration—we will discuss this idea in further detail in Chap. 3.

Sources

A useful discussion of models (albeit primarily in the context of uniprocessor schedul-
ing) is to be found in the survey paper [169] and in Stigge’s dissertation [168]. The
taxonomy of multiprocessor platforms may be found in textbooks on scheduling in
the Operations Research context (where processors are commonly called machines).
The task independence assumptions are from [41].



Chapter 3
Preliminaries: Scheduling Concepts and Goals

In this chapter, we define and discuss some concepts that form an important part
of the background and vocabulary used in discussions of real-time scheduling. The
concepts of feasibility and schedulability, discussed in Sect. 3.1 below, formalize
required properties of hard-real-time scheduling algorithms. Section 3.2 introduces
a classification of scheduling algorithms that we will be using a lot in the remainder
of this book to categorize the different scheduling algorithms we will study. The
notions of sustainability and predictability, discussed in Sect. 3.3, formalize some
other desired properties we seek in our real-time scheduling algorithms.

3.1 Feasibility and Schedulability

It is evident from the definition of sporadic tasks that a given sporadic task system
may generate infinitely many different collections of jobs during different executions.
In order for a sporadic task system to be deemed feasible, it should be possible
to construct schedules for each one of these collections of jobs that meet all job
deadlines.

Definition 3.1 (feasiblility) A task system is said to be feasible upon a specified
platform if schedules meeting all timing constraints exist upon the platform for all
the collections of jobs that could legally be generated by the task system.

Feasibility is a very general property; it is merely required that a correct schedule
exists for every legal collection of jobs. It may not always be possible to construct
such a schedule without knowing the arrival times of all jobs beforehand1.

A scheduling algorithm that knows all arrival times of all jobs beforehand is
often referred to as a clairvoyant scheduler; a clairvoyant scheduler represents
a nonrealizable ideal against which to compare the performance of some actual
scheduling algorithm (via, e.g., the criterion of optimality—see the discussions

1 The precise information that must be known beforehand to be able to make correct scheduling
decisions in a multiprocessor setting is derived in [77].
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about uniprocessor scheduling in Sects. 4.1 and 4.2—or the metric of speedup fac-
tor—Definition 5.2). In contrast to clairvoyant scheduling algorithms, the kinds of
algorithms actually used for scheduling sporadic task systems typically have to deal
with uncertainties regarding both

1. The arrival times of future jobs—all that is known is some lower bounds on these
arrivals times, and in the durations between successive arrival times; and

2. The exact amount of execution that is needed by these jobs—although an upper
bound on the execution requirement is provided by the WCET parameter, it is
typically assumed that a scheduling algorithm only gets to know the exact amount
of execution a job needs by actually executing the job until it completes.

That is, these two pieces of information—the actual arrival times and the actual
execution times—about jobs are revealed on line to the scheduling algorithm during
system execution. The concepts of sustainability and predictability, discussed later
in this chapter in Sect. 3.3, elaborate upon some of the challenges arising from such
uncertainty, and characterize some desirable attributes of scheduling algorithms that
ameliorate the handling of these challenges.

In building hard-real-time applications, it is not sufficient to simply know that a
task system is feasible; in addition, it must be guaranteed prior to system run time that
all deadlines will be met by the scheduling algorithm that is used in the application.
Such guarantees are made by schedulability tests.

Definition 3.2 (schedulability tests) Let A denote a scheduling algorithm. A spo-
radic task system is said to be A-schedulable upon a specified platform if A meets
all deadlines when scheduling each of the potentially infinite different collections of
jobs that could be generated by the sporadic task system, upon the specified platform.

An A-schedulability test accepts as input the specifications of a sporadic task
system and a multiprocessor platform, and determines whether the task system
is A-schedulable. An A-schedulability test is said to be exact if it identifies all
A-schedulable systems, and sufficient if it identifies only some A-schedulable
systems.

(Of course, an A-schedulability test may never incorrectly misidentify some sys-
tem that is not A-schedulable, as being A-schedulable.) A sufficient schedulability
test that is not exact is also called pessimistic, but for many situations an exact schedu-
lability test is unknown or is computationally intractable. From an engineering point
of view, a tractable schedulability test that is exact is ideal, while a tractable sufficient
test with low pessimism is acceptable.

3.2 Priority Assignments

Run-time scheduling is essentially the process of determining, during the execution
of a real-time application system, which job[s] should be executed at each instant in
time. Run-time scheduling algorithms are typically implemented as follows: at each
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time instant, assign a priority to each active job, and allocate the available processors
to the highest-priority jobs.

Depending upon the restrictions that are placed upon the manner in which priori-
ties may be assigned, priority-based algorithms for scheduling sporadic task systems
may be classified into the following categories.

1. In fixed task priority (FTP) scheduling, each sporadic task is assigned a unique
priority, and each job inherits the priority of the task that generated it. The rate-
monotonic scheduling algorithm [139], which assigns priorities to tasks according
to their period parameters—tasks with smaller period are assigned greater priority
(ties broken arbitrarily)—is an example of an FTP scheduling algorithm.

2. In fixed job priority (FJP) scheduling, different jobs of the same task may be
assigned different priorities. However, the priority of a job, once assigned, may
not change. The earliest deadline first scheduling algorithm [76, 139], in which the
priority of a job depends upon its deadline parameter—jobs with earlier deadlines
are assigned greater priority (ties broken arbitrarily)—is an example of a FJP
scheduling algorithm.

3. In dynamic priority (DP) algorithms, there are no restrictions placed upon the
manner in which priorities are assigned to jobs—the priority of a job may change
arbitrarily often between its release time and its completion. The pfair scheduling
algorithms that we will study in Chap. 7 are examples of DP scheduling. So are
the Least Laxity algorithm discussed in Sect. 20.1 and EDZL [125] discussed in
Sect. 20.2.

It is evident from the above classification that different scheduling algorithms may
differ from one another in the manner in which priorities get assigned to individual
jobs by the algorithms. Some scheduling algorithms are observed to have certain de-
sirable features in terms of ease (and efficiency) of implementation, particularly upon
multiprocessor platforms. Some of the important characteristics of such algorithms
were studied by Ha and Liu [105–107], who proposed the following definition:

Definition 3.3 (priority-driven algorithms [107].) A scheduling algorithm is said
to be a priority driven scheduling algorithm if and only if it satisfies the condition
that for every pair of jobs Ji and Jj , if Ji has higher priority than Jj at some instant
in time, then Ji always has higher priority than Jj .

Observe that FJP and FTP scheduling algorithms each assign a single priority to
each job and are therefore classified as priority-driven (Definition 3.3); DP scheduling
algorithms are not priority-driven according to this definition.

From an implementation perspective, there are significant advantages in using
priority-driven algorithms in real-time systems; while it is beyond the scope of this
book to describe in detail all these advantages, some important ones are listed below.

• Very efficient implementations of priority-driven scheduling algorithms have been
designed (see, e.g., [150]).

• It can be shown that when a set of jobs is scheduled using a priority-driven
algorithm then the total number of preemptions is bounded from above by the
number of jobs in the set (and consequently, the total number of context switches
is bounded at twice the number of jobs).
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• For systems where interprocessor migration is permitted, it can similarly be shown
that the total number of interprocessor migrations of individual jobs is bounded
from above by the number of jobs.

3.3 Sustainability and Predictability

Systems are typically specified according to their worst-case parameters; for example
in the three-parameter sporadic task model (Sect. 2.1.2), Ci denotes the worst-case
execution requirement, Ti the minimum inter-arrival temporal separation between
the arrival times of successive jobs, and Di the maximum duration of time that may
elapse between a job’s arrival and the completion of its execution. Actual behavior
during run-time if often “better” than the specifications—jobs may execute for less
than Ci , arrive more than Ti time units apart, and can terminate before the deadline.
The notion of sustainability [40] formalizes the expectation that a system determined
to be schedulable under its worst-case specifications should remain schedulable when
its real behavior is “better” than worst case: intuitively, sustainability requires that
schedulability be preserved in situations in which it should be “easier” to ensure
schedulability.

Within the context of the multiprocessor scheduling of sporadic task systems, sus-
tainability may be discussed at several different levels. In particular, we distinguish
between sustainable scheduling algorithms and sustainable schedulability tests. A
scheduling algorithm A is said to be sustainable if any system that is A-schedulable
under its worst-case specification remains so when its behavior is better than worst
case. In order for an A-schedulability test to be deemed sustainable, it is required
that the following two requirements be met:

1. Any task system deemed A-schedulable by this schedulability test should continue
to meet its deadlines when its run-time behavior is “better” than mandated by the
worst-case specifications, and

2. All task systems with “better” (less constraining) parameters than a task system
found to be A-schedulable by the test should also be deemed A-schedulable
by the test. (This second requirement is closely related to the notion of self-
sustainability [23]; self-sustainability is discussed further in Sect. 14.5.1.)

Let us now delve a bit deeper into this definition of sustainable schedulability tests.
Note that if A is a sustainable scheduling algorithm then all (exact and sufficient)
A-schedulability tests will meet the first of these two requirements, but may or may
not meet the second. If A is not a sustainable scheduling algorithm, on the other
hand, no exact A-schedulability test can possibly be sustainable since it necessarily
violates the first condition.2

2 For such scheduling algorithms, it has been argued [40] that it is better engineering practice to use a sufficient
schedulability test that is sustainable rather than an exact one that is not.



3.3 Sustainability and Predictability 27

As stated above (and explored deeper in [40]), sustainability is a very basic and
fundamental requirement in the engineering of hard-real-time systems, since it is
only very rarely that a system can be characterized exactly (rather than by upper
bounds) at system design time. This immediately motivates the first requirement in
the definition of sustainable schedulability tests above, that for a schedulability test
to be considered useful it must be the case that task systems deemed schedulable
by the test should continue to meet all deadlines if the system behaves better than
the specifications at run-time. Indeed, any schedulability test that fails to meet this
requirement is not likely to be of much use in the engineering of hard-real-time
systems.

The second requirement in the definition of sustainable schedulability tests—that
all task systems with less constraining parameters than a system deemed schedula-
ble should also be deemed schedulable—is a secondary requirement that has arisen
from the needs of the incremental, interactive design process that is typically used
in designing real-time systems. Ideally, such a design process allows for the inter-
active exploration of the state space of possible designs; this is greatly facilitated if
making changes for the better to a design only results in improvements to system
properties. If we were to only use sustainable schedulability tests during the system
design process, then we would know that relaxing timing constraints (e.g., increasing
relative deadlines or periods, or decreasing worst-case execution times) would not
render schedulable subsystems unschedulable. For example, suppose that we were
designing a composite system comprised of several subsystems, and we were at a
point in the design state space where most subsystems are deemed schedulable by
the schedulability test. We could safely consider relaxing the task parameters of the
schedulable subsystems in order to search for neighboring points in the design state
space in which the currently unschedulable subsystems may also be deemed schedu-
lable, without needing to worry that the currently schedulable subsystems would
unexpectedly be deemed unschedulable.

The notion of predictability is closely related to the concept of sustainability.
Let I denote a collection of jobs, in which each job has a WCET as well as a

best case execution time (BCET) specified—during any execution, each job will
have an actual execution requirement that is no smaller than its BCET and no larger
than its WCET (in the models we have introduced thus far in this book, BCET is
always assumed to be equal to zero). Within the context of any particular scheduling
algorithm, let S(I+) and S(I−) denote the schedules for I when each job has an
actual execution time equal to its WCET and BCET, respectively. The scheduling
algorithm is said to be

Start time predictable if the actual start time of each job is no sooner than its start
time in S(I−) and no later than its start time in S(I+);

Completion time predictable if the actual completion time of each job is no sooner
than its completion time in S(I−) and no later than its completion time in S(I+);
and

Predictable if it is both start time and completion time predictable.
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Hence, with a predictable scheduling algorithm it is sufficient, for the purpose
of bounding the worst-case response time of a task or proving schedulability of
a task system, to look just at the jobs of each task whose actual execution times
are equal to the task’s worst-case execution time. Not every scheduling algorithm
is predictable in this sense—for instance, many of the anomalies that have been
identified in nonpreemptive scheduling (see, e.g., [97, 98]) are a direct consequence
of nonpredictability.

However, Ha and Liu proved [107] that all preemptable FTP and FJP scheduling
algorithms are predictable:

Theorem 3.1 (Ha and Liu) Any preemptive FJP and FTP scheduling algorithm is
predictable. �

As a consequence, in considering such scheduling algorithms we need to only
consider the case where each job’s execution requirement is equal to the worst-case
execution requirement of its generating task.

Sources

The classification of scheduling algorithms according to the priority assignment
scheme is to be found in [67]. Priority-driven algorithms were defined in [107]; the
term “predictability” as used here is also from [107]. The concept of sustainability
was defined in [40].



Chapter 4
A Review of Selected Results on Uniprocessors

In this chapter we briefly review some important concepts and results from unipro-
cessor real-time scheduling theory that we will be using during our study of
multiprocessor real-time systems in the later chapters. In Sect. 4.1, we prove the
optimality of earliest-deadline-first (EDF) scheduling upon preemptive uniproces-
sor platforms; this powerful result favors the use of EDF as the run-time algorithm
upon the individual processors in partitioned systems. Section 4.2 reviews some im-
portant results concerning deadline-monotonic and other fixed-task-priority (FTP)
scheduling algorithms on unipocessors. Section 4.3 describes a particular collection
of jobs called the synchronous arrival sequence (SAS) that may be generated by a
sporadic task system, and discusses the reasons for the important role this collection
of jobs plays in uniprocessor scheduling theory. Section 4.4 shows that answer-
ing interesting scheduling-theoretic questions concerning periodic task systems is
often highly intractable even for uniprocessor systems, and thereby helps explain
our decision to largely limit the scope of this book to the analysis of sporadic task
systems.

4.1 The Optimality of EDF on Preemptive Uniprocessors

The EDF scheduling algorithm assigns scheduling priority to jobs according to their
absolute deadlines: the earlier the deadline, the greater the priority (with ties broken
arbitrarily). EDF is known to be optimal for scheduling a collection of jobs upon a
preemptive uniprocessor platform, in the sense that if a given collection of jobs can be
scheduled to meet all deadlines, then the EDF-generated schedule for this collection
of jobs will also meet all deadlines. This fact is typically proved by induction, as
follows.

Suppose that there is an optimal schedule that meets all deadlines of all the jobs,
and suppose that the scheduling decisions made by EDF are identical to those made
by this optimal schedule over the time interval [0, t). At time-instant t , EDF observes
that job j1, with deadline d1, is an earliest-deadline job needing execution, and
schedules it over the interval [t , t + δ1). However, the optimal schedule schedules
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some other job j2, with deadline d2, over the interval [t , t + δ2). Let δ denote the

smaller of δ1 and δ2: δ
def= min{δ1, δ2}. The critical observation is that since EDF, by

definition, chooses a job with the earliest deadline, it must be the case that d1 ≤ d2.
Furthermore, since the optimal schedule also schedules j1 to complete by its deadline,
it must be the case that j1 is executed in the optimal schedule to complete by time-
instant to d1. In the optimal schedule, we may therefore simply swap the execution
of j2 over [t , t + δ) with the first δ units of execution of j1, thereby obtaining another
optimal schedule for which the scheduling decisions made by EDF are identical to
those made by this optimal schedule over the time interval [0, t + δ). The optimality
of EDF follows, by induction on t .

This optimality of EDF on preemptive uniprocessors is a very powerful property.
To show that a system is EDF-schedulable upon a preemptive uniprocessor, it suffices
to show the existence of a schedule meeting all deadlines—the optimality of EDF
ensures that it will find such a schedule. Consider, for example, an implicit-deadline
sporadic task system τ . It is evident that if Usum(τ ) ≤ 1 then any collection of jobs
generated by τ can be scheduled by an optimal clairvoyant scheduling algorithm to
meet all deadlines—if we were to construct a “processor-sharing schedule”1 in which
each job of each task τi were assigned a fraction ui of a processor at each instant
between its arrival time and its deadline, each job would complete by its deadline
(and since Usum(τ ) ≤ 1 we would never end up assigning a fraction of the processor
greater than 1 at any instant in time). We may therefore immediately conclude, from
EDF’s optimality property that EDF schedules τ to always meet all deadlines. This
establishes that any implicit-deadline sporadic task system τ with Usum(τ ) ≤ 1 is
scheduled by EDF to always meet all deadlines.

4.2 FTP Scheduling Algorithms

In an FTP scheduling algorithm (see Sect. 3.2), each sporadic task in a task system
is assigned a distinct priority and a job inherits the priority of the task that generates
it.

Consider a three-parameter sporadic task system τ that is scheduled using some
FTP algorithm (i.e., under some task priority assignment). Let hp(τk) denote the
tasks that are assigned a priority greater than the priority of task τk .

The worst-case response time of task τk in a schedule denotes the maximum
duration between the release of a job of τk and the time it completes execution in
the schedule. For any constrained-deadline three-parameter sporadic task system τ ,
it has been shown [112, 124] that the smallest fix-point of the recurrence

Rk = Ck +
∑

τi∈hp(τk )

⌈
Rk

Ti

⌉
Ci (4.1)

1 The proof of Theorem 7.1 explains how such a processor-sharing schedule may be converted into
one in which at most one job is executing at each instant in time.
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is a tight upper bound on the response time of τk .
The rate-monotonic (RM) scheduling algorithm [137] is an FTP scheduling al-

gorithm in which the priority assigned to a task depends upon its period: tasks
with smaller period are assigned greater priority (with ties broken arbitrarily). It is
known [137] that RM is an optimal FTP scheduling algorithm for scheduling implicit-
deadline sporadic task systems upon preemptive uniprocessors: if there is any FTP
scheduling algorithm that can schedule a given implicit-deadline sporadic task system
to always meet all deadlines of all jobs, then RM will also always meet all deadlines
of all jobs. A tight utilization bound2 is also known for the RM scheduling of implicit-
deadline sporadic task systems: any task system τ with Usum(τ ) ≤ |τ |(21/|τ | − 1) is
guaranteed RM-schedulable on a preemptive uniprocessor, and for each value of n

there is an implicit-deadline sporadic task system of n tasks with utilization exceeding
n(21/n − 1) by an arbitrarily small amount that RM fails to schedule successfully.

The DM scheduling algorithm [133] is another FTP scheduling algorithm in which
the priority assigned to a task depends upon its relative deadline parameter rather
than its period: tasks with smaller relative deadline are assigned greater priority
(with ties broken arbitrarily). Note that RM and DM are equivalent for implicit-
deadline sporadic task systems, since all tasks in such systems have their relative
deadline parameters equal to their periods. It has been shown [133] that DM is an
optimal FTP scheduling algorithm for scheduling constrained-deadline sporadic task
systems upon preemptive uniprocessors: if there is any FTP scheduling algorithm
that can schedule a given constrained-deadline sporadic task system to always meet
all deadlines of all jobs, then DM will also always meet all deadlines of all jobs. DM
is however known to not be optimal for arbitrary-deadline sporadic task systems.

4.3 The Synchronous Arrival Sequence

In sporadic task models, tasks are characterized by a minimum inter-arrival separa-
tion parameter (amongst other parameters such as WCET and relative deadline, and
perhaps additional parameters—as we will see in Chap. 21, in the sporadic DAG
tasks model these may include an entire DAG). A sporadic task is said to generate a
synchronous arrival sequence (SAS) of jobs if it generates jobs as rapidly as permit-
ted to do so, i.e., a job arrives immediately the minimum inter arrival separation has
elapsed since the arrival of the previous job. This notion is extended to task systems:
a task system is said to generate a synchronous arrival sequence of jobs if all tasks
in the task system generate a job at the same instant in time, and each task gener-
ates subsequent jobs as rapidly as permitted. The SAS is particularly significant in
uniprocessor scheduling because there are many situations for which it is known that
the SAS represents the worst-case behavior of a sporadic task system: if an algo-
rithm is able to schedule the SAS for a system, then it is able to schedule all other
collections of tasks that can legally be generated by the task system. Hence, many

2 Utilization bounds are formally defined a bit later in this book—Definition 5.1.
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uniprocessor schedulability results concerning sporadic task systems (such as the
bound on response time described in Eq. 4.1 above and a pseudo-polynomial-time
EDF schedulability test obtained [51]) are obtained by considering the SAS.

4.4 Intractability of Schedulability Analysis for Periodic
Task Systems

In contrast to sporadic tasks, for which a minimum separation between successive
arrivals by jobs of a task are specified, a periodic task has successive jobs arrive
exactly a specified time-interval apart. In one popular model, a periodic task τi is
characterized by the four parameters (Ai , Ci , Di , Ti),with the interpretation that this
task generates a job with worst-case execution requirement Ci and relative deadline
Di at each time-instant (Ai + kTi) for all k ∈ N. As in the 3-parameter sporadic
task model (Sect. 2.1.2), the parameters Ci , Di , and Ti are referred to as the worst-
case execution time (WCET), relative deadline, and period parameters of the task;
the parameter Ai is called the (initial) offset. Analogously to sporadic task systems,
a periodic task system τ is comprised of a number of periodic tasks. Periodic task
system τ is said to be synchronous if all the tasks in τ have the same value of the offset
(Ai = Aj for all τi , τj ∈ τ ). Also as with sporadic task systems, periodic task systems
are characterized as implicit-deadline if Di = Ti for all tasks τi , constrained-deadline
if Di ≤ Ti for all tasks τi , and arbitrary-deadline otherwise.

It has been shown that many common schedulability problems for constrained-
deadline and arbitrary-deadline periodic task systems are highly intractable—
nondeterministic polynomial time (NP)-hard in the strong sense—even on pre-
emptive uniprocessors. Further, we present the proof from [49, 50], showing that
feasibility analysis of such systems is co-NP-hard in the strong sense (given the op-
timality of preemptive uniprocessor EDF mentioned in Sect. 4.1, this immediately
implies that EDF-schedulability is also co-NP-hard in the strong sense).

Definition 4.1 (Simultaneous Congruences Problem (SCP)) Given a set A of n

ordered pairs of positive integers A = ⋃n
i=1{(ai , bi)} and a positive integer k ≤ n,

determine whether there is a subset A′ ⊆ A of k pairs and a natural number x such
that for every (ai , bi) ∈ A′, x ≡ ai(mod bi).

It has been shown [49; Theorem 3.2] that the SCP is NP-complete in the strong
sense. Further, we will use this fact to establish the intractability of preemptive
uniprocessor feasibility analysis for periodic task systems.

Theorem 4.1 The feasibility problem for periodic task systems upon preemptive
uniprocessor is co-NP-hard in the strong sense.

Proof Let 〈{(a1, b1), . . ., (an, bn)}, k〉 denote an instance of SCP. Consider now the
periodic task system of n tasks that is obtained in polynomial time from this instance
of SCP, with the following parameters [49, 132]. For 1 ≤ i ≤ n,

Ai ← (k − 1) × ai

Ci ← 1
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Di ← k − 1

Ti ← (k − 1) × bi

It is evident (see [132] for details) that this task system is feasible if and only if there
is no simultaneous collision of k pairs from the instance of SCP, i.e., if the instance
〈{(a1, b1), . . ., (an, bn)}, k〉 
∈ SCP. Furthermore, all of the values in the task system
are bounded by a polynomial in the values in the instance of SCP. �

The above theorem implies that there is no pseudo-polynomial-time algorithm for
the feasibility problem for periodic task systems unless P = NP. In fact, the following
corollary establishes that this intractability result holds even for task systems with
utilization bounded from above by an arbitrarily small constant.

Corollary 4.1 The feasibility problem for periodic task systems is co-NP-hard in
the strong sense even if the systems are restricted to have processor utilization not
greater than ε, where ε is any fixed positive constant.

Proof Consider the construction in the proof of Theorem 3.2. If we multiply all of
the start times and periods in this construction by the same positive integer, the proof
still holds. In particular, if we multiply all of the start times and periods by some
positive integer c ≥ n/(ε(k − 1)min{bi}), then

∑n
i=1 ei/pi ≤ ε. �

Corollary 4.1 highlights the contrast between periodic and sporadic task systems:
for sporadic task systems it has been shown [51] that feasibility analysis can be done
in pseudo-polynomial time for task systems with utilization bounded from above by
any constant strictly less than one.

We now list, without proof, some additional results concerning the preemptive
uniprocessor scheduling of periodic task systems, that we will be using later in this
book.

• It has been shown [49, 50] that the negative result of Corollary 4.1 does not hold
for synchronous periodic task systems—those in which all tasks have the same
offset. Specifically, for synchronous task systems with utilization bounded from
above by a constant strictly less than one, EDF schedulability analysis can be
performed in pseudo-polynomial time.

• Two important results were obtained in [133] concerning fixed-task-priority (FTP)
scheduling of periodic task systems. It was shown that DM is not an optimal FTP
algorithm for scheduling periodic task systems, even constrained-deadline ones.
It was also proved that DM is, however, optimal for synchronous constrained-
deadline periodic task systems.

Sources

The intractability results in Sect. 4.4 are from [49, 50].



Chapter 5
Implicit-Deadline (L&L) Tasks

This chapter, and the next few ones, are devoted to the multiprocessor scheduling of
implicit-deadline sporadic task systems. We will see that a large amount of research
has been conducted upon this topic, and quite a lot is known.Additionally, many of the
techniques and approaches that underpin multiprocessor real-time scheduling theory,
and that have subsequently gone on to be used in the analysis of systems represented
using more sophisticated workload and platform models, were first discovered in the
context of implicit-deadline task systems.

We briefly review the task model in this chapter, and define some of the metrics
used for evaluating the effectiveness of scheduling algorithms and schedulability
analysis tests. We consider partitioned scheduling in Chap. 6, and global schedul-
ing in Chaps. 7–9, with Chap. 7 devoted to dynamic-priority (DP) scheduling,
Chap. 8 to fixed-job-priority (FJP) scheduling, and Chap. 9 to fixed-task priority
(FTP) scheduling.

We start out briefly reviewing the task and machine model we will be considering
in this part of the book. Recall that an implicit-deadline sporadic task [137], also
sometimes referred to as a Liu & Layland task, is characterized by an ordered pair
of parameters: a worst-case execution time (WCET) and a minimum inter-arrival
separation (that is, for historical reasons, also called the period of the task). Let τi

denote an implicit-deadline sporadic task with WCET Ci and period Ti . Such a task
generates a potentially infinite sequence of jobs, with the first job arriving at any time
and subsequent job arrivals at least Ti time units apart. Each job has an execution
requirement no greater than Ci ; this must be met by a deadline that occurs Ti time
units after the job’s arrival.

We use the term utilization to denote the ratio of the WCET parameter of a task
to its period: the utilization of τi , often denoted as ui , is equal to Ci/Ti .

An implicit-deadline sporadic task system consists of a finite collection of sporadic
tasks, each specified by the two parameters as described above. The utilization of a
task system is defined to be the sum of the utilizations of all the tasks in the system;
the utilization of task system τ is often denoted by Usum(τ ) (the largest utilization of
any task is τ is analogously denoted by Umax(τ )).
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An identical multiprocessor platform consists of a number m of processors (m ≥
1), each of which has the same computing capabilities as all the other processors in
the platform.

Quantitative metrics allow us to compare the effectiveness of different scheduling
algorithms. The utilization bound metric is a widely-used metric for quantifying the
goodness of algorithms for scheduling implicit-deadline sporadic task systems; it is
defined as follows:

Definition 5.1 Given a scheduling algorithm A for scheduling implicit-deadline
sporadic task systems and a platform consisting of m unit-speed processors, the
utilization bound of algorithm A on the m-processor platform is defined to be the
largest number U such that all task systems with utilization ≤ U (and with each task
having utilization ≤ 1) is successfully scheduled by A to meet all deadlines on the
m-processor platform.

Utilization bounds have been widely used for evaluating the goodness of algo-
rithms for the preemptive uniprocessor scheduling of implicit-deadline sporadic task
systems; for example, the earliest deadline first (EDF) utilization bound of one and
the rate-monotonic (RM) utilization bound of ln 2 (approx. 0.69; [137]) are among
the first results covered in many real-time scheduling courses. The first attempts at
obtaining a better understanding of multiprocessor scheduling, therefore, quite nat-
urally focused upon determining utilization bounds. Hence for example, Lopez et
al. [140] have determined utilization bounds for various different approximate parti-
tioning algorithms, and advocate the use of these utilization bounds as a quantitative
measure of the goodness or effectiveness of these approximation algorithms. We will
review these utilization bounds in Sect. 6.1.

One of the reasons why utilization bounds are significant in uniprocessor systems
is that there is a direct relationship between feasibility and utilization: a necessary
and sufficient condition for an implicit-deadline sporadic task system to be schedu-
lable by an optimal algorithm on a unit-speed preemptive uniprocessor is that its
utilization does not exceed one. However, this relationship breaks down for mul-
tiprocessor scheduling.1 On the one hand, implicit-deadline sporadic task systems
with utilization exceeding (m + 1)/2 by an arbitrarily small amount have been iden-
tified that cannot be scheduled by any partitioning or any global fixed-job-priority or
fixed-task priority algorithm (see Sect. 3.2) on m unit-speed preemptive processors;
on the other, there are task systems with utilization equal to m that can be scheduled
by certain partitioning and certain global fixed-job-priority/fixed-task priority algo-
rithms. This fact motivates the consideration of an additional metric, the speedup
factor:

1 This relationship does hold for global preemptive scheduling on multiprocessors: a necessary and
sufficient condition for an implicit-deadline sporadic task system to be schedulable by an optimal
algorithm on m unit-speed preemptive processors under global scheduling is that its utilization not
exceed m [42]). However, we will see that all scheduling algorithms with utilization bound m are
necessarily dynamic-priority algorithms (see Sect. 3.2); if we restrict our attention to fixed-job-
priority (FJP) or fixed-task priority (FTP) algorithms, this relationship no longer holds.
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Definition 5.2 (speedup factor) Scheduling algorithm A has speedup factor f ,
f ≥ 1, if it successfully schedules any task system that can be scheduled upon a
given platform by an optimal clairvoyant algorithm, provided A is scheduling the
same task system upon a platform in which each processor is f times as fast as the
processors available to the optimal algorithm.

It is evident from this definition that other factors being equal (or unimportant),
we prefer scheduling algorithms with smaller speedup factors: an algorithm with
speedup factor equal to one is an optimal algorithm.

The important point about this definition is that the optimal algorithm, against
which the performance of algorithm A is compared, may be required to be subject to
the same restrictions as the ones placed upon algorithm A (such as being a partition-
ing algorithm, and/or using an FJP algorithm upon each processor, etc.). Thus for
example, the speedup factor of a fixed-job-priority scheduling algorithm would not
penalize the algorithm for not being able to schedule some task system that cannot be
scheduled even by an optimal clairvoyant fixed-job-priority scheduling algorithm.

In addition to deriving speedup factors for scheduling algorithms, we will on
occasion derive a speedup factor for a schedulability test of a given schedulability
algorithm. Such a metric is in essence bundling both the nonoptimality of a scheduling
algorithm and the pessimism of its schedulability test into a single metric. It is
reasonable to ask whether this makes sense; from a pragmatic perspective, we believe
that the answer is “yes” for our domain of interest, which are hard-real-time systems.
Since it must be a priori guaranteed in such hard-real-time systems that all deadlines
will be met during run time, a scheduling algorithm is only as good as its associated
schedulability test. In other words, a scheduling algorithm, no matter how close to
optimal, cannot be used in the absence of an associated schedulability test able to
guarantee that all deadlines will be met; what matters is that the combination of
scheduling algorithm and schedulability test together have desirable properties.



Chapter 6
Partitioned Scheduling of L&L Tasks

In this chapter, we consider the partitioned preemptive scheduling of implicit-
deadline sporadic task systems on identical multiprocessor platforms.

Given as input, an implicit-deadline sporadic task system τ and an m-processor
platform, the tasks in the task system τ are to be partitioned into m disjoint sub-
systems, with each subsystem being assigned to execute upon a distinct processor.
For most of the chapter, we consider that the tasks thus assigned to each processor
are scheduled on that processor using the preemptive earliest-deadline-first (EDF)
scheduling algorithm [76, 139]; in Sect. 6.4, we briefly describe the known results
concerning fixed-task-priority scheduling. It follows from the results in [139] con-
cerning the optimality of EDF upon preemptive uniprocessors (that we had described
in Sect. 4.1) that a necessary and sufficient condition for the tasks assigned to each
processor to be schedulable by EDF is that their utilizations sum to no more than
the speed of the processor.

It is widely known that such partitioning is equivalent to the bin-packing [112,
113] problem, and is hence highly intractable: nondeterministic polynomial time
(NP)-hard in the strong sense. We are therefore unlikely to be able to design parti-
tioning algorithms that both achieve optimal resource utilization and have efficient
(polynomial-time) implementations; instead, approximation algorithms that have
polynomial run-time are widely used for performing such partitioning.

In Sect. 6.1, we briefly review utilization bounds for several such well-known
approximate partitioning algorithms. In Sect. 6.2, we consider speedup factor in
conjunction with utilization bounds to characterize more completely the performance
of these different approximate partitioning algorithms. In Sect. 6.3, we describe a
polynomial-time approximation scheme (PTAS) for determining, in-time polynomial
in the representation of an implicit-deadline sporadic task system, a partitioning of the
system upon an identical multiprocessor system that is within an additive constant
ε removed from optimality with regards to the speedup factor, for any specified
constant ε > 0.
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6.1 Utilization Bounds for Some Common Partitioning
Algorithms

Most polynomial-time heuristic algorithms for partitioning have the following com-
mon structure: first, they specify an order in which the tasks are to be considered. In
considering a task, they specify the order in which to consider which processor upon
which to attempt to allocate the task. A task is successfully allocated upon a proces-
sor if it is observed to “fit” upon the processor; within our context of the partitioned
EDF-scheduling of implicit-deadline sporadic task systems, a task fits on a processor
if the task’s utilization does not exceed the processor capacity minus the sum of the
utilizations of all tasks previously allocated to the processor. The algorithm declares
success if all tasks are successfully allocated; otherwise, it declares failure.

Lopez et al. [142] compared several widely used heuristic algorithms extensively.
In making these comparisons, Lopez et al. [142] classified the studied heuristics
according to the following definitions:

Definition 6.1 (from [142]) A reasonable allocation (RA) algorithm is defined as
one that fails to allocate a task to a multiprocessor platform only when the task does
not fit into any processor upon the platform.

Within RA algorithms, reasonable allocation decreasing (RAD) algorithms
consider the tasks for allocation in nonincreasing order of utilizations.

All the heuristic algorithms considered by Lopez et al. [142] were RA ones—
indeed, there seems to be no reason why a system designer would ever consider using
a non-RA partitioning algorithm. The algorithms considered by Lopez et al. [142]
can be thought of as having been obtained by choosing different combinations of the
following two factors:

1. When a task is considered for assignment, to which processor does it get as-
signed? The standard bin-packing heuristics of first-fit, worst-fit, and best-fit
were considered:
• In first-fit (FF) algorithms, the processors are considered ordered in some

manner and the task is assigned to the first processor on which it fits.
• In worst-fit (WF) algorithms, it is assigned to the processor with the maximum

remaining capacity.
• In best-fit (BF) algorithms, it is assigned to the processor with the minimum

remaining capacity exceeding its own utilization (i.e., on which it fits).
2. In what order are the tasks considered for assignment?

• In decreasing (D) algorithms, the tasks are considered in nonincreasing order
of their utilizations.

• In increasing (I) algorithms, the tasks are considered in nondecreasing order
of their utilizations.

• In unordered (ε) algorithms, the tasks are considered in arbitrary order. (In
contrast to decreasing and increasing algorithms, unordered algorithms do not
require that the tasks be sorted by their utilizations prior to allocation).
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Different answers to each of these two questions results in a different heuristic; each
of the combinations

{FF, BF, WF} × {D, I, ε}
yields a different heuristic, for a total of nine heuristics. They are referred to by two-
or three-letter acronyms, in the obvious manner: e.g., FFD is “first fit” with tasks
considered in nonincreasing order of utilization, while WF is “worst fit” with the
tasks considered in arbitrary order.

Lopez et al. [142] compared these different partitioning algorithms from the
perspective of their utilization bounds (Definition 5.1).

We now briefly list some of the results obtained by Lopez et al. [142]. Suppose we
are seeking to partition n tasks on an m-processor platform. Let α denote an upper
bound on the per-task utilization, and let β ← �1/α�. Upper and lower bounds were
obtained in [142] on the utilization bounds of any reasonable allocation algorithm.

First, it was shown [142, Theorem 1] that any reasonable allocation algorithm has
a utilization bound no smaller than

m − (m − 1)α. (6.1)

This is immediately evident by observing that if a task τi with utilization ui cannot
be assigned to any processor, it must be the case where each processor already has
been allocated tasks with total utilization strictly greater than (1 − ui). Summing
over all the tasks—those already allocated to the m processors and the task τi—we
conclude that the total utilization of all the tasks is no smaller than

m(1 − ui) + ui

= m − (m − 1)ui

≥ m − (m − 1)α

thereby establishing the lower bound stated in Eq. 6.1.
The following lower bound was also proved in [142, Theorem 2]: No allocation

algorithm, reasonable or not, can have a utilization bound larger than

βm + 1

β + 1
(6.2)

This lower bound was established by considering the task system consisting of the
following n tasks, for any n > βm. There are (βm + 1) “heavy” tasks each with

utilization
(

1
β+1 + ε

n

)
, while the remaining (n−βm− 1) tasks are “light” with each

having utilization ε
n

; here, ε denotes some arbitrarily small positive real number. The

total utilization of this task system is easily seen to be equal to
(

βm+1
β+1 + ε

)
. To show

that it cannot be partitioned upon m processors, observe that since there are βm + 1
heavy tasks, some processor would need to accommodate at least β + 1 heavy tasks
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in any partitioning. But this is not possible, since the total utilization of β + 1 heavy
tasks exceeds one.

The following utilization bounds were shown for specific algorithms in [142]: WF
and WFI have the lower bound (Eq. 6.1 above) while FF, BF, FFI, and BFI, as well
as all the RAD algorithms considered, have the upper bound (Eq. 6.2 above). In the
absence of any bound on the value of α, the largest utilization of any task (other than
the obvious bound that it be no larger than one—the capacity of a processor), these
bounds may be summarized as follows: when partitioning on a platform comprised
of m unit-speed processors,

• WF and WFI have utilization bounds of one, regardless of the number of
processors m;

• The remaining seven algorithms—FF, FFI, FFD, BF, BFI, BFD, and WFD—each
has a utilization bound equal to (m + 1)/2.

Some Observations Observe that all nine partitioning algorithms analyzed by
Lopez et al. [142] can be implemented extremely efficiently: sorting n tasks ac-
cording to utilization takes O(n log n) time. On an m-processor platform, each of
the task-allocation strategies FF, BF, and WF can be implemented in O(m) time per
task; WF can in fact be implemented in O( log m) time per task. Hence, in seek-
ing to determine whether a given task system can be partitioned upon a specified
platform by a particular partitioning algorithm, it seems reasonable to actually run
the partitioning algorithm, rather than computing the utilization of the task system
and comparing against the algorithm’s (sufficient, not exact) utilization bound. Thus,
from the perspective of actually implementing a real-time system using partitioned
scheduling, there is no particular significance to using a utilization bound formula
rather than actually trying out the algorithms. Rather, the major benefit to deter-
mining these bounds arises from the insight such bounds may provide regarding the
efficacy of the algorithm.

6.2 Speedup Factors for Some Common Partitioning Algorithms

Let ε denote an arbitrarily small positive real number and m an arbitrary positive
integer, and consider the following two task systems τ and τ ′.

• Task system τ consists of m+ 1 tasks, each of utilization 0.5 + ε, to be scheduled
on a platform comprised of m unit-capacity processors. This task system has a
total utilization equal to (m + 1) × (0.5 + ε); this approaches (m + 1)/2 from
above as ε → 0.

• Task system τ ′ consists of 2(m + 1) tasks, each of utilization (0.5 + ε)/2, to be
scheduled on a platform comprised of m unit-capacity processors. This task sys-
tem, too, has a total utilization equal to 2(m+1)×(

0.5+ε
2

)
, which also approaches

(m + 1)/2 from above as ε → 0.
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Both τ and τ ′ have the same utilization (and this utilization is larger than the up-
per bound of Inequality 6.2 on the utilization bound). Hence, neither τ nor τ ′ is
guaranteed schedulable by any of the algorithms according to the utilization bounds
computed in [142]. But it is quite evident that while no algorithm could possibly
partition τ upon an m-processor platform, τ ′ is easily partitioned by most algorithms
(including the RA and RAD ones studied by Lopez et al. [142]).

In other words, for task system τ one pays the penalty of a utilization loss of
(m − (m + 1)/2) as a consequence of choosing to do partitioned scheduling, re-
gardless of which particular partitioning algorithm we use. By contrast, there is no
similar utilization loss in partitioning τ ′: Any utilization loss arises from the choice
of partitioning algorithm, not merely the decision to go with partitioned (as opposed
to global) scheduling.

But the utilization bound metric does not distinguish between the two cases: It is
unable to distinguish between task systems of the same utilization that are feasible
(can be partitioned by an optimal algorithm) and those that are not.

Consider now the speedup factor metric (Definition 5.2). In the context of parti-
tioned scheduling, the speedup factor of an approximation algorithmA for partitioned
scheduling is the smallest number f such that any task system that can be partitioned
by an optimal algorithm upon a particular platform can be partitioned by A upon a
platform in which each processor is f times as fast.

The speedup factor of a partitioning algorithm quantifies the distance from opti-
mality of the algorithm’s resource-usage efficiency: the larger an algorithm’s speedup
factor, the less efficient its use of processor capacity. (At the extreme, a partitioning
algorithm with speedup factor one is an optimal partitioning algorithm). Unlike the
utilization metric, the speedup factor metric does not penalize an algorithm for not
being able to partition a task system that is inherently not partitionable—cannot be
partitioned by an optimal algorithm (such as the nonpartitionable task system that
was constructed to show the upper bound of Eq. 6.2 on utilization bounds).

Common polynomial-time partitioning algorithms were evaluated and compared
in [32] from the perspective of their respective speedup factors. The findings in [32]
may be summarized as follows: when implemented upon m-processor platforms

• All RAD partitioning algorithms have a speedup factor of
(

4
3 − 1

3m

)

• WF and WFI have a speedup factor of
(
2 − 2

m

)

• The remaining commonly-considered partitioning algorithms—FF, FFI, BF, and
BFI—each have a speedup factor of

(
2 − 2

m+1

)

That is, the RAD algorithms have a speedup factor no larger than 4/3 for all values
of m, while the speedup factors of the remaining six algorithms considered in [142]
approach 2 as m → ∞. Contrasting to the utilization-bound metric, we note that
while the utilization bounds of WF and WFI are less than that of the other algorithms,
the remaining seven algorithms have the same utilization bound. Hence, utilization
bounds alone cannot explain experimentally observed conclusions (see, in, e.g, [144;
Fig. 6]) that FFD appears to be superior to FF or FFI, and BFD appears to be superior
to BF or BFI; these findings are however consistent with the differences between the
algorithms’ speedup factors.
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6.3 A PTAS for Partitioning

Hochbaum and Shmoys [108] designed a PTAS for the partitioning of implicit-
deadline sporadic task systems1 that behaves as follows. Given any positive constant
φ, if an optimal algorithm can partition a given task system τ upon m processors each
of speed s, then the algorithm in [108] will, in-time polynomial in the representation
of τ , partition τ upon m processors each of speed (1 + φ)s. This can be thought of
as a resource augmentation result [116]: the algorithm of [108] can partition, in
polynomial time, any task system that can be partitioned upon a given platform
by an optimal algorithm, provided it (the algorithm of [106]) is given augmented
resources (in terms of faster processors) as compared to the resources available to
the optimal algorithm.

This is a theoretically significant result since it establishes that task partitioning
can be performed to any (constant) desired degree of accuracy in polynomial time.
However, the algorithm of [108] has poor implementation efficiency in practice:
the constants in the run-time expression for this algorithm are prohibitively large.
The ideas in [108] were applied in [68] to obtain an implementation that is efficient
enough to often be usable in practice. We describe the implementation in [68] in the
remainder of this section.

Overview The main idea behind the approach in [68] is to construct, for each
identical multiprocessor platform upon which one will execute implicit-deadline
sporadic task systems under partitioned EDF, a lookup table (LUT). Whenever a
task system is to be partitioned upon this platform, this table is used to determine the
assignment of the tasks to the processors.

The LUT is constructed assuming that the utilizations of all the tasks have values
from within a fixed set of distinct values V . When this LUT is later used to actually
partition of a given task system τ , each task in τ may need to have its worst-case
execution time (WCET) parameter inflated so that the resulting task utilization is
indeed one of these distinct values in V . (The sustainability [40] property—see
Sect. 3.3—of preemptive uniprocessor EDF ensures that if the tasks with the inflated
WCET’s are successfully scheduled, then so are the original tasks). The challenge
lies in choosing the values in V in such a manner that the amount of such inflation
of WCET’s that is required is not too large.

It should be evident (we will show this formally) that the larger the number of
distinct values in the set V , the smaller the amount of inflation needed. Hence,
an important design decision must be made prior to table-construction time: How
large a table will we construct? This is expressed in terms of choosing a value for
a parameter ε to the procedure that constructs the LUT. Informally speaking, the

1 Actually, the result in [108] was expressed in terms of minimizing the makespan—the duration
of the schedule—of a given finite collection of nonpreemptive jobs; however, the makespan min-
imization problem considered in [108] is easily shown to essentially be equivalent to the problem
of partitioning implicit-deadline sporadic task systems.
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smaller the value of ε, the smaller the WCET inflation that is needed, and the closer
to optimal the resulting task-assignment. However, the size of the LUT and the time
required to compute it, also depends on the value of ε: the smaller the value, the
larger the table-size (and the amount of time needed to compute it).

Constructing the LUT We will now describe how the LUT is constructed for a
multiprocessor platform consisting of m unit-speed processors. The steps involved
in constructing the LUT for this platform are:

1. Choosing a value for the parameter ε

2. Based on the value chosen for ε, determining the utilization values that are to be
included in the set V . (To make explicit the dependence of this set upon the value
chosen for ε, we will henceforth denote this set as V (ε))

3. Determining the combinations of tasks with utilizations in V (ε) that can be
scheduled together on a single processor

4. Using these single-processor combinations to determine the combinations of tasks
with utilizations in V (ε) that can be scheduled on m processors

Each of these steps is discussed in greater detail below.

Choosing ε We will see later (Theorem 6.2) that the performance guarantee that is
made by the partitioning algorithm using the LUT is as follows: any task system that
can be partitioned upon m unit-speed processors by an optimal partitioning algorithm
will be partitioned by this algorithm on m processors each of speed (1 + ε). Hence,
in choosing a value for ε, we are in effect reducing the guaranteed utilization bound
of each processor to equal 1/(1 + ε) times the actual utilization; so the decision in
choosing a value for ε essentially becomes: what fraction of the processor capacity are
we willing to sacrifice2, in order to be able to do task partitioning more efficiently?
For instance, if we were willing to tolerate a loss of up to 10 % of the processor
utilization, ε would need to satisfy the condition

(
1

1 + ε
≥ 0.9

)
⇔

(
ε ≤ 1

0.9
− 1

)
⇔

(
ε ≤ 1

9

)
.

As stated during the overview above, the size of the LUT, and the time required
to compute it, also depend on the value of ε: the smaller the value, the larger the
table-size (and the amount of time needed to compute it). Hence, ε is assigned the
largest value consistent with the desired overall system utilization; in the example
above, ε would in fact be assigned the value 1/9.

Determining the Utilization Values We next use the value of ε chosen above to
determine which utilization values to include in the set V (ε) of distinct utilization
values that will be represented in the LUT we construct. In choosing the members of

2 We note that this “sacrifice” is only in terms of worst-case guarantees, as formalized in Theo-
rem 6.2. It is quite possible that some of this sacrificed capacity can in fact be used during the
partitioning of particular task systems.
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V (ε), the objective is to minimize the amount by which the utilizations of the tasks
to be partitioned must be inflated, in order to become equal to one of the values in
V (ε).

The choice we make is to have V (ε) equal to the set of all real numbers of the
form ε · (1 + ε)k , for all nonnegative integers k (up to the upper limit of one).

The rationale is as follows. When the table is used to perform task partitioning,
the actual task utilizations will be rounded up to the nearest value present in the set
V (ε). Suppose that an actual utilization ui is just a bit greater than one of the values
present in V , say, ε(1 + ε)j —this is depicted in the figure below by a “�”.

0 ε · · · ε (1+ ε ) j
�
ui

ε (1+ ε ) j+1 · · ·

. ........... . ........... . .
........... ..... ....... . ........... . .......... . ....... ...... . .......... . .......... . .......... . . .......... ..... ....... . ...........

This utilization will be rounded up to ε(1+ε)j+1; the fraction by which this utilization
has been inflated is therefore

ε(1 + ε)j+1

ui

<
ε(1 + ε)j+1

ε(1 + ε)j
= (1 + ε) .

Thus, if each task’s utilization were to be inflated by this maximal factor, it follows
that any collection of tasks with total utilization ≤ 1/(1 + ε) would have inflated
utilization ≤ 1, and would hence be determined, based on our LUT, to fit on a single
processor3.

Let us now determine |V (ε)|, the number of elements in the set V (ε). We wish to
include each positive real number ≤ 1 that is of the form ε(1 + ε)j for nonnegative
j . Since

ε(1 + ε)j ≤ 1

⇔ (1 + ε)j ≤ (1/ε)

⇔ j log (1 + ε) ≤ log (1/ε)

⇔ j ≤ log (1/ε)

log (1 + ε)
,

we conclude that

|V (ε)| =
⌊

log (1/ε)

log (1 + ε)

⌋
+ 1. (6.3)

3 Note that this argument does not hold for actual utilizations—the ui in the figure—less than
ε/(1 + ε). If a task with utilization ui arbitrarily close to zero (ui → 0+) were to have its utilization
rounded up to ε/(1 + ε), the inflation factor would be (ε/(1 + ε)) ÷ ui , which approaches ∞
as ui → 0. We will see—Step 3 of the pseudo-code listed in Fig. 6.1—that our task-assignment
procedure handles tasks with utilization < ε/(1 + ε) differently.
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Task system τ , consisting of n implicit-deadline tasks with utilizations u1, u2, . . . , un,
is to be partitioned among m unit-speed processors.

1. For each task with utilization ≥ ε/(1 + ε), round up its utilization (if necessary)
so that it is equal to ε × (1 + ε)k for some nonnegative integer k. (Observe that
such rounding up inflates the utilization of a task by at most a factor (1 + ε):
the ratio of the rounded-up utilization to the original utilization of any task is
≤ (1 + ε).) Now all the tasks with (original) utilization ≥ ε/(1 + ε) have their
utilizations equal to one of the distinct values that were considered during the
table-generation step. Let ki denote the number of tasks with modified utilization
equal to ε × (1 + ε)i−1, for each i, 1 ≤ i ≤ |V (ε)|.

2. Determine whether this collection of modified-utilization tasks can be accommo-
dated in one of the maximal m-processor configurations that had been identified
during the preprocessing phase. That is, determine whether there is a maximal
multiprocessor configuration

y1, y2, . . . , y|V (ε)| , z1, z2, . . . , zm

in Lm(ε), satisfying the condition that yi ≥ ki for each i, 1 ≤ i ≤ |V (ε)|.
• If the answer here is “no,” then report failure: we are unable to partition τ

among the m processors.
• If the answer is “yes,” however, then a viable partitioning has been found for

the tasks with (original) utilization ≥ ε/(1 + ε): assign these tasks according
to the maximal m-processor configuration.

3. It remains to assign the tasks with utilization < ε/(1 + ε). Assign each to any
processor upon which it will “fit;” i.e., any processor on which the sum of the
(original—i.e., unmodified) utilizations of the tasks assigned to the processor
would not exceed one if this task were assigned to that processor.

4. If all the tasks with utilization < ε/(1 + ε) are assigned to processors in this
manner, then a viable partitioning has been found for all the tasks. However, if
some task cannot be assigned in this manner, then report failure: we are unable
to partition τ among the m processors.

Fig. 6.1 Algorithm for partitioning implicit-deadline sporadic tasks on an identical multiprocessor
platform scheduled using preemptive partitioned EDF

Determining Legal Single-Processor Configurations We now seek to determine
all the different ways in which a single processor can be packed with tasks that only
have utilizations in V (ε).

We refer to these as single-processor configurations.
For reasons of efficiency in storage (and subsequent lookup), we will seek only

the maximal configurations of this kind: a single-processor configuration is said to
be a maximal one if no additional task with utilization ∈ V (ε) can be added without
the sum of the utilizations exceeding the capacity of the processor:



48 6 Partitioned Scheduling of L&L Tasks

Definition 6.2 (single-processor configuration) For a given value of ε, a single-
processor configuration is a |V (ε)|-tuple

〈x1, x2, . . . , x|V (ε)|〉
of nonnegative integers, satisfying the constraint that

(|V (ε)|∑

i=1

(xi · ε · (1 + ε)i−1)

)
≤ 1. (6.4)

The single-processor configuration 〈x1, x2, . . . , x|V (ε)|〉 is maximal if
(|V (ε)|∑

i=1

(xi · ε · (1 + ε)i−1)

)
> (1 − ε) (6.5)

(which implies that no task with utilization ∈ V (ε) can be added without exceeding
the processor’s capacity). �

Our objective is to determine a list L1(ε) of all possible maximal single-processor
configurations for the selected value of ε (here, the subscript “1” denotes the number
of processors; we will describe below how we use this to construct the list L(ε) for
m processors).

Since there are only finitely many distinct utilization values (as specified in Eq. 6.3)
in V (ε), all the elements of L1(ε) can in principle be determined by exhaustive
enumeration: simply try all |V (ε)|-tuples with the i’th component no larger than
(1/(ε · (1 + ε)i−1)), adding the ones that satisfy Inequalities 6.4 and 6.5 to L1(ε).
Such a procedure has run-time exponential in (1/ε). Although this can be quite high
for small ε, this run-time is incurred only once, when the multiprocessor platform
is being put together. Once the list L1(ε) has been constructed, it can be stored and
repeatedly reused for doing task partitioning.

Determining Legal Multiprocessor Configurations We can use the maximal
single-processor configurations determined above to determine maximal configu-
rations for a collection of m processors.

Intuitively, each such maximal multiprocessor configuration will represent a dif-
ferent manner in which m processors can be maximally packed with tasks having
utilizations in V (ε).

Definition 6.3 (multiprocessor configuration) For given m and ε, a multiprocessor
configuration is an ordered pair of a |V (ε)|-tuple

〈y1, y2, . . . , y|V (ε)|〉
of nonnegative integers, and an m-tuple

〈z1, z2, . . . , zm〉
of positive integers ≤ |Li(ε)|. The zj ’s denote configuration ID’s of single-processor
configurations (as previously computed, and stored in L1(ε)); 〈z1, z2, . . . , zm〉 thus
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denotes the m-processor configuration obtained by configuring the j ’th processor
according to the single-processor configuration represented by ID zj in Li(ε), for
1 ≤ j ≤ m.

The tuples 〈y1, y2, . . . , y|V (ε)|〉 and 〈z1, z2, . . . , zm〉 must satisfy the constraint that
for each i, 1 ≤ i ≤ |V (ε)|, the i’th component of the tuples in L1(ε) with ID’s
∈ 〈z1, z2, . . . , zm〉 sums to exactly yi .

A multiprocessor configuration (〈y1, y2, . . . , y|V (ε)|〉, 〈z1, z2, . . . , zm〉) is max-
imal if there is no other multiprocessor configuration (〈y ′

1, y ′
2, . . . , y ′

|V (ε)|〉,〈z′
1, z′

2, . . . , z′
m〉) such that y ′

i ≥ yi for all i, 1 ≤ i ≤ |V (ε)|. �

Let Lm(ε) denote the list of all maximal multiprocessor configurations. Lm(ε)
can in principle be determined using exhaustive enumeration: simply consider all m-
combinations of the single-processor configurations computed and stored in L1(ε).
While the worst-case run-time could be as large as |L1(ε)|m and thus once again
exponential in ε and m, this step, like the computation of L1(ε), also needs to be
performed only once during the process of synthesizing the multiprocessor plat-
form. Furthermore, several pragmatic optimizations based upon various counting
techniques and programming heuristics that may be used to reduce the run-time in
practice are listed in [68]. After it has been computed, Lm(ε) is stored in a lookup
table that is provided along with the m-processor platform, and is used (in a manner
discussed below) for partitioning specific task systems upon the platform.

Task Assignment Let τ denote a collection of n implicit-deadline sporadic tasks
to be partitioned among the (unit-capacity) processors in the m-processor platform.
Let ui denote the utilization of the i’th task in τ . The task assignment algorithm,
depicted in pseudo-code form in Fig. 6.1, operates in two phases

1. In the first phase (Steps 1 and 2 in the pseudo-code), it uses the LUT constructed
above to attempt to assign all tasks with utilization ≥ ε/(1 + ε).

2. Next, tasks with utilization < ε/(1 + ε) are considered during the second phase
(Steps 3 and 4 in the pseudo-code). In this phase, the algorithm seeks to accom-
modate these small-utilization tasks in the remaining capacity remaining upon
the processors after phase 1 completes.

Properties We will first show that the partitioning algorithm is sound:

Theorem 6.1 If the partitioning algorithm of Fig. 6.1 succeeds in assigning all the
tasks in τ , then the tasks that are assigned to each processor can be scheduled on
that processor to meet all deadlines by preemptive uniprocessor EDF.

Proof The sum of the inflated utilizations of all the tasks assigned on each processor
during the first phase does not exceed the capacity of the processor. Hence, the sum of
the original (i.e., noninflated) utilizations of tasks assigned to any particular processor
does not exceed the capacity of the processor.

This property is preserved during the second phase of the algorithm, since a task
is only added to a processor during this phase if the sum of the utilizations after doing
so will not exceed the processor’s capacity. Hence, if the task-assignment algorithm
succeeds in assigning all the tasks to processors, then the sum of the utilizations of
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the tasks assigned to any particular processor is no larger than one. It follows from
the optimality of EDF on preemptive uniprocessor platforms [76, 139] that each
processor is consequently successfully scheduled by EDF. �

Next, we show that if the algorithm fails to assign all the tasks in τ to the processors,
then no algorithm could have partitioned τ upon an m-processor platform comprised
of processors of slightly smaller computing capacity:

Theorem 6.2 If the partitioning algorithm of Fig. 6.1 fails to partition the tasks in
τ , then no algorithm can partition τ on a platform of m processors each of computing
capacity 1/(1 + ε).

Proof The partitioning algorithm of Fig. 6.1 may declare failure at two points, one
of which is in phase one and the other is in phase two. We consider each possible
point of failure separately.

1. Suppose that the algorithm reports failure during phase one, while attempting to
assign only the tasks with utilization ≥ ε/(1 + ε) (Step 2 in the pseudo-code).
Since each such task has its utilization inflated by a factor < (1 + ε), it must
be the case that all such (original—i.e., unmodified-utilization) tasks cannot be
scheduled by an optimal algorithm on a platform comprised of m processors
each of computing capacity 1/(1 + ε). In other words, even just the tasks in τ

with unmodified utilizations ≥ ε cannot be partitioned among m processors of
computing capacity 1/(1 + ε) each, and consequently all of τ clearly cannot be
partitioned on such a platform.

2. Suppose that the algorithm reports failure during phase two, while attempting to
assign the tasks with utilization < ε/(1 + ε) (Step 4 in the pseudo-code). This
would imply that while some task with utilization < ε/(1+ε) remains unallocated
to any processor, the sum of the utilizations of the tasks already assigned to each
processor is > (1 − ε/(1 + ε)). Therefore, the total utilization of τ exceeds
m × (1 − ε/(1 + ε)) = m(1/(1 + ε)), and τ cannot consequently be feasible on
m processors of computing capacity (1/(1 + ε)) each.

The theorem follows. �

Theorems 6.1 and 6.2 together imply that the partitioning algorithm depicted in
pseudocode form in Fig. 6.1 is able to partition upon m unit-speed processors any
implicit-deadline sporadic task system that can be partitioned by an optimal algorithm
upon m speed-

(
1

1+ε

)
processors.

6.4 Fixed-Task-Priority (FTP) Partitioned Scheduling

We close this chapter with a brief overview of some results concerning partitioned
scheduling of implicit-deadline sporadic task systems when we are constrained to
using a FTP algorithm for scheduling each individual processor (see Sect. 3.2 for a
review of the different restrictions upon priority assignment schemes).
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As we had stated in Sect. 4.2, Liu and Layland [139] showed that the FTP priority
assignment of ordering task priorities according to period parameters is optimal for
implicit-deadline sporadic task systems in the sense that if a task system is schedu-
lable under any FTP scheme, then the task system is schedulable if tasks are ordered
according to period parameters, with smaller-period tasks being assigned greater
priority. Recall from Sect. 4.2 that this priority order is called rate monotonic (RM),
and that the following property of RM was proved in [139]:

Theorem 6.3 (from [139]) Any implicit-deadline sporadic task system τ comprised
of n tasks is schedulable upon a unit-capacity processor by RM if Usum(τ ) ≤ n

(21/n − 1).
Oh and Baker [153] applied this uniprocessor utilization bound test to partitioned

multiprocessor FTP scheduling using first-fit decreasing utilization (FFD, in the
notation of Sect. 6.1) assignment of tasks to processors and RM local scheduling on
each processor. They proved that any system of implicit-deadline sporadic tasks with
total utilization U < m(

√
2−1) is schedulable by this method on m processors. They

also showed that for any m ≥ 2 there is a task system with U = (m+1)/(1+21/(m+1))
that cannot be scheduled upon mprocessors using partitioned FTP scheduling. Lopez,
Diaz and Garcia [141] refined and generalized this result, and along with other more
complex schedulability tests, showed the following.

Theorem 6.4 (from [141]) Any implicit-deadline sporadic task system τ comprised
of n tasks is schedulable upon m unit-capacity processors by a FTP partitioning
algorithm (specifically, FFD partitioning, and RM local scheduling) if

Usum(τ ) ≤ (n − 1)(
√

2 − 1) + (m − n + 1)(21/(m−n+1) − 1)

6.5 Semi-partitioned FTP Scheduling

In the semi-partitioned approach to multiprocessor scheduling, a few tasks are split
into “pieces” and the different pieces are assigned to different processors; each pro-
cessor is then executed during run-time by a uniprocessor scheduler (although some
communication between the uniprocessor schedulers upon the different processors is
necessary in order to prevent different pieces of a task from executing simultaneously
upon different processors). Guan et al. [101, 102] have devised a semi-partitioned
algorithm for scheduling implicit-deadline sporadic task systems that has optimal
utilization bounds. While we will not be exploring the semi-partitioned approach
any further in this book, we consider these results very significant—there are not too
many optimal results in multiprocessor scheduling—and direct the interested reader
to [101, 102].
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Sources

The EDF utilization bounds described in this chapter are to be found in Lopez et
al. [141, 142]; the speedup bounds are from [32]. The PTAS described in Sect. 6.3
is from [68]; which applied the results in [108] concerning makespan minimization
to come up with the LUT-based approach. Some of the FTP scheduling results are
from [22].



Chapter 7
Global Dynamic-Priority Scheduling of L&L
Tasks

We now turn our attention to global scheduling: interprocessor migration is permitted.
The following result was established by Horn [107]:

Theorem 7.1 (from [107]) Any implicit-deadline sporadic task system τ satisfying

Usum(τ ) ≤ m and Umax(τ ) ≤ 1

is feasible upon a platform comprised of m unit-capacity processors.
To see why this holds, observe that a “processor sharing” schedule, in which

each job of each task τi is assigned a fraction ui of a processor between its release
time and its deadline, would meet all deadlines—such a processor-sharing schedule
may subsequently be converted to one in which each job executes on zero or one
processor at each time instant by means of the technique of Coffman and Denning [79;
Sect. 3.6]. 1 Of course, such a schedule will see a very large number of preemptions
and migrations and is highly unlikely to be implemented in practice; instead, powerful
and efficient algorithms based upon the technique of pfair scheduling [42] have been
developed for performing optimal global scheduling of implicit-deadline sporadic
task systems upon multiprocessor platforms. We will study pfair scheduling in the
remainder of this chapter.

Notice that task systems τ with Usum(τ ) > m or Umax(τ ) > 1 cannot possi-
bly be feasible upon a platform comprised of m unit-capacity processors; hence,

1 Here is an informal description of the technique; for further detail, please see [79, p. 116]. Let
δ denote an arbitrarily small positive real number, and [t , t + δ] a time interval during which the
processor shares assigned to the tasks do not change. Each task τi that is active during this interval
needs to execute for an amount ui · δ. Considering the tasks sequentially in any order, we simply
begin assigning them to the first processor starting at time-instant t until we have reached time-
instant t + δ, at which point we would “wrap around” and proceed to the next processor beginning
again at time-instant t , and so on until all the tasks have been assigned. If a task has only been
assigned a part of its execution requirement upon a processor, we assign it the remainder of its
execution requirement upon the next processor: the fact that ui ≤ 1 for each task guarantees that
the allocation to a task upon two consecutive processors will not overlap in time.

© Springer International Publishing Switzerland 2015 53
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Theorem 7.1 represents an exact test for global feasibility of implicit-deadline task
systems, and pfair and related algorithms are therefore optimal.

Recall the classification in Sect. 3.2 of scheduling algorithms into dynamic priority
(DP), fixed-job priority (FJP), and fixed-task priority (FTP) ones, according to the
restrictions that are placed upon the manner in which scheduling algorithms may
assign priorities to jobs. It turns out that all known optimal scheduling algorithms
(i.e., those that successfully schedule all task systems satisfying the condition of
Theorem 7.1) are DP algorithms. We study such algorithms in the remainder of this
chapter.

7.1 Overview

Pfair scheduling is characterized by the fact that tasks are explicitly required to make
progress at steady rates. Consider a task τi = (Ci , Ti) in which both the parameters
Ci and Ti are positive integers, and suppose that a job of this task is released at
time-instant to. In a pfair schedule, scheduling decisions are made at integer time
boundaries; hence, jobs are scheduled for execution an integer unit at a time (to, too,
is assumed to be an integer). The “fair share” of execution that this job should receive
by time-instant t , to ≤ t ≤ to + Ti , is (t − to) × ui , and a schedule is said to make
“proportionate progress” [42] if it receives exactly �(t − to) × ui� or �(t − to) × ui�
units of execution over [to, t), for every integer t , to ≤ t ≤ to + Ti . Pfair scheduling
algorithms ensure uniform execution rates by breaking jobs into smaller subjobs,
each with execution requirement 1. Each subjob must execute within a computed
window of time, the end of which acts as its pseudo-deadline. These windows divide
each period of a task into subintervals of approximately equal length.

That was a brief informal description of pair scheduling; the remainder of the
chapter elaborates on the details.

In Sect. 7.2 we formally define the notion of pfairness, and introduce the notation
and terminology we will be using in the remainder of the chapter. We will see here that
pfairness is a stronger notion than merely meeting all deadlines: All pfair schedules
for implicit-deadline sporadic task systems meet all deadlines, but not all schedules
that meet all deadlines are also pfair. In Sect. 7.3 we prove that pfair schedules always
exist: it is always possible to schedule an implicit-deadline sporadic task system in
a pfair manner. In Sect. 7.4, we derive a scheduling algorithm that schedules any
implicit-deadline sporadic task system in a pfair manner.

7.2 Definitions and Notation

Let τ denote an implicit-deadline sporadic task system consisting of the n tasks
τ1, τ2, τn, that is to be scheduled upon an identical multiprocessor platform comprised
of m unit-speed processors. All task parameters are positive integers; i.e., Ci , Ti ∈ N
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�
time:

slot:

0 1 2 3 4 5 6 7 8 9 10 11 12

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
�

�
�

�

Fig. 7.1 The arrivals and deadlines of the two jobs (n1 = 2) generated by task τ1, for the example
collection of jobs I discussed in Example 7.1

for all i, 1 ≤ i ≤ n. We further assume that total utilization Usum(τ ) ≤ m and the
maximum utilization Umax(τ ) ≤ 1.

Let I denote a legal collection of jobs generated by τ . Let ni denote the number
of jobs generated by τi , 1 ≤ i ≤ n. Let ri,k denote the release time of the k’th job
generated by τi for each τi and each k ∈ [0, ni) (Clearly, it is necessary that ri,k+1 ≥
ri,k +Ti for all i and all k). Without loss of generality, assume that minτi∈τ {ri,0} = 0,
and let tmax denote maxτi∈τ {ri,ni−1 + Ti}.
Example 7.1 We will consider the following example throughout the remainder of
this chapter. We have a task system τ comprised of the three tasks τ1 with C1 = 2
and T1 = 5, τ2 with C2 = 3 and T2 = 4, and τ3 with C3 = 1 and T3 = 3. We will
consider a collection I of eight jobs that are generated by this τ , with

• n1 = 2; job release times r1,0 = 0; r1,1 = 7
• n2 = 3; job release times r2,0 = 0; r2,1 = 4; r2,2 = 8
• n3 = 3; job release times r3,0 = 0; r3,1 = 3; r3,2 = 6

The arrival-times and deadlines of the two jobs of τ1 are depicted in Fig. 7.1. For this
collection of jobs I , tmax = max{7 + 5, 8 + 4, 6 + 3} = 12.
We start with some conventions, definitions, and notations:

• The time interval between time-instants t and t + 1 (including t , excluding t + 1)
will be referred to as slot t , t ∈ N.

• Slot A processor is assigned to a particular task for the entire duration of a slot.
Slots are designated in square brackets in Fig. 7.1: [�] denotes the slot numbered
�, which is the time-interval [�, � + 1).

• For integers a and b, let [a, b) = {a, . . . , b − 1}. Furthermore, let [a, b] =
[a, b + 1), (a, b] = [a + 1, b + 1), and (a, b) = [a + 1, b).

• A schedule S for the legal collection of jobs I upon an m-processor platform is
a function from τ × N to {0, 1}, where

∑
τi∈τ S(τi , t) ≤ m, t ∈ N. Informally,

S(τi , t) = 1 if and only if task τi is scheduled in slot t .
• The allocation to a task τi at time t with respect to schedule S, denoted

alloc(S, τi , t), denotes the number of slots for which τi has been scheduled during
the slots numbered 0, 1, 2, . . . t − 1. It is easily seen to be given by the following
expression:

alloc(S, τi , t) = ∑
i∈[0,t)S(x, i).
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• The lag of a task τi at time t with respect to schedule S, denoted lag(S, τi , t), is
defined as:

lag(S, τi , t) =
∑

ri,k≤t

ui · min(Ti , (t − ri,k)) − alloc(S, τi , t).

Observe that the first term on the right-hand side specifies the amount of execution
that task τi would receive by time-instant t , in a processor-sharing schedule in
which each job of τi receives exactly a fraction ui of a processor throughout the
interval between its release time and its deadline. Informally, lag(S, τi , t) thus
measures the difference between the number of units of execution that task τi

“should” have received in the set of slots [0, t) and the number that it actually
received.

• A schedule S is pfair if and only if

∀τi , t : τi ∈ τ , t ∈ N : −1 < lag(S, τi , t) < 1. (7.1)

• A schedule S is pfair at time t if and only if there exists a pfair schedule S ′ such
that

∀τi : τi ∈ τ : lag(S, τi , t) = lag(S ′, τi , t).

Pfairness is a very strict requirement. It demands that the absolute value of the
difference between the expected allocation and the actual allocation to every task
always be strictly less than 1. In other words, a task never gets an entire slot ahead or
behind. In general, it is not possible to guarantee a smaller variation in lag. Consider
n identical tasks sharing a single processor, where the utilization of each task is 1/n,
that all have a job arrive simultaneously at time-instant zero. For n sufficiently large,
we can make the lag of the first (resp., last) task scheduled become arbitrarily close
to −1 (resp., 1).

7.3 The Existence of Pfair Schedules

In this section we will use a network flow argument to prove the existence of a pfair
schedule upon m unit-speed processors, for the collection of jobs I defined above.
In the next section, we will derive a run-time scheduling algorithm that generates
such a schedule.

Let earliest(τi , j ) (resp., latest(τi , j )) denote the earliest (resp., latest) slot
(earliest(τi , t)) (latest(τi , t)) during which task τi may be scheduled for the j th
time, j ∈ N, in any pfair schedule for the collection of jobs I of τ .

We can easily derive closed form expressions for earliest(τi , j ) and latest(τi , j ).
Consider the �’th time the k’th job of τi is being scheduled, 0 ≤ k < ni and
0 ≤ � < Ci . It follows from the definitions of earliest(τi , j ) and latest(τi , j ) that
earliest(τi , k · Ci + �) = min t : t ∈ N : ui · (t + 1 − ri,k) − (� + 1) > −1 and
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�
time:

slot:

0 1 2 3 4 5 6 7 8 9 10 11 12

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
�

�
�

�

0
︷ ︸︸ ︷

1
︷ ︸︸ ︷

2
︷ ︸︸ ︷ 3

︷ ︸︸ ︷

Fig. 7.2 The ranges of slots over which τ1 may be scheduled for the zeroth, first, second, and third
times, for the example collection of jobs I discussed in Example 7.1. Observe that successive ranges
overlap by at most one slot

latest(τi , k · Ci + �) = max t : t ∈ N : ui ·(t−ri,k)−� < 1. Hence, for all k ∈ [0, ni)
and all j ∈ [0, Ci),

earliest(τi , k · Ci + �) = ri,k +
⌊

�

ui

⌋
, and

latest(τi , k · Ci + �) = ri,k +
⌈

� + 1

ui

⌉
− 1

Note that earliest(τi , j ) ≤ latest(τi , j ) for all τi ∈ τ , j ∈ N. Note, too, that
earliest(τi , j + 1) − latest(τi , j ) ≥ 0; i.e., the range of slots during which a task
may be scheduled for the j ’th and the (j + 1)’th time in any pfair schedule overlap
by at most one slot.

Example 7.2 Consider once again the legal collection of jobs I introduced in Ex-
ample 7.1. Instantiating k ← 1 � ← 0, we compute earliest(τ1, 1 · 2 + 0) =
earliest(τ1, 2) to be

r1,1 +
⌊

0

2/5

⌋
= 7 + 0 = 7,

and latest(τ1, 1 · 2 + 0) = latest(τ1, 2) to be

r1,1 +
⌈

1

2/5

⌉
− 1 = 7 + 3 − 1 = 9.

In a similar vein, we can compute earliest(τ1, 0) = 0, earliest(τ1, 1) = 2, and
earliest(τ1, 3) = 9; and latest(τ1, 0) = 2, latest(τ1, 1) = 4, and latest(τ1, 3) = 11.
The ranges of slots for which task τi may be scheduled for the zeroth, first, second,
and third times are depicted graphically in Fig. 7.2.

The remainder of this section is devoted to proving the existence of a pfair schedule
for the collection of jobs I described above that are generated by the task system τ ,
upon m processors. Our strategy is as follows: First, we will describe a reduction
from this collection of jobs to a weighted digraph G with a designated source and
sink, such that certain flows in G correspond exactly (in a manner that will be made
precise) to a pfair schedule for the collection of jobs I . Then we will prove the
existence of such a flow in G.
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We now describe below the construction of a weighted digraph G based upon the
collection of jobs I . The graph is a “layered” one: The vertex set V of G is the union
of six disjoint sets of vertices V0, . . . , V5, and the edge set E of G is the union of five
disjoint sets of edges E0, . . . , E4, where Ei is a subset of (Vi ×Vi+1 ×N), 0 ≤ i ≤ 4.
G is thus a six-layered graph, in which all edges connect vertices in adjacent layers.
The sets of vertices in G are as follows:

V0 = {source},
V1 = {〈1, τi〉 | τi ∈ τ )},
V2 = {〈2, τi , j〉 | τi ∈ τ , j ∈ [0, ni · Ci)},
V3 = {〈3, τi , t〉 | τi ∈ τ , t ∈ [0, tmax)},
V4 = {〈4, t〉 | t ∈ [0, tmax)}, and

V5 = {sink}.
An edge is represented by a 3-tuple. For u, v ∈ V and w ∈ N, the 3-tuple (u, v, w) ∈ E

represents an edge from u to v that has a capacity w. The sets of edges in G are as
follows:

E0 = {(source, 〈1, τi〉, ni · Ci) | τi ∈ τ },
E1 = {(〈1, τi〉, 〈2, τi , j〉, 1) | τi ∈ τ , j ∈ [0, ni · Ci)},
E2 = {(〈2, τi , j〉, 〈3, τi , t〉, 1) | τi ∈ τ , j ∈ [0, Ci · ni), t ∈ [earliest(τi , j ),

latest(τi , j )]},
E3 = {(〈3, τi , t〉, 〈4, t〉, 1) | τi ∈ τ , t ∈ [0, tmax)}, and

E4 = {(〈4, t〉, sink, m) | t ∈ [0, tmax)}.

Example 7.3 Figure 7.3 shows (a portion of) the digraph constructed for the example
collection of jobs I described in Example 7.1. In this figure, we have shown all the
vertices in V0, V1, V4, and V5, and only those vertices from V2 and V3 which are
pertinent to the task τ1; corresponding vertices pertaining to tasks τ2 and τ3 have been
omitted from the diagram to keep things simple. Also, only edges between vertices
that are depicted in the figure are shown (hence, not shown in the figure are nine
outgoing edges from vertex 〈1, τ2〉, and three outgoing edges from vertex 〈1, τ3〉, and
an additional two incoming edges into each vertex 〈4, t〉).
Lemma 7.1 If there is an integral flow of size

∑
τi∈τ (ni ·Ci) in G, then there exists

a pfair schedule for the collection of jobs I .

Proof Suppose there is an integral flow of size
∑

τi∈τ (ni ·Ci) in G. The total capacity
of E0, the set of edges leading out of the source vertex, is equal to

∑
τi∈τ (ni · Ci).

Hence, each edge in E0 is filled to capacity, and each vertex 〈1, τi〉 receives exactly
ni · Ci units of flow. As there are niCi vertices in V2 each connected (by an edge of
unit capacity) to vertex 〈1, τi〉, and no two vertices in V1 are connected to the same
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Fig. 7.3 Digraph construction illustrated. All edges flow let to right; edges in E0 have capacities as
labeled; each edge in E5 has a capacity equal to the number of processors m; the remaining edges
(those without labeled capacities in the figure) all have unit capacity. Only the vertices (and edges)
pertinent to task τ1 are depicted in layers V3 and V4

vertex in V2, it follows that each vertex in V2 receives a unit flow. Accordingly, each
vertex in V2 sends a unit flow to some vertex in V3.

We will construct the desired schedule S from the given flow according to the
following rule: Allocate a processor to task τi in slot t if and only if there is a unit
flow from vertex 〈2, τi , j〉 to vertex 〈3, τi , t〉.

Each of the tmax edges of capacity m in E4 carries at most m units of flow. Hence,
for all t ∈ [0, tmax), vertex 〈4, t〉 receives at most m unit flows from vertices in V3.
Each vertex 〈3, τi , t〉 in V3 is connected (by an edge of unit capacity) to vertex 〈4, t〉,
and is not connected to any other vertex in V4. Thus, S schedules at most m tasks in
each time slot t , for all t ∈ [0, tmax). To see that no lag constraints are violated by S,
observe that for each task τi and for all j ∈ [0, ni · Ci), the j th scheduling of task
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x occurs at a slot in the interval [earliest(τi , j ), latest(τi , j )] (the j th scheduling
corresponds to the unique unit flow out of vertex 〈2, τi , j〉). �

Further, we will demonstrate the existence of an integral flow; in conjunction
with Lemma 7.1 above, this will establish the existence of a pair schedule for this
collection of jobs I .

Since all edges of the graph have integral capacity, it follows from the integer
flow theorem of Ford and Fulkerson [90] that if there is a fractional flow of size∑

τi∈τ (niCi) in the graph then there is an integral flow of that size. We will now
show that a fractional flow of size

∑
τi∈τ (niCi) exists. We use the following flow

assignments:

• Each edge (source, 〈1, τi〉, niCi) ∈ E0 carries a flow of niCi .
• Each edge (〈1, τi〉, 〈2, τi , j〉, 1) ∈ E1 carries a flow of size 1.
• Each edge (〈3, τi , t〉, 〈4, t〉, 1) ∈ E3 carries a flow of size ≤ ui .
• Each edge (〈4, t〉, sink, m) ∈ E4 carries a flow of size ≤ Usum(τ ) (and hence ≤ m).
• The flows through edges in E2 are determined as follows. For each 0 ≤ k < ni

and 0 ≤ � < Ci , consider the �’th time the k’th job of τi is being scheduled.
Consider the edges emanating from the vertex 〈2, τi , k · Ci + �〉.
– The edge (〈2, τi , k · Ci + �〉, 〈3, τi , earliest(τi , k · Ci + �)〉, 1) carries a flow of

size

ui − (� − ui · ��/ui�),

which is no larger than 1, the capacity of the edge.
– For each t ∈ [earliest(τi , k · Ci + �), latest(τi , k · Ci + �)), the edge (〈2, τi , k·

Ci + �〉, 〈3, τi , t〉, 1) carries a flow of size ui .
– If latest(τi , k · Ci + �) = earliest(τi , k · Ci + � + 1), then edge (〈2, τi , k · Ci

+�〉, 〈3, τi , latest(τi , k · Ci + �)〉, 1) carries a flow of size

(� + 1) − ui · �(� + 1)/ui�,

else, this edge (〈2, τi , k · Ci + �〉, 〈3, τi , latest(τi , k · Ci + �)〉, 1) carries a flow
of size ui . In either case, the flow is not larger than 1, the capacity of the edge.

Example 7.4 Let us consider the edges in E2 that are depicted in Fig. 7.3.

• Consider first the edges coming out of 〈2, τ1, 0〉. The top two edges—i.e., the edges
(〈2, τ1, 0〉, 〈3, τ1, 0〉, 1) and (〈2, τ1, 0〉, 〈3, τ1, 1〉, 1)—each carry u1 = 0.4 units of
flow. The edge (〈2, τ1, 0〉, 〈3, τ1, 2〉, 1) carries the remaining 0.2 units of flow.

• Consider next the edges coming out of 〈2, τ1, 1〉. The top edge—the edge
(〈2, τ1, 1〉, 〈3, τ1, 2〉, 1) carries 0.2 unit of flows, thereby ensuring that the total
in-flow to vertex 〈3, τ1, 2〉 is also u1 = 0.4. The remaining two edges—
(〈2, τ1, 1〉, 〈3, τ1, 3〉, 1) and (〈2, τ1, 1〉, 〈3, τ1, 4〉, 1)—each carry u1 = 0.4 units of
flow.

• The edges coming out of 〈2, τ1, 2〉 are analogous to those coming out of 〈2, τ1, 0〉:
the top two edges each carry 0.4 units of flow, while the third edge carries 0.2
units of flow. The edges coming out of 〈2, τ1, 3〉 are similarly analogous to those
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coming out of 〈2, τ1, 1〉: the top edge carries 0.2 units of flow, while the other two
edges each carry 0.4 units of flow.

Observe that in this example, the incoming flow to each vertex 〈3, τ1, t〉 is either u1

or zero. This is also the outgoing flow along each depicted edge of E3.
We will now prove that the flow just defined is a valid flow of size

∑
τi∈τ (niCi).

The capacity constraints have been met. The flow out of the source vertex is∑
τi∈τ (niCi). We will now complete the proof by showing that flow is conserved at

every interior vertex.
The flow into each vertex in V1 is niCi , and there are niCi edges leaving, each

carrying a unit flow. The flow into each vertex in V2 is 1. Further we will prove that
the flow out of each vertex in V2 is 1, and that the flow into each vertex in V3 is
either zero or ui . Each vertex in V3 has only one outgoing edge carrying a flow of
ui . Each vertex in V4 has n incoming edges each carrying a flow size ≤ ui ; since∑

τi∈τ ui ≤ m, the flow in is ≤ m, which can be accommodated on the one outgoing
edge of capacity m.

It remains to prove that: (i) the flow out of each vertex in V2 is 1, and (ii) the flow
into each vertex in V3 is ≤ ui . For each 0 ≤ k < ni and 0 ≤ � < Ci , consider the
�’th time the k’th job of τi is being scheduled. Consider the edges emanating from
the vertex 〈2, τi , k · Ci + �〉.

For (i), consider an arbitrary vertex 〈2, τi , k · Ci + �〉 in V2. There are
latest(τi , k · Ci + �)−earliest(τi , k · Ci + �)+1, or �(� + 1)/ui�−��/ui�, outgoing
edges from 〈2, τi , k · Ci + �〉. If earliest(τi , k · Ci + � + 1) = latest(τi , k · Ci + �)
(equivalently, �(� + 1)/ui�−1 = �(� + 1)/ui�), then the flow out of 〈2, τi , k · Ci + �〉
is

ui − (j − ui · ��/ui�) + ui · (�(� + 1)/ui� − ��/ui� − 2)

+ (� + 1) − ui · �(� + 1)/ui�,

which simplifies to 1. Otherwise, earliest(τi , k · Ci + � + 1) = latest(τi , k · Ci + �)
+ 1 (equivalently, �(� + 1)/ui� = �(� + 1)/ui� = (� + 1)/ui), and the flow out of
〈2, τi , k · Ci + �〉 is

ui − (� − ui · ��/ui�) + ui · (�(� + 1)/ui� − ��/ui� − 1),

which also simplifies to 1.
For (ii), consider an arbitrary vertex 〈3, τi , t〉 in V3. If there are no incoming

edges into this vertex, then the flow into this vertex is zero, which is ≤ ui . Oth-
erwise, if t = latest(τi , k · Ci + �) = earliest(τi , k · Ci + � + 1), then there are
two incoming edges to 〈3, τi , t〉, namely (〈2, τi , k · Ci + �〉, 〈3, τi , k · Ci + �〉, 1) and
(〈2, τi , k · Ci + � + 1〉, 〈3, τi , t〉, 1). These edges carry flows of size (� + 1) − ui ·
�(� + 1)/ui� and ui − ((�+ 1) − ui · �(� + 1)/ui�), respectively, for a total incoming
flow of ui . Otherwise, there is only one incoming edge to 〈3, τi , t〉, and it carries a
flow of ui .

We demonstrated above, by construction of a fractional flow and an appeal to
the integer flow theorem [90], the existence of an integral flow in the digraph; in
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conjunction with Lemma 7.1 above, this establishes the existence of a pair schedule
for the collection of jobs I that was generated by the implicit-deadline sporadic task
system τ .

7.4 A Pfair Scheduling Algorithm

The digraph construction above serves to establish that the collection of jobs I , gener-
ated by the implicit-deadline sporadic task system τ , has a pfair schedule. However,
note that constructing the graph requires us to know beforehand the time-instants
ri,j (the precise time-instants at which job arrivals occur), and thus constructing the
scheduled prior to run-time requires clairvoyance. In this section, we will derive
a non-clairvoyant online scheduling algorithm for scheduling the implicit-deadline
sporadic task system τ upon an m-processor platform, and prove that it produces a
pfair schedule for any collection of jobs that are legally generated by τ .

We start with some definitions. Let S denote a schedule that is pfair at time-
instant t .

• Task τi is contending in schedule S at time-instant t if and only if

earliest(τi , alloc(S, τi , t) + 1) ≤ t.

That is, a task that is contending during the t’th time-slot in a schedule that is pfair
at time-instant t may be allocated the processor during the t’th time-slot without
violating pfairness.

• Task τi is urgent in schedule S at time-instant t if and only if

latest(τi , alloc(S, τi , t) + 1) = t.

That is, an urgent task that is not allocated the processor during the t’th time-slot
will violate pfairness.

• For any p ∈ N+, the p’th pseudo-deadline of contending task τi in schedule S

at time-instant t is the latest slot by which τi must be allocated the processor for
p more time-slots in order to not violate pfairness. (The first pseudo-deadline is
thus the latest slot by which the the task next must be scheduled, in order to not
violate pfairness). It is evident that the p’th pseudo-deadline of task τi is equal to
latest(τi , alloc(τi , S, t) + p).

Uniprocessor EDF: A Brief Digression In uniprocessor EDF, ties amongst jobs
that have equal deadlines may be broken arbitrarily: if two jobs that are eligible to
execute have the same deadline, we may choose to execute either one. Recall the
following inductive argument in Sect. 4.1 establishing the optimality of preemptive
uniprocessor EDF. Suppose that there is an optimal schedule that meets all deadlines
of all the jobs, and suppose that the scheduling decisions made by EDF are identical
to those made by this optimal schedule over the time interval [0, t). At time-instant
t , EDF observes that job j , with deadline d , is an earliest-deadline job needing
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execution, and schedules it during slot t . However, the optimal schedule schedules
some other job j ′, with deadline d ′. The critical observation is that since d ≤ d ′ (EDF,
by definition, chooses a job with the earliest deadline) and the optimal schedule also
schedules j to complete by its deadline, it must be the case that j is executed in the
optimal schedule during some slot t ′, t < t ′ < d . We may therefore simply swap the
allocations in the optimal schedule during slots t and t ′, thereby obtaining an optimal
schedule that agrees with the decisions made by EDF over the interval [0, t + 1):

��

d

�

d′

j′ j

t t ′

AN OPTIMAL SCHEDULE

��

d

�

d′

j j′

t t ′

ANOTHER OPTIMAL SCHEDULE

The optimality of EDF follows, by induction on t .

Algorithm PF Let us now consider multiprocessors. We have established the exis-
tence of an optimal (in this case, pfair) schedule for the collection of jobs I via the
digraph construction. However, the swapping argument used above for uniprocessor
EDF does not work to show that scheduling according to the obvious generalization
of EDF—comparing tasks according to their first pseudo-deadlines (i.e., when they
would violate pfairness if not scheduled)—results in a pfair schedule. In particular,
this argument fails to go through if the deadlines are tied, for the following reason.
Suppose that the jobs j and j ′ have the same deadline—i.e., d ′ = d); EDF (or rather,
the variant of EDF that seeks to generate a pfair schedule, and therefore compares the
first pseudo-deadlines) breaks the tie in favor of j , but the optimal schedule breaks
the tie in favor of j ′. Recall that the range of slots during which j ′ may be scheduled
for the �’th and the (� + 1)’th time in a pfair schedule may overlap by up to one
slot; hence, it is possible that the optimal schedule scheduled j in the last slot prior
to its deadline (the slot d − 1), and scheduled j ′ for its next allocation in the same
slot upon a different processor. In this case, swapping the allocations to j and j ′,
as we had done in the uniprocessor case above, would result in an illegal schedule
rather than another optimal one, since the slot d −1 would now have j ′ concurrently
scheduled upon two processors:

��

d

j′ j

j′

︷ ︸︸ ︷
︷ ︸︸ ︷

AN OPTIMAL SCHEDULE

��

d

j j′

j′

ILLEGAL!!

It can be seen that this problem can only occur if two tasks have the same pseudo-
deadline, and if successive scheduling “windows” for the tasks overlap by one slot.
In Fig. 7.4, we therefore define an ordering � amongst tasks that does not break
ties arbitrarily; rather, if corresponding pseudo-deadlines are equal and both tasks’
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�(τi,τ j)
� τi and τ j are both contending tasks. Without loss if generality, assume i < j

1 if τi is urgent then return τi � τ j
2 if τ j is urgent then return τ j � τi
3 �i ← alloc(τi,S, t)+1
4 � j ← alloc(τ j,S↪ t)+1

� Compare the pseudo-deadlines of τi and τ j
5 if (latest(τ j, � j) < latest(τi, �i)) then return τ j � τi
6 if (latest(τi, �i) < latest(τ j, � j)) then return τi � τ j

� Otherwise, the pseudo-deadlines latest(τi, �i) and latest(τ j, � j) are equal
7 if (� j = n jCj −1) or earliest(τ j, � j +1) ≥ latest(τ j, � j)+1) then return τi � τ j
8 if (�i = niCi −1) or earliest(τi, �i +1) ≥ latest(τi, � j)+1) then return τ j � τi

� Otherwise, compare the next pair of pseudo-deadlines
9 �i ← �i +1

10 � j ← � j +1
11 go to Line 5

Fig. 7.4 Comparing pseudo-deadlines

scheduling windows overlap, it compares the next pair of pseudo-deadlines, repeating
the process until a tie-breaker is found.

Scheduling algorithm PF schedules, during each time-slot, the (up to) m con-
tending tasks with greatest priority according to the � relationship defined in
Fig. 7.4.

We now define (Figure 7.4) a total priority ordering � on the contending tasks as
follows. An urgent task is � any contending task. (If τi and τj are both contending,
we may break ties arbitrarily; let us do so in favor of the smaller-indexed task).
Otherwise, we repeatedly compare corresponding pseudo-deadlines of the two tasks,
according to the following rule:

• A task for which the pseudo-deadline is strictly smaller than the earliest slot at
which the next allocation may be made to the task has lower priority according
to this � relationship. (If this is true for both the tasks, we break ties in favor of
the smaller-indexed one).

Until one task is deemed to be of greater priority than the other. Specific examples
of such comparisons are depicted graphically in Figs. 7.5 and 7.6.

Computational Complexity It is evident that at most min(Ci , Cj ) comparisons of
pseudo-deadlines are necessary2 in order to determine the � ordering amongst con-
tending tasks τi and τj , yielding an over-all complexity that is pseudo-polynomial in
the representation of the task system. Thus, a naive implementation of algorithm PF
would have a run-time per slot that is pseudo-polynomial in the representation of
the task system. A more efficient implementation was derived in [42], in which

2 Actually, the potentially tighter bound of min(Ci/gcd(Ci , Ti ), Cj/gcd(Cj , Tj )) on the number of
comparisons is easily seen to hold.
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Fig. 7.5 The first two pseudo-deadlines of τi and τj coincide, but the third pseudo-deadline of τi

is strictly smaller than the third pseudo-deadline of τj . (For these particular allocations to both τi

and τj , successive scheduling windows overlap by one time-slot). Hence, τi � τj . The top figure
depicts a pfair schedule in which τj is scheduled at its earliest slots. Swapping the first allocation
to τj with the last allocation to τi results in the pfair schedule in the bottom figure
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Fig. 7.6 The first two pseudo-deadlines of τi and τj coincide, and successive scheduling windows
overlap by one time-slot. The third pseudo-deadline of τj coincides with the third pseudo-deadline
of τi , but the third and fourth scheduling windows of τj do not overlap. Hence, τi � τj . The
top figure depicts a pfair schedule in which τj is scheduled at its earliest slots. Swapping the first
allocation to τj with the last allocation to τi results in the pfair schedule in the bottom figure

the per-slot run-time complexity is linear in the representation of the task system—
to be precise, the per-slot run-time complexity when scheduling τ was shown to
be O(

∑
τi∈τ �log (Ti + 1�). Further improvements have since been proposed; for

instance, [48] proposed an algorithm called PD with a per-slot run-time that is
O(min(m log n, n)). Extensions/modifications to pfairness have also since been pro-
posed; e.g., [173] defined a variant called boundary fair (BF) that only enforces the
lag constraint (Condition 7.1) at the boundaries of jobs rather than for each indi-
vidual unit-sized subjob and thereby potentially reduces the number of preemptions
and migrations. A generalized framework for considering pfairness and such related
concepts called DP-FAIR was recently proposed in [134], and a DP-FAIR schedul-
ing algorithm called DP-WRAP was derived there. The Reduction to UN iprocessor
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(RUN) algorithm [159] is another efficient implementation that seeks to progres-
sively transform a multiprocessor scheduling problem to a series of uniprocessor
problems; this, too, has the effect of potentially reducing the number of preemptions
and migrations.

Sources

The techniques and results described in this chapter were reported in [42, 53]. There
is a large body of additional work on pfair scheduling that we have not reported here;
see, e.g., the dissertation by Srinivasan [165].



Chapter 8
Global Fixed-Job-Priority Scheduling
of L&L Tasks

Recall the classification in Sect. 3.2 of scheduling algorithms into dynamic priority
(DP), fixed-job priority (FJP), and fixed-task priority (FTP) ones, according to the
restrictions that are placed upon the manner in which scheduling algorithms may
assign priorities to jobs. This chapter is devoted to FJP scheduling.

We saw in Chap. 7 that pfair scheduling algorithms are able to schedule implicit-
deadline task systems optimally. They do so by breaking each job into a number
of unit-sized subjobs, and scheduling each subjob separately: intuitively, it is easier
to schedule uniform-sized jobs upon multiple processors than non-uniform ones.
However, this enabling feature of pfair scheduling algorithms can also prove a dis-
advantage in certain implementations—one consequence of “breaking” each job of
each task into subjobs, and making individual scheduling decisions for each subjob,
is that jobs tend to get preempted after each of their constituent subjobs completes
execution. As a result, pfair schedules are likely to contain a large number of job
preemptions and context-switches. For some applications, this is not an issue; for
others, however, the overhead resulting from too many preemptions may prove un-
acceptable. Pfair scheduling is not the appropriate scheduling approach for such
application systems.

As discussed in Sect. 3.2, priority-driven scheduling algorithms (which include
FJP and FTP ones) offer several implementation advantages. From among the
priority-driven scheduling algorithms, FJP algorithms are more general than FTP
ones; in the remainder of this chapter we focus our study on the global FJP scheduling
of real-time systems that are represented as collections of independent implicit-
deadline sporadic tasks. The global FTP scheduling of such systems will be discussed
briefly in the next chapter (Chap. 9).

An important advance in our understanding of global scheduling on multipro-
cessors was obtained by Phillips et al. [153], who explored the use of resource-
augmentation techniques for the online scheduling of real-time jobs1. The focus of
Phillips et al. [153] was the scheduling of real-time systems that could be modeled
as collections of independent jobs, not recurrent tasks. In [153], it was shown that

1 Resource augmentation as a technique for improving the performance on online scheduling
algorithms was formally proposed by Kalyanasundaram and Pruhs [113].
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the obvious extension to the earliest deadline first (EDF) algorithm for identical
multiprocessors could make the following performance guarantee:

Theorem 8.1 (from [153]) If a collection of jobs is feasible on m identical proces-
sors, then the same collection of jobs is scheduled to meet all deadlines by EDF on
m identical processors in which the individual processors are (2 − 1

m
) times as fast

as in the original system.
That is, the speedup factor (Definition 5.2) of global EDF in scheduling collections

of independent jobs is (2 – 1/m), when compared to an optimal clairvoyant scheduler
(that is not restricted to being FJP).

In this chapter, we will describe how the techniques introduced in [153] have been
extended to obtain a wide variety of results concerning the global FJP scheduling
of implicit-deadline sporadic task systems. The roadmap for the remainder of this
chapter is as follows:

• Although our interest is in scheduling upon identical multiprocessor platforms,
we start out considering the more general uniform multiprocessor platform model
that was described in Sect. 1.2. In Sect. 8.1, we generalize Theorem 8.1 above is
to be applicable to uniform multiprocessor platforms; this generalized version is
presented here as Theorem 8.2.

• Since identical multiprocessors are a special case of uniform multiprocessors,
Theorem 8.2 allows us to derive, in Sect. 8.2, a sufficient condition for an implicit-
deadline sporadic task system to successfully meet all deadlines when scheduled
using EDF—this is reported in Theorem 8.5.

• Further applications of Theorem 8.2 allow us to design, in Sect. 8.3, some FJP
algorithms that are proved to be superior (in terms of both utilization bounds—
Definition 5.1—and strict dominance) to EDF for the global scheduling of
implicit-deadline sporadic task systems.

8.1 EDF Scheduling on Uniform Multiprocessors

We start out considering the scheduling of collections of independent jobs upon a
uniform multiprocessor platform.

Definition 8.1 (uniform multiprocessor platform)A uniform multiprocessor plat-
form π is comprised of m(π ) processors, where m(π ) is a positive integer. Each
processor is characterized by a parameter denoting its speed or computing capacity.
We use the notation π = [s1, s2, . . . , sm(π ′)] to represent the uniform multiproces-
sor platform in which the processors have computing capacities s1, s2, . . . , sm(π ′)
respectively; without loss of generality, we assume that these speeds are indexed in
a nonincreasing manner: sj ≥ sj+1 for all j , 1 ≤ j < m(π ).

We use the notation

Ssum(π )
def=

m(π ′)∑

i=1

si and Smax(π )
def= s1
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to denote the cumulative and maximum speeds of the processors in π . We further
define a parameter λ(π ) as follows:

λ(π )
def= m(π ′)

max
j=1

{∑m(π ′)
k=j+1 sk

sj

}
. (8.1)

The lambda parameter λ(π ) of uniform multiprocessor platform π as defined
above is a crucial characteristic of a uniform multiprocessor system: informally
speaking, λ(π ) measures the “degree” by which π differs from being an identical
multiprocessor platform (in the sense that λ(π ) = (m − 1) if π is comprised of
m identical processors, and becomes progressively smaller as the speeds of the
processors differ from each other by greater amounts; in the extreme, if s1 > 0 and
s2 = s3 = · · · = sm(π ′) = 0 would have λ(π ) = 0).

We will assume for this section that a hard real-time system is represented as an
arbitrary collection of individual jobs. Each job Jj = (rj , cj , dj ) is characterized
by an arrival time rj , an execution requirement cj , and a deadline dj , with the
interpretation that this job needs to execute for cj units over the interval [rj , dj ).

Our objective in this section may be stated as follows: given the specifications of
a uniform multiprocessor platform π , we seek to derive a condition (Theorem 8.2)
upon the specifications of any another uniform multiprocessor platform π ′ such that
if π ′ satisfies this condition, then any collection of independent jobs feasible on π

will meet all deadlines when scheduled on π ′ using EDF.
We introduce some additional notation.

Definition 8.2 (W(A, π , I, t)) Let I denote any set of jobs, and π any uniform
multiprocessor platform. For any algorithmA and time instant t ≥ 0, let W (A, π , I , t)
denote the amount of work done by algorithm A on jobs of I over the interval [0, t),
while executing on π .

Definition 8.3 (Sj (π )) Let π denote a uniform multiprocessor platform with pro-
cessor capacities s1, s2, . . . , sm(π ′), sj ≥ sj+1 for all j , 1 ≤ j < m(π ). Define Sj (π )
to be the sum of the speeds of the j fastest processors in π :

(
Sj (π )

def=
j∑

�=1

s�

)
for all j , 1 ≤ j ≤ m(π ) .

(Note that Sm(π ′)(π ) is equal to Ssum(π )—the sum of the computing capacities of all
the processors in π .)

Work-Conserving Scheduling on Uniform Multiprocessors In the context of
uniprocessor scheduling, a work-conserving scheduling algorithm is defined to be
one that never idles the (only) processor while there is any active job awaiting ex-
ecution. This definition extends in a rather straightforward manner to the identical
multiprocessor case: an algorithm for scheduling on identical multiprocessors is de-
fined to be work-conserving if it never leaves any processor idle while there remain
active jobs awaiting execution.
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We define a uniform multiprocessor scheduling algorithm to be work-conserving
if and only if it satisfies the following conditions:

• No processor is idled while there are active jobs awaiting execution.
• If at some instant there are fewer active jobs than there are number of processors

in the platform, then the active jobs are executed upon the fastest processors.
That is, it is the case that at any instant t if the j th-slowest processor is idled by
the work-conserving scheduling algorithm, then the kth-slowest processor is also
idled at instant t , for all k > j .

EDF on Uniform Processors Recall that the earliest deadline first (EDF) schedul-
ing algorithm chooses for execution at each instant in time the currently active job[s]
that have the smallest deadlines. We assume that EDF is implemented upon uniform
multiprocessor systems according to the following rules:

1. No processor is idled while there is an active job awaiting execution.
2. When there are fewer active jobs than there are number of processors in the

platform, they are required to execute upon the fastest processors while the slowest
processors are idled.

3. Higher priority jobs are executed on faster processors. Hence if the j th-slowest
processor is executing job Jg at time t under our EDF implementation, it must be
the case that the deadline of Jg is not greater than the deadlines of jobs (if any)
executing on the (j + 1)th-, (j + 2)th-, . . . -slowest processors.

The first two conditions above imply that EDF is a work-conserving scheduling
algorithm.

Suppose that a given set of jobs is known to be feasible on a given uniform multi-
processor platform π . Lemma 8.1 specifies a condition (Condition 8.2 below) upon
the parameters of any other uniform multiprocessor platform π ′, for ensuring that
any work-conserving algorithm A′ executing on π ′ is guaranteed to complete at least
as much work by each instant in time t as any other algorithm A (including an optimal
algorithm) executing on π , when both algorithms execute the same set of jobs I .

We will later use this lemma in Theorem 8.2 to determine conditions under which
EDF executing on π ′ will meet all deadlines of a set of jobs known to be feasible on π .

Notice that Condition 8.2 is expressed as a constraint on the parameter λ(π ′) of the
uniform multiprocessor platform π ′; it expresses the additional computing capacity
needed by π ′ in terms of this λ(π ′) parameter, and the speed of the fastest processor in
π—the smaller the value of λ(π ′) (i.e., the more π ′ deviates from being an identical
multiprocessor), the smaller is the amount of this excess processing capacity it needs.

Lemma 8.1 Let π and π ′ denote uniform multiprocessor platforms. Let A denote
any uniform multiprocessor scheduling algorithm, and A′ any work-conserving uni-
form multiprocessor scheduling algorithm. If the following condition is satisfied by
the platforms π and π ′:

Ssum(π ′) ≥ λ(π ′) · Smax(π ) + Ssum(π ) (8.2)

then for any collection of jobs I and any time-instant t ≥ 0,
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W (A′, π ′, I , t) ≥ W (A, π , I , t) . (8.3)

Proof The proof of this lemma, which is a direct generalization of proof techniques
from [153], is somewhat tedious and detailed. It is presented here for the sake of
completeness, but may be safely skipped at a first reading since only the lemma is
used (and not the details of the proof) elsewhere in the book.

The proof is by contradiction. Suppose that π is comprised of processors with
speeds s1, s2, . . . , sm(π ′), sj ≥ sj+1 for all j , 1 ≤ j < m(π ). Suppose that π ′ is
comprised of processors with speeds s ′

1, s ′
2, . . . , s ′

m(π ′), s ′
j ≥ s ′

j+1 for all j , 1 ≤ j <

m(π ′).
Suppose that the lemma is not true, and let I denote a collection of jobs I on which

work-conserving algorithm A′ executing on π ′ has performed strictly less work than
some other algorithm A executing on π by some time-instant. Let Ja = (ra , ca , da)
denote a job in I with the earliest arrival time such that there is some time-instant to
satisfying

W (A′, π ′, I , to) < W (A, π , I , to),

and the amount of work done on job Ja by time-instant to in A′ is strictly less than
the amount of work done on Ja by time-instant to in A.

By our choice of ra , it must be the case that W (A′, π ′, I , ra) ≥ W (A, π , I , ra).
Therefore, the amount of work done by A over [ra , to) is strictly greater than the
amount of work done by A′ over the same interval.

Let x� denote the cumulative length of time over the interval [ra , to) during which
A′ is executing on � processors, 1 ≤ � ≤ m(π ′) (Hence, to − ra = x1 + x2 + · · · +
xm(π ′).) We make the following two observations.

• Since A′ is a work-conserving scheduling algorithm, job Ja , which has not com-
pleted by instant to in the schedule generated by A′, must be executing at all
time-instants during which some processor is idled by A′. During the instants at
which � processors are non-idling, � < m(π ′), all these nonidled processors have
computing capacity ≥ s ′

�—this follows from the definition of “work-conserving”
and the fact that A′ is a work-conserving algorithm. Therefore, it follows that job

Ja has executed for at least
(∑m(π ′)−1

j=1 xj s
′
j

)
units by time to in the schedule gen-

erated by A′ on π ′, while it could have executed for at most Smax(π ) ·
(∑m(π ′)

j=1 xj

)

units in the schedule generated by Algorithm A on π . We therefore have

m(π ′)−1∑

j=1

xj s
′
j < Smax(π )

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠ . (8.4)

Multiplying both sides of Inequality 8.4 above by λ(π ′), and noting that

(
xj s

′
jλ(π ′)

) ≥
(

xj s
′
j

Ssum(π ′) − Sj (π ′)
s ′
j

)
= xj (Ssum(π ′) − Sj (π ′)) ,

we obtain
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m(π ′)−1∑

j=1

(
xj (Ssum(π ′) − Sj (π ′))

)
< Smax(π )λ(π ′)

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠ . (8.5)

• The total amount of work done by A′ executing on π ′ during [ra , to) is given
by

∑m(π ′)
j=1 (xjSj (π ′)), while the total amount of work done by A executing on

π during this same interval is bounded from above by the capacity of π , and is
hence ≤ (

∑m(π ′)
j=1 xj ) · Ssum(π ). We thus obtain the inequality

m(π ′)∑

j=1

(xjSj (π ′)) <

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠ · Ssum(π ) . (8.6)

Adding Inequalities 8.5 and 8.6, we obtain
⎛

⎝
m(π ′)∑

j=1

(xjSj (π ′)) +
m(π ′)−1∑

j=1

(xj (Ssum(π ′) − Sj (π ′))) <

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠

(Smax(π )λ(π ′) + Ssum(π ))

⎞

⎠

⇔
⎛

⎝xm′Sm′ (π ′) +
m(π ′)−1∑

j=1

[
xj (Sj (π ′) + Ssum(π ′) − Sj (π ′))

]
<

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠

(Smax(π )λ(π ′) + Ssum(π ))

⎞

⎠

⇔
⎛

⎝xm′Ssum(π ′) +
m(π ′)−1∑

j=1

(xjSsum(π ′)) <

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠ (Smax(π )λ(π ′) + Ssum(π ))

⎞

⎠

⇔
⎛

⎝Ssum(π ′) ·
⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠ <

⎛

⎝
m(π ′)∑

j=1

xj

⎞

⎠ (Smax(π )λ(π ′) + Ssum(π ))

⎞

⎠

⇔
(
Ssum(π ′) < Smax(π )λ(π ′) + Ssum(π )

)

which contradicts the assumption made in the statement of the lemma (Inequal-
ity 8.2). �

Theorem 8.2 below applies Lemma 8.1 to show that any collection of jobs I that
is feasible on a uniform multiprocessor platform π will be scheduled to meet all
deadlines by EDF on any platform π ′ satisfying Condition 8.2 of Lemma 8.1.

Theorem 8.2 Let I denote an instance of jobs that is feasible on a uniform multi-
processor platform π . An EDF schedule of I on any uniform multiprocessor platform
π ′ will also meet all deadlines, if Condition 8.2 of Lemma 8.1 is satisfied by platforms
π and π ′.
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Proof Suppose that π and π ′ satisfy Condition 8.2. From Lemma 8.1, we may
conclude that the amount of work done at any time-instant t by EDF scheduling
I on π ′ is at least as much as the work done by that time-instant t by an optimal
scheduling algorithm executing I on π :

W (EDF, π ′, I , t) ≥ W (opt, π , I , t) for all t ≥ 0 ,

where opt denotes an algorithm that generates a schedule for I which meets all
deadlines on π—since I is assumed feasible on π , such a schedule exists.

We will now use induction to show that I is scheduled by EDF to meet all deadlines

on π ′. The induction is on the number of jobs in I . Specifically, let Ik
def= {J1, . . . , Jk}

denote the k jobs of I with the highest EDF priority.

Base Case Io denotes the empty set; which is trivially scheduled to meet all deadlines
on π ′ by EDF.

Induction Step Let us assume, as an induction hypothesis, that EDF can schedule Ik

on π ′ for some k. Consider now the EDF-generated schedule of Ik+1 on π ′. Observe
that (i) Ik ⊂ Ik+1, and (ii) the presence of Jk+1 do not effect the scheduling decisions
made by EDF on the jobs {J1, J2, . . . , Jk} while it is scheduling Ik+1. Hence the
EDF schedule for {J1, J2, . . . , Jk} while scheduling Ik+1, is identical to the schedule
generated by EDF while scheduling Ik; hence by the induction hypothesis, these k

highest priority jobs {J1, J2, . . . , Jk} of Ik+1 all meet their deadlines. It remains to
prove that Jk+1 also meets its deadline.

Consider now the schedule generated by opt executing on π . Since I is feasible
on π , Ik+1, being a subset of I , is also feasible on π and hence opt will schedule
Ik+1 on π to meet all deadlines. That is,

W (opt, π , Ik+1, dk+1) =
k+1∑

i=1

ci ,

where dk+1 denotes the latest deadline of a job in Ik+1. By applying Lemma 8.1, we
have

W (EDF, π ′, Ik+1, dk+1) ≥ W (opt, π , Ik+1, dk+1) =
k+1∑

i=1

ci .

Since the total execution requirement of all the jobs in Ik+1 is
∑k+1

i=1 ci it follows that
job Jk+1 meets its deadline.

It is therefore the case that EDF successfully schedules all the jobs of Ik+1 to
meet their deadlines on π ′. The theorem is thus proved. �

We point out that Theorem 8.1 concerning EDF-scheduling on identical multi-
processors, which was originally proved in [153], can be derived as an immediate
corollary to Theorem 8.2 above:

Corollary 8.1 If a set of jobs is feasible on an identical m-processor platform, then
the same set of jobs will be scheduled to meet all deadlines by EDF on an identical



74 8 Global Fixed-Job-Priority Scheduling of L&L Tasks

m-processor platform in which the individual processors are (2 − 1
m

) times as fast
as in the original system.

Proof If we require the platforms π and π ′ of the statement of Theorem 8.2 to each
be comprised of m identical processors of speeds s and s ′ respectively, the parameter
λ(π ′) takes on the value (m − 1):

λ(π ′) def= m
max
j=1

{∑m
k=j+1 s ′

k

s ′
j

}
= m

max
j=1

{
(j − 1)s ′

s ′

}
= m − 1 .

The conditionSsum(π ′) ≥ λ(π ′)·Smax(π )+Ssum(π ) from the statement ofTheorem 8.2
is hence equivalent to

Ssum(π ′) ≥ λ(π ′) · Smax(π ) + Ssum(π )

≡ m · s ′ ≥ (m − 1) · s + m · s

≡ m · s ′ ≥ (m − 1 + m) · s

≡ s ′ ≥
(

2 − 1

m

)
· s

from which the corollary follows. �

8.2 Global EDF Scheduling

In this section, we will apply the results from Sect. 8.1 above concerning scheduling
on uniform multiprocessors, to the EDF scheduling of systems of implicit-deadline
sporadic tasks upon identical multiprocessor platforms. We begin with a more-or-less
obvious result:

Theorem 8.3 Let τ denote an implicit-deadline sporadic task system. There is a
uniform multiprocessor platform π upon which τ is feasible, which satisfies the
following two properties:

1. Smax(π ) = Umax(τ ) and
2. Ssum(π ) = Usum(τ ).

Proof The uniform multiprocessor platform in which each task τi ∈ τ has a dedi-
cated processor with computing capacity ui bears witness to the correctness of this
theorem. �

By a direct application of Theorems 8.3 and 8.2, we obtain below a sufficient
condition for any implicit-deadline sporadic task system to be successfully scheduled
by EDF.

Theorem 8.4 Implicit-deadline sporadic task system τ comprised of n tasks can
be EDF-scheduled upon an identical multiprocessor platform comprised of m unit-
capacity processors, provided

m ≥ min

(
n,

⌈
Usum(τ ) − Umax(τ )

1 − Umax(τ )

⌉)
(8.7)
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Proof Clearly, no more than n processors are needed to schedule an n-task system;
hence if the second term in the “min” above is no smaller than the first, the theorem
is trivially seen to hold. For the remainder of this proof, consider therefore the case
when n > �(Usum(τ ) − Umax(τ ))/(1 − Umax(τ ))�.

By Theorem 8.3, implicit-deadline sporadic task system τ is feasible on some
uniform multiprocessor platform π1 with cumulative computing capacity Ssum(π1) =
Usum(τ ), in which the fastest processor has speed Smax(π1) = Umax(τ ).

Note that the cumulative computing capacity of an m-processor identical multi-
processor platform consisting of unit-speed processors is m; furthermore as stated
immediately following Definition 8.1, the parameter λπ takes on the value (m − 1)
for such a platform.

Consider now the statement of Theorem 8.2: any particular sequence of jobs
generated by an implicit-deadline sporadic task system that is feasible upon a uni-
form multiprocessor platform π is successfully scheduled by EDF upon a uniform
multiprocessor platform π ′ if

Ssum(π ′) ≥ λ(π ′) · Smax(π ) + Ssum(π )

Let us apply this theorem with π instantiated to the platform π1 described above,
and π ′ instantiated to the m-processor identical multiprocessor platform consisting
of unit-speed processors. A sufficient condition for the task system τ to be EDF-
schedulable on the m-processor identical multiprocessor platform consisting of unit-
speed processors is that

Ssum(π ′) ≥ λ(π ′) · Smax(π ) + Ssum(π )

⇔ m ≥ (m − 1)Umax(τ ) + Usum(τ )

⇔ m(1 − Umax(τ )) ≥ Usum(τ ) − Umax(τ )

⇔ m ≥
⌈

Usum(τ ) − Umax(τ )

1 − Umax(τ )

⌉

and the theorem is proved. �

Theorem 8.5 follows by algebraic simplification of the Expression 8.7:

Theorem 8.5 Implicit-deadline sporadic task system τ can be EDF-scheduled upon
munit-speed identical processors, provided its cumulative utilization is bounded from
above as follows:

Usum(τ ) ≤ m − (m − 1)Umax(τ ) (8.8)

�

It turns out that the bounds of Theorem 8.4 and 8.5 are in fact tight:

Theorem 8.6 Let m denote any positive integer > 1, u1 any real number satisfying
0 < u1 < 1, and ε an arbitrarily small positive real number, ε � u1. EDF cannot
schedule some implicit-deadline sporadic task systems with cumulative utilization
m − u1(m − 1) + ε in which the largest-utilization task has utilization equal to u1,
upon m unit-speed processors.
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Proof Let p denote some positive number. We construct a task set τ as follows.

1. Task τ1 has execution requirement C1 = u1 · p and period T1 = p.
2. Tasks τ2, τ2, . . . , τn all have period Ti = p and execution requirement Ci = C

for all i, 1 < i ≤ n, satisfying

(n − 1) · C = m · (1 − u1) · p + mδ ,

where δ = (p · ε)/m. Furthermore, n is chosen such that n − 1 is a multiple of
m, and is large enough so that C � u1 · p.

The largest-utilization task in τ is τ1, which has utilization equal to (u1 · p)/p = u1.
The cumulative utilization of tasks in τ is given by

U (τ ) = u1 · p

p
+ C2

p
+ C3

p
+ · · · + Cn

p

= u1 + (n − 1) · C

p

= u1 + m · (1 − u1) + m
δ

p

= m − u1 · (m − 1) + ε

Now consider the scheduling of the first jobs of each task, and suppose that EDF
breaks ties such that τ1’s first job is selected last for execution2. Then EDF schedules
the jobs of tasks τ2, τ3, . . . before scheduling τ1’s job; these jobs of τ2, τ3, . . . consume
all m processors over the interval [0, (1 − u1) · p + δ), and τ1’s job can only begin
execution at time-instant (1 − u1) · p + δ. Therefore τ1’s job’s completion time is
((1 − u1) · p + δ + u1 · p) = (p + δ), and it misses its deadline. Thus, the τ we
have constructed above is an implicit-deadline sporadic task system with utilization
Usum(τ ) = m− (m− 1)Umax(τ ) + ε, which EDF fails to successfully schedule upon
m unit-speed processors. The theorem follows. �

Phillips et al. [153] had proved that any instance of jobs feasible upon m unit-
capacity multiprocessors can be EDF-scheduled upon m processors each of capacity
(2 − 1

m
). For implicit-deadline sporadic task systems, we see below (Theorem 8.7)

that this follows as a direct consequence of the results above.

Lemma 8.2 Any implicit-deadline sporadic task system τ satisfying

Umax(τ ) ≤ m/(2m − 1) and Usum(τ ) ≤ m2/(2m − 1)

is scheduled by Algorithm EDF to meet all deadlines on m unit-capacity processors.

2 Alternatively, τ1’s period can be chosen to be infinitesimally larger than p—this would force EDF
to schedule τ1’s job last, without changing the value of m.
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Proof By Theorem 8.4, τ can be EDF-scheduled on
⌈

Usum(τ )−Umax(τ )
1−Umax(τ )

⌉
unit-capacity

processors; by substituting for Usum(τ ) and Umax(τ ), we obtain

⌈
Usum(τ ) − Umax(τ )

1 − Umax(τ )

⌉
=

⌈
m2

2m−1 − m
2m−1

1 − m
2m−1

⌉
=

⌈
m

2m−1 · (m − 1)
2m−1−m

2m−1

⌉

=
⌈

m(m − 1)

(m − 1)

⌉
= �m� = m .

�

Theorem 8.7 The processor speedup factor for EDF-scheduling of implicit-
deadline sporadic task systems is (2 − 1/m); that is, any implicit-deadline sporadic
task system that is feasible upon m unit-capacity processors will be scheduled by

EDF to meet all deadlines on m (2 − 1

m
)-capacity processors.

Proof Sketch: Suppose that implicit-deadline sporadic task system τ =
{τ1, τ2, . . . , τn} is feasible upon m unit-capacity processors. It must be the case that

1. ui ≤ 1 for all i, 1 ≤ i ≤ n—that is, no individual task needs more than an entire
processor, and

2. Usum(τ )(τ ) ≤ m—that is, the cumulative computing requirement of τ does not
exceed the capacity of the platform.

The theorem now follows directly from Lemma 8.2, by scaling all utilizations and
processor speeds by a factor of (2 − 1

m
). �

8.3 Global FJP Scheduling

Recall (Definition 5.1) that the utilization bound of a scheduling algorithm A for
scheduling implicit-deadline task systems upon a platform consisting of m unit-
speed processors is defined to be the largest number U such that all task systems
with utilization ≤ U (and with each task having utilization ≤ 1) is successfully
scheduled by A to meet all deadlines on the m-processor platform. An examination
of Theorem 8.6 reveals that there are implicit-deadline sporadic task systems with uti-
lization larger than one by an arbitrarily small amount that are not EDF-schedulable
upon m unit-speed processors for any m (such a task system with have Umax(τ ) –
the utilization of the largest-utilization task—arbitrarily close to one). We illustrate
this phenomenon, which is commonly called the Dhall effect [78], in the following
example:

Example 8.1 Consider an implicit-deadline sporadic task system of (m + 1) tasks
to be scheduled upon an m-processor platform, in which tasks τ1, . . . , τm have pa-
rameters (Ci = 1, Ti = x), and task τm+1 has parameters Cm+1 = Tm+1 = x + 1.
We observe that
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• The utilization of this system is (m × 1
x

) + ( x+1
x+1 ), which for any given m, appro-

aches 1 as x increases.
• If all the tasks were to release jobs simultaneously, then tasks τ1, · · · , τm would

be scheduled first, thereby causing τm+1’s job to miss its deadline.

This task system is thus not EDF-schedulable despite having a utilization close to
1. Hence, the utilization bound of global EDF is very poor: it is arbitrarily close to
one regardless of the number of processors.

In Sect. 8.2 we considered the global EDF-scheduling of implicit-deadline
sporadic task systems upon identical multiprocessor platforms. The reasons for
considering EDF include the following:

• Very efficient implementations of EDF have been designed (see, e.g., [148]).
• It can be shown that when a set of jobs is scheduled by EDF then the total number

of preemptions and migrations is bounded from above by the number of jobs in
the set.

However, these desirable features are not unique to EDF, but instead hold for all
priority-driven scheduling algorithms. In this section, therefore, we will study a
variant of the EDF-scheduling algorithm that falls within the framework of priority-
driven algorithms, and which is provably superior to EDF in the sense that it schedules
all implicit-deadline sporadic task systems that EDF can schedule, and in addition
schedules some implicit-deadline sporadic task systems for which EDF may miss
some deadlines.

Before presenting the algorithm, we need to prove a preliminary result—
Theorem 8.8 below.

Theorem 8.8 Any implicit-deadline sporadic task system τ satisfying the following
two properties3

Property P1: Usum(τ ) ≤ (m + 1)/2
Property P2: Umax(τ ) ≤ 1/2

is correctly scheduled to meet all deadlines on m processors by EDF.

Proof By Theorem 8.5 (Condition 8.8), a sufficient condition for EDF-
schedulability of τ is that Usum(τ ) ≤ m − (m − 1) Umax(τ ). If τ satisfies Properties
P1 and P2 above, the right hand side becomes (m − m−1

2 ) = m+1
2 , and hence τ is

schedulable by EDF. �

We are now ready to describeAlgorithm fpEDF, our FJP scheduling algorithm for
scheduling implicit-deadline sporadic task systems, and to derive a utilization-based
sufficient schedulability condition for it.

Suppose that task system τ is to be scheduled by Algorithm fpEDF upon m unit-
capacity processors, and let {τ1, τ2, . . . , τn} denote the tasks in τ indexed according

3 We point out that the constraints expressed by Theorem 8.8 is incomparable to those in Lemma 8.2,
since m/(2m − 1) ≥ 1/2 but m2/(2m − 1) ≤ (m + 1)/2.



8.3 Global FJP Scheduling 79

Algorithm fpEDF
Implicit-deadline sporadic task system τ = τ1,τ2, . . .τn to be scheduled on m processors
(It is assumed that ui ≥ ui+1 for all i, 1 ≤ i < n)

for i = 1 to (m−1) do
if (ui > 1

2 )
then τi’s jobs are assigned highest priority (ties broken arbitrarily)
else break

the remaining tasks’ jobs are assigned priorities according to EDF

{ }

Fig. 8.1 Algorithm fpEDF’s priority-assignment rule

to nonincreasing utilization: ui ≥ ui+1 for all i, 1 ≤ i < n. (Observe that Umax(τ ) is
therefore equal to u1.) Algorithm fpEDF first considers the (m − 1) “heaviest” (i.e.,
largest-utilization) tasks in τ . All the tasks from among these heaviest (m − 1) tasks
that have utilization greater than one half are treated specially in the sense that all
their jobs are always assigned highest priority (note that this is implemented trivially
in an EDF scheduler by setting the deadline parameters of these jobs to −∞). The
remaining tasks’ jobs—that is, the jobs of the tasks from among the heaviest (m− 1)
with utilization ≤ 1/2, as well as of the (n−m+ 1) remaining tasks — are assigned
priorities according to their deadlines (as in “regular” EDF). This priority-assignment
rule is presented in pseudocode form, in Fig. 8.1.

Note that Algorithm fpEDF reduces to “regular” EDF when scheduling τ upon
m processors if

1. Umax(τ ) ≤ (1/2), in which case the “break” statement in the for-loop is executed
for i = 1 and all tasks’ jobs get EDF-priority; or

2. m = 1, in which case (m − 1) = 0 and the for-loop is not executed at all.

Computational Complexity The runtime complexity of Algorithm fpEDF is iden-
tical to that of “regular” EDF, in the sense that, once it is determined which tasks’
jobs always get highest priority, the runtime implementation of fpEDF is identical
to that of EDF.

The process of determining which tasks’ jobs always get highest priority would be
performed according to the “for” loop in Fig. 8.1 in time linear in m, if the tasks in τ

are presented sorted according to utilization. If the tasks are not presorted according
to utilization, then the (m − 1) heaviest tasks can be determined in time linear in n
using the standard linear-time selection algorithm. Since m ≤ n, in either case the
computational complexity of the pre-runtime phase is thus O(n), where n denotes
the number of tasks in τ .

Properties The following theorem states that Algorithm fpEDF correctly sched-
ules on m processors any implicit-deadline sporadic task system τ with utilization
Usum(τ ) ≤ (m + 1)/2.

Theorem 8.9 Algorithm fpEDF has a utilization bound (Definition 5.1) no smaller
than m+1

2 upon m processors.
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Proof The proof proceeds by induction on k, the number of processors. For a
single processor, the correctness of the statement of the therorem follows from the
optimality of EDF on uniprocessors [137].

Assume that the statement of the theorem is true for k−1 processors, and consider
the case of k processors. Consider any implicit-deadline sporadic task system τ

satisfying Usum(τ ) ≤ (k +1)/2. We consider two separate cases: (i) when Umax(τ ) ≤
(1/2), and (ii) when Umax(τ ) > (1/2).

(i) IfUmax(τ ) ≤ 1/2, then τ satisfies Properties P1 and P2 of Theorem 8.8. Therefore,
it follows from Theorem 8.8 that τ is scheduled to meet all deadlines upon k

processors by EDF. Since Algorithm fpEDF reduces to EDF when no task has
utilization > (1/2), we conclude that Algorithm fpEDF correctly schedules τ

upon k processors.
(ii) Since Umax(τ ) > (1/2), Algorithm fpEDF assigns highest priority to all the jobs

of τ1.
Consider the system τ ′ obtained from τ by removing the task τ1 = (C1, Ti) of
maximum utilization:

τ ′def= (τ \ {τ1})
Observe that

Usum(τ ′) = Usum(τ ) − U (τ1)

= Usum(τ ) − Umax(τ )

≤ k + 1

2
− 1

2

⇒ Usum(τ ′) ≤ k

2

By our inductive hypothesis above, Algorithm fpEDF therefore can successfully
schedule τ ′ on k − 1 processors.
Consider now the task system τ ′′, comprised of τ ′ plus a task τ̂1 = (T1, T1) with
utilization 1 and period equal to the period of τ1:

τ ′′def= (τ \ {τ1})
⋃

{τ̂1 = (T1, T1)}
A schedule for τ ′′ on k processors can be obtained from the fpEDF schedule for τ ′
on k − 1 processors (which, according to our inductive hypothesis, is guaranteed
to exist), by simply devoting one processor exclusively to the additional task τ̂1,
and scheduling the remaining (k − 1) exactly as in the fpEDF-schedule.
Furthermore, this schedule is exactly equivalent to the one that would be generated
if Algorithm fpEDF were scheduling τ ′′ on k processors—this follows from the
observations that
• Since task τ̂1 has the highest utiliation of any task in τ ′′, its jobs would be

assigned highest priority by Algorithm fpEDF.
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• Jobs of the remaining tasks in τ ′′ would be assigned exactly the same priorities
as they would in the (k − 1)-processor fpEDF-schedule of τ ′.

• The jobs of τ̂1 completely occupy one processor (since U (τ1) = 1).
Thus,Algorithm fpEDF successfully schedules task-system τ ′′ upon k processors.
Since Algorithm fpEDF is a fixed-priority algorithm, it follows by Theorem 3.1
that it is predictable; by the definition of predictability, it follows that Algo-
rithm fpEDF successfully schedules τ , since τ may be obtained from τ ′′ by
reducing the execution requirement of each of τ̂1’s jobs by a quantity (T1 − C1).

�

We show below (Theorem 8.10) that no FJP-scheduling algorithm can have a greater
schedulable utilization than Algorithm fpEDF.

Recall that an FJP-scheduling algorithm satisfies the condition that for every pair
of jobs Ji and Jj , if Ji has higher priority than Jj at some instant in time, then Ji

always has higher priority than Jj . In other words, individual jobs are assigned fixed
priorities (although different jobs of the same task may have very different priorities).

Theorem 8.10 No m-processor FJP scheduling algorithm has a schedulable
utilization greater than m+1

2 .

Proof Consider the implicit-deadline sporadic task system comprised of m + 1
identical tasks, each with execution requirement 1 + ε and period 2, where ε is
an arbitrarily small positive number. Each task releases its first job at time-instant
zero. Any FJP-scheduling algorithm must assign these jobs fixed priorities relative
to each other and the task whose job is assigned the lowest priority at time-instant
zero misses its deadline. Note that as ε → 0, Usum(τ ) → m+1

2 ; thus, the required
result follows. �

As with partitioned scheduling [141], we can obtain better bounds upon
schedulable utilization if the largest utilization Umax(τ ) of any task in τ is known.

Theorem 8.11 Algorithm fpEDF correctly schedules any implicit-deadline spo-
radic task system τ satisfying

Usum(τ ) ≤ max
(
m − (m − 1)Umax(τ ),

m

2
+ Umax(τ )

)
(8.9)

upon m unit-capacity processors.

Proof We consider two cases separately: (i) when Umax(τ ) ≤ (1/2), and (ii) when
Umax(τ ) > (1/2). For Umax(τ ) ≤ (1/2), observe that the first term in the “max”
above is greater than or equal to the second; while for Umax(τ ) > (1/2), the second
term in the “max” is greater than or equal to the first.

(i) For Umax(τ ) ≤ (1/2), it is the first term in the “max” that defines the schedulable
utilization for task systems τ satisfying Umax(τ ) ≤ 1/2. That is,

Usum(τ ) ≤ m − (m − 1)Umax(τ ) (8.10)

for such systems.
However, we have previously observed that Algorithm fpEDF behaves exactly as
EDF does when Umax(τ ) ≤ 1/2. The correctness of the theorem follows from the
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observation that the bound of Eq. 8.10 above is the EDF-bound of Theorem 8.5
(Eq. 8.8).

(ii) As in the proof of Theorem 8.9, let τ ′ denote the task system obtained from τ

by removing the task τ1 of maximum utilization:

τ ′def= (τ \ {τ1})
As explained in the proof of Theorem 8.9, a sufficient condition for τ to be
correctly scheduled on m processors by Algorithm fpEDF is that τ ′ be correctly
scheduled on (m − 1) processors by Algorithm fpEDF. That is

τ is correctly scheduled onmprocessors

⇐ is correctly scheduled onm − 1processors

⇐ Usum(τ ′) ≤ (m − 1) + 1

2

≡ (Usum(τ ) − Umax(τ )) ≤ m

2

≡ Usum(τ ) ≤ Umax(τ ) + m

2

which is as stated in the theorem. �

8.3.1 A Pragmatic Improvement

The idea underpinningAlgorithm fpEDF—circumvent the Dhall effect [78] (see also
Example 8.1 above) by assigning greatest priority to jobs of the heaviest (largest-
utilization) tasks, and use EDF upon the rest—can be exploited to often obtain
performance (i.e., schedulability) superior to that offered by Algorithm fpEDF. We
describe one such pragmatic improvement below.

Recall that we are assuming that tasks in the implicit-deadline sporadic task system
τ are indexed according to nonincreasing utilization (i.e., ui ≥ ui+1 for all i, 1 ≤
i < n). Let τ (k) denote τ with (k − 1) largest-utilization tasks removed:

τ (k) def= {τk , τk+1, . . . , τn} (8.11)

and consider the following priority-driven scheduling algorithm:

Algorithm EDF(k) assigns priorities to jobs of tasks in τ according to the following
rule:

• For all i < k, τi’s jobs are assigned highest priority (ties broken arbitrarily) —
this is trivially achieved within an EDF implementation by setting the deadlines
of all jobs of each such τi to be equal to −∞.

• For all i ≥ k, τi’s jobs are assigned priorities according to EDF.
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That is, Algorithm EDF(k) assigns highest priority to jobs generated by the k − 1
tasks in τ that have highest utilizations, and assigns priorities according to deadline
to jobs generated by all other tasks in τ . (Thus, “pure” EDF is EDF(1), while fpEDF
is EDF(m′−1), where m′ denotes the smaller of the number of processors m and the
number of tasks in τ with utilization > 1/2.)

Theorem 8.12 Implicit-deadline sporadic task system τ will be scheduled to meet
all deadlines on m unit-speed processors by Algorithm EDF(k), where

m = (k − 1) +
⌈

U (τ (k+1))

1 − uk

⌉
(8.12)

(Recall that τ (�) denotes τ with (�−1) largest-utilization tasks removed — Eqn 8.11.)

Proof By Theorem 8.3, τ (k) is feasible on some uniform multiprocessor platform
with cumulative computing capacity U (τ (k)), in which the fastest processor has
speed uk . Hence by Theorem 8.4, τ (k) can be EDF-scheduled upon an identical
multiprocessor platform comprised of m̂ unit-capacity processors, where

m̂
def=
⌈

U (τ (k+1))

1 − uk

⌉
.

It follows from the definition of m (Eq. 8.12) that

m = (k − 1) + m̂ .

Now, consider the task system τ̃ obtained from τ by replacing each task in (τ \
τ (k))—that is, the k tasks in τ with the largest utilizations—by a task with the same
period, but with utilization equal to one:

τ̃
def=

k−1⋃

j=1

{
(Tj , Tj )

} ⋃
τ (k) .

Let us consider the scheduling of τ̃ by Algorithm EDF(k), on m unit-capacity
processors (where m is as defined in Eq. 8.12). Notice that Algorithm EDF(k) will
assign identical priorities to corresponding tasks in τ and τ̃ (where the notion of
“corresponding” is defined in the obvious manner). Also notice that when scheduling
τ̃ , Algorithm EDF(k) will

• Devote (k − 1) processors exclusively to the (k − 1) tasks that generate jobs of
highest priority (since each has a utilization equal to unity), and thereby meet the
deadlines of all jobs of these tasks.

• Execute EDF on the jobs generated by the remaining tasks (the tasks in τ (k)) upon
the remaining m̂ processors. As we have seen above, EDF schedules the tasks in
τ (k) upon m̂ processors to meet all deadlines;

Hence, Algorithm EDF(k) schedules τ̃ upon m processors to meet all deadlines of
all jobs
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Finally, notice that an execution of Algorithm EDF(k) upon m processors on task
system τ can be considered to be an instantiation of a run ofAlgorithm EDF(k) upon m

processors on task system τ̃ , in which some jobs—the ones generated by tasks whose
jobs are assigned highest priority—do not execute to their full execution requirement.
It is straightforward to observe that Algorithm EDF(k) is a predictable scheduling
algorithm, and it hence follows from the result of Ha and Liu (Theorem 3.1) that each
job of each task during the execution ofAlgorithm EDF(k) on task system τ completes
no later than the corresponding job during the execution of Algorithm EDF(k) on task
system τ̃ . And, we have already seen above that no deadlines are missed during the
execution of Algorithm EDF(k) on task system τ̃ . �

By Theorem 8.4, �(U (τ ) − u1)/(1 − u1)� unit-capacity processors suffice to guar-
antee that all deadlines of implicit-deadline sporadic task system τ are met, if τ

is scheduled using EDF. As the following corollary states, we can often make do
with fewer than �(U (τ ) − u1)/(1 − u1)� processors if we are not restricted to using
the EDF-scheduling algorithm, but may instead choose one of the priority-driven
algorithms Algorithm EDF(k), for some k, 1 ≤ k < n.

Corollary 8.2 Implicit-deadline sporadic task system τ will be scheduled to meet
all deadlines on

mmin(τ )
def= n

min
k=1

{
(k − 1) +

⌈
U (τ (k+1))

1 − uk

⌉}
(8.13)

unit-capacity processors by a priority-driven scheduling algorithm.

Proof Let kmin(τ ) denote the smallest value of k that minimizes the right-hand side
of Eq. 8.13:

mmin(τ ) ≡ (kmin(τ ) − 1) +
⌈

U (τ (kmin(τ )+1))

1 − ukmin(τ )

⌉

It follows directly from Theorem 8.9 that τ can be scheduled to meet all
deadlines upon mmin(τ ) unit-speed processors by the priority-driven algorithm
Algorithm EDF(kmin(τ )). �

Algorithm PriD. Based upon Corollary 8.2 above, we propose the following priority-
driven scheduling algorithm for scheduling implicit-deadline sporadic task systems
upon identical multiprocessors: Given a implicit-deadline sporadic task system τ =
{τ1, τ2, . . . , τn} with ui ≤ ui+1 for all i, 1 ≤ i < n, Algorithm PriD computes
mmin(τ ) according to Eq. 8.13, and schedules τ by Algorithm EDF(kmin(τ )).

It is evident that if a task system τ is schedulable by Algorithm EDF(k) for any
value of k, then it is schedulable by Algorithm PriD. This is formally stated in the
following theorem.

Theorem 8.13 Any implicit-deadline sporadic task system that is schedulable by
Algorithm EDF(k) for any value of k, 1 ≤ k ≤ |τ |, is schedulable by Algorithm PriD.

Algorithm PriD is essentially choosing the “best” value for k — the one that results
in the minimum number of processors being needed — for which Algorithm EDF(k)
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would schedule a task system τ . It therefore includes consideration of the situation
considered by Algorithm fpEDF, and it therefore follows that

Theorem 8.14 Algorithm PriD dominates Algorithm fpEDF: each task system
deemed scheulable by Algorithm fpEDF is also deemed schedulable by Algo-
rithm PriD, and there are systems deemed schedulable by Algorithm PriD that
Algorithm fpEDF fails to schedule.

Sources

Many of the results presented in this chapter build upon the ideas in [153]. The results
concerning the scheduling of sporadic task systems upon uniform multiprocessors
are from [91, 92]. The utilization bound for EDF was derived in [95]; Algorithm PriD
was also first proposed there. Algorithm fpEDF was presented in [29].



Chapter 9
Global Fixed-Task-Priority (FTP)
Scheduling of L&L Tasks

In fixed-task-priority (FTP) scheduling algorithms, each task is assigned a distinct
priority and all the jobs generated by a task inherit the priority of the task. FTP algo-
rithms are therefore a special case of fixed-job-priority (FJP) scheduling algorithms:
all FTP algorithms are also FJP algorithms, while not all FJP algorithms are FTP
algorithms.

The global FTP scheduling of L&L task systems has also received a tremendous
amount of attention from the real-time scheduling research community. However, we
have chosen to not describe the research on global FTP scheduling in as much detail
as we did global FJP scheduling in the previous chapter; instead, we will highlight
a few particularly relevant results below.

It has long been known [137] that the rate monotonic (RM) scheduling algo-
rithm, which assigns priorities to tasks in order of their period parameters (tasks
with smaller period receiving greater priority, with ties broken arbitrarily), is an
optimal FTP algorithm for implicit-deadline sporadic task systems upon preemptive
uniprocessors, in the sense that if an implicit-deadline sporadic task system can be
scheduled to always meet all deadlines upon a preemptive uniprocessor by any FTP
algorithm, then it will also be scheduled to always meet all deadlines by RM. RM
is no longer optimal for global scheduling upon multiprocessors; nevertheless, it is
possible to prove a speedup bound for it—we do so in Sect. 9.1 below. As was the
case with EDF (see Example 8.1), RM, too, suffers from the Dhall effect [78]; in
Sect. 9.2, we present an FTP algorithm that somewhat circumvents the Dhall effect
in much the manner that algorithm fpEDF had done in the case of FJP algorithms
(Fig. 8.1 in Sect. 8.3). We briefly enumerate some other results concerning the FTP
scheduling of implicit-deadline sporadic task systems, and present an upper bound
on the utilization bound of any such scheduling algorithm, in Sect. 9.2.1.

9.1 Global RM Scheduling

In this section, we will study the properties of global RM. We first establish a pro-
cessor speedup bound in Theorem 9.2; then in Theorem 9.3 we state without proof
a utilization bound.

© Springer International Publishing Switzerland 2015 87
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We start out defining a subclass of implicit-deadline sporadic task systems:

Definition 9.1 (RM-light task system) Implicit-deadline sporadic task system τ =
{τ1, τ2, . . . , τn} is said to be RM-light(m) for any positive integer m if it satisfies the
conditions

1. Umax(τ ) ≤ m/(3m − 2), and
2. Usum(τ ) ≤ m2/(3m − 2).

Recall Theorem 8.3, which asserts that any implicit-deadline sporadic task system τ

is feasible upon a uniform multiprocessor platform π with total computing capacity
equal to Usum(τ ) and fastest processor having speed Umax(τ ).

Lemma 9.1 Let τ denote an RM-light (m) implicit-deadline sporadic task sys-
tem, π a uniform multiprocessor platform satisfying Ssum(π ) = Usum(τ ) and
Smax(π ) = Umax(τ ), A any work-conserving scheduling algorithm, and π ′ an
m-processor identical multiprocessor platform. The following relationship

W (RM , π ′, I , t) ≥ W (A, π , I , t) (9.1)

holds for any collection of jobs I generated by the task system τ .

Proof By Lemma 8.1, this will hold if

Ssum(π ′) ≥ λ(π ′) · Smax(π ) + Ssum(π )

⇐ m ≥ (m − 1)
m

3m − 2
+ m2

3m − 2

⇔ m ≥ 2m2 − m

3m − 2

⇔ 3m2 − 2m ≥ 2m2 − m

⇔ m2 − m ≥ 0

⇔ m ≥ 1

which is true. �

Theorem 9.1 Any RM-light (m) implicit-deadline sporadic task system is scheduled
by algorithm RM to meet all deadlines on an identical multiprocessor platform
consisting of m unit-speed processors.

Proof Suppose that this is not true. Let τ = {τ1, τ2, . . . , τn} denote a minimal coun-
terexample to the correctness of this theorem. Let I denote some minimal collection
of jobs generated by τ for which RM misses a deadline for the first time at time-
instant tf —see Fig. 9.1. We observe that this must be a deadline of a job of τn (since
if it were a deadline of a job of τk for some k < n then the assumption that τ is a
minimal counterexample would be violated), and lets ta = tf −Tn denote the arrival
time of this job.

As in the statement of Lemma 9.1 above, let π denote a uniform multiprocessor
platform satisfying Ssum(π ) = Usum(τ ) and Smax(π ) = Umax(τ ), and π ′ the
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time
ta t f t j

deadline miss

Tn < Tj

Fig. 9.1 Proof of Theorem 9.1: notation

m-processor identical multiprocessor platform. Let opt denote an optimal algorithm
executing on π , that executes each job of each task τi at a rate exactly equal to its
utilization throughout the interval between its arrival time and its deadline.

Let us suppose that the latest deadline of any job of task τj (for j < n) in I is at
time-instant t ′j . We observe that

• t ′j < tf +Tj (since any job of τj with deadline ≥ tf +Tj arrives after tf , and hence
cannot be responsible for the deadline miss—this would contradict the assumed
minimality of I ); and

• The amount of execution for τj that remains to be done after time-instant ta by
opt executing on π is bounded from above by uj · (tf +Tj − ta), or uj · (Tn +Tj ).

Hence, the total amount of execution that remains to be done after time-instant ta by
opt executing on π is bounded from above by

Cn +
n−1∑

j=1

(uj · (Tn + Tj )), which equals Cn + Tn

n−1∑

j=1

uj +
n−1∑

j=1

Cj .

It follows from Lemma 9.1 that RM executing on π ′ has completed at least as much
total work as opt has, when executing on π , by time-instant ta . Hence, the amount
of execution remaining for RM after time-instant ta is also upper-bounded by the
expression above.

Since the total processor capacity on the m-processor unit-speed identical mul-
tiprocessor platform π ′ over the duration [ta , tf ) is equal to mTn, the amount of
processor capacity left over for τn’s job, after the higher-priority jobs have executed,
is bounded from below by

mTk −
⎛

⎝Tn

⎛

⎝
n−1∑

j=1

uj

⎞

⎠ +
n−1∑

j=1

Cj

⎞

⎠ ;

in the worst case (i.e., to minimize availability for τn’s job), this will all occur
simultaneously upon all m processors. The duration for which τn’s job gets to execute
is therefore bounded from below by

Tk − 1

m

⎛

⎝Tn

n−1∑

j=1

uj +
n−1∑

j=1

Cj

⎞

⎠ .

For a deadline miss, we need this to be strictly less than Cn:
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Tn − 1

m

⎛

⎝Tn

n−1∑

j=1

uj +
n−1∑

j=1

Cj

⎞

⎠ < Cn

⇔ Cn

Tn

+ 1

m

⎛

⎝
n−1∑

j=1

uj +
n−1∑

j=1

Cj

Tn

⎞

⎠ > 1

⇐ un + 1

m

⎛

⎝2
n−1∑

j=1

uj

⎞

⎠ > 1 (Since Tn ≥ Tj )

Simplifying the LHS:

un + 1

m

⎛

⎝2
n−1∑

j=1

uj

⎞

⎠

= un + 1

m
(2Usum(τ ) − 2un)

=
(

1 − 2

m

)
un + 2

m
Usum(τ )

≤
(

1 − 2

m

)(
m

3m − 2

)
+ 2

m

(
m2

3m − 2

)

= 1

thereby contradicting the requirement that it be > 1. �

Theorem 9.2 The processor speedup factor for RM scheduling of implicit-deadline
sporadic task systems is (3 − 2/m).
Proof Sketch: We will show that any τ feasible upon a platform comprised of
m speed-

(
m

3m−2

)
processors is RM-schedulable upon m unit-speed processors. The

theorem follows, by observing that
(
1/ m

3m−2

)
equals (3 − 2/m).

Suppose that implicit-deadline sporadic task system τ is feasible upon m speed-(
m

3m−2

)
processors. It must be the case that

1. Umax(τ ) ≤ m/(3m − 2)
2. Usum(τ )(τ ) ≤ m2/(3m − 2).

τ is therefore an MS-light(m) task system. By Theorem 9.1, we conclude that τ is
therefore RM-schedulable on m unit-speed processors �

A better utilization bound for global RM was proved in [59]:

Theorem 9.3 (from [59]) Any implicit deadline periodic or sporadic task system τ

satisfying

Usum(τ ) ≤ m

2
(1 − Umax(τ )) + Umax(τ ) (9.2)

is successfully scheduled by RM on m unit-speed processors.
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Algorithm RM-US(ξ )
Implicit-deadline sporadic task system τ = τ1,τ2, . . .τn to be scheduled on m processors
(It is assumed that ui ≥ ui+1 for all i, 1 ≤ i < n)

for i= 1 to (m−1) do
if (ui > ξ )

then τi is assigned highest priority
else break

the remaining tasks are assigned priorities according to RM

}{

Fig. 9.2 Algorithm RM-US(ξ ) priority-assignment rule

The above result is tighter than the one of Theorem 9.1, as can be seen applying
Eq. 9.2 to task sets having Umax(τ ) ≤ m

3m−2 . The RHS of Eq. 9.2 becomes

m

2
(1 − Umax(τ )) + Umax(τ )

= m

2

(
1 − Umax(τ )

(
1 − 2

m

))

≥ m

2

(
1 −

(
m

3m − 2

)(
m − 2

m

))

= m

2

(
3m − 2 − m + 2

3m − 2

)

= m2

3m − 2

thereby establishing that the bound on Usum(τ ) is no smaller than m2

3m−2 .
Since Theorem 9.3 can also be applied to task systems τ with Umax(τ ) > m

3m−2 ,
it follows that it dominates the result of Theorem 9.1.

9.2 Global FTP Scheduling

Recall from Sect. 8.3, that the Dhall effect [78] (see Example 8.1) was responsible for
high-utilization tasks compromising schedulability, and that the Dhall effect could
sometimes be circumvented by assigning greater priority to jobs generated by high-
utilization tasks. This same idea is explored in FTP scheduling as well—consider
the algorithm RM-US(ξ ) defined in Fig. 9.2.

The following result was proved in [6].

Theorem 9.4 Algorithm RM-US(m2/(3m − 2)) has a utilization bound (Defini-
tion 5.1) no smaller than m2/(3m − 2) upon m unit-speed processors.
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Proof Let ko denote the number of tasks in τ that have utilization > m/(3m − 2),
and let mo

def= (m − ko).
Let us consider the task system τ̂ obtained from τ by removing all the tasks with

utilization > m/(3m − 2). The utilization of τ̂ is bounded as follows:

Usum(τ̂ ) < Usum(τ ) − ko · m

3m − 2

≤ m2

3m − 2
− kom

3m − 2

= m(m − ko)

3m − 2

≤ (m − ko)2

3(m − ko) − 2

≤ m2
o

3mo − 2

In addition, each τi ∈ τ̂ satisfies

ui ≤ m

3m − 2
≤ mo

3mo − 2

By Definition 9.1 we conclude that τ̂ is RM-light(mo); by Theorem 9.1, it is therefore
RM-schedulable on mo processors. Since τ is obtained from τ̂ by adding ko tasks,
each with utilization > m/(3m − 2), and m = mo + ko, we can now use essentially
the same argument as the one used in the proof of Theorem 8.12 to conclude that
RM-US(m/(3m−2) will consequently schedule τ to always meet all deadlines upon
m processors. �

An improvement to the above utilization bound was presented in [59]; since prov-
ing this bound required the development of a new schedulability test for uniprocessor
RM, we state the result without proof here.

Theorem 9.5 (Corollary 2 in [59]) Algorithm RM-US(1/3) has a utilization bound
of (m + 1)/3 upon m unit-speed processors.

Algorithm RM-US(ξ ) is based on extending global RM in order to overcome the
Dhall effect. An approach not based on RM scheduling at all was explored in [5]:
rather than assigning priorities according to period, they are assigned according to
slack, where the slack of a task τi = (Ci , Ti) is defined to be (Ti − Ci). Algo-
rithm SM-US(ξ ) in [5] assigns greatest priority to tasks with utilization > ξ , just as
algorithm RM-US(ξ ) did. For the remaining tasks, however, algorithm SM-US(ξ )

assigns priorities according to slack
def= (Ti − Ci), with tasks having smaller slack

being assigned greater priority. It is proved in [5] that the best utilization bound is
obtained by setting ξ ← 2/(3+√

5) or ≈ 0.382; the corresponding utilization bound
for this value of ξ is ≈ 0.382m:

Theorem 9.6 (Theorem 1 in [5]) Algorithm SM-US(2/(3 +√
5)) has a schedulable

utilization of
(

2m

3+√
5

)
upon m unit-speed processors.
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Since
(

2m

3+√
5

)
> (m + 1)/3 for m ≥ 7, it follows that this approach offers a

superior utilization bound to RM-US upon platforms with seven or more processors.

9.2.1 Upper Bounds

Baker [18, 21] showed that the utilization bound of global RM upon m unit-speed
processors, expressed as a function of the maximum utilization of any individual
task (denoted α), is no larger than

α + m ln

(
2

1 + α

)
.

This bound was obtained by adapting ideas from [137] to construct a task system
that is “barely schedulable” in the sense that an arbitrarily small increase in the total
utilization of such a task set would result in a missed deadline.

An upper bound of
(

m
2 + 1

3

)
on the utilization bound of any global FTP algorithm

for scheduling implicit-deadline sporadic task systems was obtained in [9], via the
following example:

Example 9.1 Consider a task set composed by m tasks τi with Ci = 1 and Ti = 2,
and another task τm+1 with Ci = 1 and Ti = 3. If we increase by an arbitrarily small ε
the worst-case computation times of tasks τ1, . . . , τm, there is no priority assignment
that can positively schedule the task set: if we give lowest priority to τm+1, then it
will miss its deadline at time t = 3; otherwise, if τm+1’s priority is higher than the
priority of one of the other tasks, the latter task will miss its deadline at time t = 2.

Sources

The derivation of the speedup bound for RM, and algorithm RM-US(ξ ) as well as
the derivation of its utilization bound, may be found in [4, 6]. As stated above, the
improved utilization bound in Theorem 9.5 is from [59]. Some important ideas and
insights into global multiprocessor scheduling are to be found in [7–10].



Chapter 10
The Three-Parameter Sporadic Tasks Model

We now move on from the implicit-deadline sporadic tasks model: this and the next
several chapters discuss the multiprocessor scheduling and analysis of task systems
that are modeled using the more general three-parameter sporadic tasks model. There
is a lot of ground to cover here, particularly with regards to global scheduling.
Some of the results and techniques that we will discuss may be considered to be
generalizations of ideas previously introduced in the context of implicit-deadline
sporadic task systems; many others are brand new and were developed specifically
for three-parameter task systems.

In this chapter, we will briefly review the three-parameter sporadic tasks model,
and introduce some functions for quantifying the computational demand of 3-
parameter sporadic tasks, and of systems of such tasks. We will describe algorithms
and analyses for partitioned scheduling in Chap. 11. Discussion on global scheduling
algorithms and associated schedulability analysis will follow in the next nine chap-
ters. Global scheduling of task systems more general than implicit-deadline ones is
possibly the most intellectually challenging topic studied in depth in multiprocessor
real-time scheduling theory, requiring the concurrent consideration of several factors
and issues that do not arise in the scheduling and analysis of either implicit-deadline
task systems or partitioned scheduling of three-parameter sporadic task systems. The
general approach we adopt here is as follows.

• In Chap. 12 we make some observations regarding global scheduling of three-
parameter sporadic task systems, that seek to highlight some of the challenges we
face in attempting to devise suitable scheduling and analysis algorithms applicable
to such systems.

• Many of the utilization-based results on the scheduling of implicit-deadline task
systems can also be applied to three-parameter task systems by simply substituting
density for utilization—this is explored in Chap. 13.

• In Chap. 14, we describe, at a rather high level, a general framework for developing
global schedulability analysis tests. It turns out that most global schedulability
analysis tests that have been devised can be viewed within this framework, as
specific instantiations.
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• Chapter 15 describes a couple of relatively widely-studied earliest-deadline-first
(EDF) schedulability tests, the [bcl] and [bar] tests, as instantiations of the
general framework described in Chap. 14.

• Chapter 16 describes another widely-studied test, the [bak] test. The [bak] test
is distinguished from the density tests of Chap. 13, as well as the [bcl] and [bar]
tests, in that quantitative worst-case bounds on its performance were derived, in
terms of the speedup factor metric (Definition 5.2).

• Chapter 17 describes several enhancements to the [bcl] and [bar] tests that appear
(based on the evidence of extensive schedulability experiments on synthetically
generated task-sets), to significantly improve the performance capabilities of these
tests in terms of their ability to correctly identify schedulable task systems.

• Chapter 18 describes schedulability tests for task systems scheduled using global
fixed-task-priority (FTP) scheduling algorithms.

• Most of the results in Chaps. 13–18 have been evaluated via schedulability ex-
periments on synthetically generated task-sets (the main exception is the speedup
bound for a variant of the [bak] test, which we present in Chap. 16). The re-
sults we describe in Chap. 19 provide a primarily quantitative approach to global
schedulability analysis. Specifically,
– We characterize the capabilities and limitations of both the global fixed-job-

priority (FJP) scheduling algorithm EDF and the global FTP scheduling
deadline monotonic (DM) algorithm upon three-parameter sporadic task
systems by deriving tight speedup bounds for these algorithms.

– We describe corresponding schedulability tests that have pseudo-polynomial
runtime complexity and near-optimal speedup factor.

– We detail pragmatic improvements to these near-speedup-optimal schedula-
bility tests that further improve their performance.

10.1 The Three-Parameter Sporadic Task Model

We start out briefly reviewing the task and machine model we will be considering
in this chapter. Recall that a 3-parameter sporadic task ([147]; henceforth often
referred to simply as a sporadic task), is characterized by three parameters—a worst-
case execution requirement (WCET) Ci , a relative deadline Di , and a period (or
inter-arrival separation parameter) Ti . A 3-parameter sporadic task denoted τi is
thus represented by a 3-tuple of parameters: τi = (Ci , Di , Ti). Such a task generates
a potentially infinite sequence of jobs. The first job may arrive at any instant, and
the arrival times of any two successive jobs are at least Ti time units apart. Each job
has a WCET of Ci , and a deadline that occurs Di time units after its arrival time.
A 3-parameter sporadic task system consists of a finite number of such 3-parameter
sporadic tasks executing upon a shared platform. A task system is often denoted as
τ , and described by enumerating the tasks in it: τ = {τ1, τ2, . . . , τn}.
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Depending upon the relationship between the values of the relative deadline and
period parameters of the tasks in it, a 3-parameter sporadic task system may further
be classified as follows:

• In an implicit-deadline task system, the relative deadline of each task is equal to
the task’s period: Di = Ti for all τi ∈ τ . Implicit-deadline task systems are also
called Liu & Layland task systems, since they were popularized in a paper [137]
coauthored by C. L. Liu and J. Layland. We studied the scheduling of such task
systems in Chaps. 5–9.

• In a constrained-deadline task system, the relative deadline of each task is no
larger than that task’s period: Di ≤ Ti for all τi ∈ τ .

• Tasks in an arbitrary-deadline task system do not need to have their relative
deadlines satisfy any constraint with regards to their periods.

It is evident from these definitions that each implicit-deadline task system is also a
constrained-deadline task system, and each constrained-deadline task system is also
an arbitrary-deadline task system.

Recall, from Sect. 2.1.2, the following notation

• The utilization ui of a task τi is the ratio Ci/Ti of its execution requirement to its
period. The total utilization Usum(τ ) and the largest utilization Umax(τ ) of a task
system τ are defined as follows:

Usum(τ )
def=

∑

τi∈τ

ui ; Umax(τ )
def= max

τi∈τ
(ui)

• The density densi of a task τi is the ratio (Ci/min(Di , Ti)) of its execution re-
quirement to the smaller of its relative deadline and its period. The total density
denssum(τ ) and the largest density densmax(τ ) of a task system τ are defined as
follows:

denssum(τ )
def=

∑

τi∈τ

densi ; densmax(τ )
def= max

τi∈τ
(densi)

10.2 Characterizing a Task’s Demand

To determine whether a task system is schedulable or not upon a particular platform,
it is necessary to determine bounds upon the amount of execution that could be
generated by the tasks in the system.An obvious upper bound is obtained by observing
that the maximum cumulative value of execution by jobs of a task τi with both arrival
times and deadlines within an interval of duration t is t ×densi (this result is formally
stated in Lemma 10.1 below). A tighter bound called the demand bound function
(dbf) has been identified—this is discussed in Sect. 10.3 below. The DBF essentially
bounds the demand over an interval by the sum of the WCETs of all the jobs that
may have both arrival times and deadline within the interval.
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The DBF finds widespread use in uniprocessor schedulability analysis. For mul-
tiprocessor scheduling, it was observed [24, 62] that it was useful to consider some
jobs arriving and/or having deadlines outside an interval, since such jobs could also
sometimes contribute to the cumulative execution requirement placed on the com-
puting platform within the interval. These observations motivated the definition of
a refinement of the DBF called the forced-forward DBF, which we mention briefly in
Sect. 10.4, and discuss in detail in Chap. 19.

It may sometimes be necessary to determine how much execution demand by a
task can arrive over an interval of a particular duration. The quantification of such
execution demand is formalized in Sect. 10.5 as the request bound function (RBF).

10.3 The Demand Bound Function

For any sporadic task τi and any real number t ≥ 0, the demand bound function
DBF(τi , t) is the largest cumulative execution requirement of all jobs that can be
generated by τi to have both their arrival times and their deadlines within a contiguous
interval of length t . It is evident that the cumulative execution requirement of jobs
of τi over an interval [to, to + t) is maximized if one job arrives at the start of the
interval—i.e., at time-instant to—and subsequent jobs arrive as rapidly as permitted
— i.e., at instants to +Ti , to + 2Ti , to + 3Ti , . . . (this fact is formally proved in [51]).
Equation (10.1) below follows directly [51]:

DBF(τi , t)
def= max

(
0,

(⌊
t − Di

Ti

⌋
+ 1

)
× Ci

)
(10.1)

The following Lemma relates the density of a task to its demand bound
function DBF.

Lemma 10.1 For all tasks τi and for all t ≥ 0,

t × densi ≥ DBF(τi , t) .

Proof : This lemma is easily validated informally by sketching DBF(τi , t) as a func-
tion of t , and comparing this with the graph for t × densi , a straight line of slope
(Ci/min(Di , Ti)) through the origin (see Fig. 10.1). DBF(τi , t) is a step function com-
prised of steps of height Ci , with the first step at t = Di , and successive steps
exactly Ti time units apart. It is seen that the graph of t × densi lies above the plot
for DBF(τi , t), for all t . (For Di < Ti , the graph for t × densi touches the plot for
DBF(τi , t) at t = Di ; for Di = Ti , the two touch at all-integer multiples of Ti ; and
for Di > Ti the two plots never touch). �
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time0 Di Di +Ti Di +2Ti

Ci

2Ci

3Ci

a

time0 Ti Di Di +Ti Di +2Ti

Ci

2Ci

3Ci

b

Fig. 10.1 Illustrating the proof of Lemma 10.1. The step plots represent DBF(τi , t), and the straight
lines through the origin represent t × densi . In a Di < Ti , while in b Di > Ti

The DBF of a task system τ is defined to be the sum of the DBF’s of the individual
tasks in τ ; the LOAD of τ is defined to be largest value of DBF normalized by interval
length:

DBF(τ , t)
def=

∑

τ�∈τ

DBF(τ�, t) . (10.2)

LOAD(τ )
def= max

t>0

(
ff-DBF(τ , t)

t

)
. (10.3)

10.3.1 Approximating the demand bound function

Computing DBF is a well-studied subject. It follows from results in [80] that we
are unlikely to be able to compute DBF in polynomial time; however, very effi-
cient pseudo-polynomial times algorithms are known for computing DBF [51, 160].
Polynomial-time algorithms for computing DBF approximately to any desired degree
of accuracy have also been designed [26, 85, 88]. Equation 10.4 below gives such
an approximation scheme for DBF; for any fixed value of k, DBF(k)(τi , t) defines an
approximation of DBF(τi , t) that is exact for the first k steps of DBF(τi , t), and an
upper bound for larger values of t :

DBF(k)(τi , t) =
⎧
⎨

⎩
DBF(τi , t) if t ≤ (k − 1)Ti + Di

Ci + (t − Di)ui otherwise
(10.4)

The following lemma provides a quantitative bound on the degree by which DBF(k)

may deviate from DBF:
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time
0 Di Di +Ti Di +2Ti Di +3Ti Di +4Ti Di +5Ti
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Fig. 10.2 Illustrating the proof of Lemma 10.2. The step plot represents DBF(τi , t). The plot for
DBF(k)(τi , t), for k = 2, is identical to the step plot for t ≤ di + Ti , and is denoted by the straight
line for larger t

Lemma 10.2

DBF(τi , t) ≤ DBF(k)(τi , t) <

(
1 + 1

k

)
DBF(τi , k) .

Proof : This lemma is easily validated informally by sketching DBF(τi , t) and
DBF(k)(τ , t) as functions of t for given k (see Fig. 10.2). As stated earlier in the
proof of Lemma 10.1, DBF(τi , t) is a step function comprised of steps of height Ci ,
with the first step at t = Di and successive steps exactly Ti time units apart. The
graph of DBF(k)(τ , t) tracks the graph for DBF(τi , t) for the first k steps, and is a
straight line with slope Ci/Ti after that. It is evident from the figure that DBF(k)(τi , t)
is always ≥ DBF(τi , t),and that the ratio DBF(k)(τi , t)/DBF(τi , t) is maximized at t just
a bit smaller than kTi + Di , where it is < (k + 1)Ci)/(kCi) = (1 + 1

k
) as claimed.

�

10.4 The Forced-Forward Demand Bound Function

It was observed [24, 62] that some jobs arriving and/or having deadlines outside
an interval could also contribute to the cumulative execution requirement placed
on the computing platform within the interval. This observation led to the intro-
duction of closely related notions called minimum demand [24] and forced-forward
demand [62]. We will discuss this characterization of a task’s demand further in a
later chapter (Sect. 19.1).
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10.5 The Request-Bound Function

For any sporadic task τi and any real number t ≥ 0, the request-bound function
rbf(τi , t) is the largest cumulative execution requirement of all jobs that can be
generated by τi to have their arrival times within a contiguous interval of length t ,
regardless of where their deadline may lie. The following function provides an upper
bound on the total execution time requested by task τi at time t :

rbf(τi , t)
def=

⌈
t

Ti

⌉
Ci. (10.5)

The following function rbf∗ approximating rbf has been proposed [86]:

rbf∗(τi , t)
def= Ci + ui × t. (10.6)

As stated earlier, it was shown [51] that the cumulative execution requirement of
jobs of τi over an interval is maximized if one job arrives at the start of the interval,
and subsequent jobs arrive as rapidly as permitted. Intuitively, approximation rbf∗
(Eq. 10.6 above) models this job-arrival sequence by requiring that the first job’s
deadline be met explicitly by being assigned Ci units of execution upon its arrival, and
that τi be assigned an additional ui ×� t of execution over time-interval [t , t +� t),
for all instants t after the arrival of the first job, and for arbitrarily small positive � t .

10.5.1 Relationship Between rbf∗ and DBF

These lemmas express upper bounds on the approximation rbf∗(τi , t) in terms of τi’s
utilization and demand-bound function.

Lemma 10.3 The following inequality holds for any constrained-deadline1 spo-
radic task τi = (Ci , Di , Ti) and all t ≥ Di ,

rbf∗(τi , t) ≤ 3DBF(τi , t) (10.7)

Proof : This is visually evident by inspecting Fig. 10.3. The worst-case ratio occurs at
the time-instant t just prior to Di +Ti , when DBF(τi , t) has value 2Ci while rbf∗(τi , t)
has value

< (Ci + ui(Di + Ti)) =
(

Ci + Ci

Ti

(Di + Ti)

)
≤ 3Ci

(since Di ≤ Ti for constrained-deadline systems, and hence Ci

Ti
(Di +Ti) ≤ 2Ci). �

1 Recall that a constrained-deadline task has Di ≤ Ti .
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Fig. 10.3 Illustrating the proof of Lemma 10.3. The step plot represents DBF(τi , t). The plot for
rbf∗(τi , t), is denoted by the straight line with a slope equal to ui and y-intercept Ci

Lemma 10.4 Given a sporadic task τi , the following inequality holds for all t ≥ Di ,

rbf∗(τi , t) ≤ DBF(τi , t) + (ui × t) (10.8)

Proof : Observe from the definition of DBF that for t ≥ di ,

DBF(τi , t) ≥ Ci.

Substituting this inequality into Eq. 10.6, we obtain Eq. 10.7. �

Sources

The demand bound function was originally defined in [51]; the idea of approximating
it as the DBF∗ function was proposed by Albers and Slomka [3]. Further discussions
on such approximations may be found in Fisher’s dissertation [83].



Chapter 11
Partitioned Scheduling

In this chapter, we consider approximation algorithms for partitioning a sporadic task
system upon an identical multiprocessor platform. Since earliest-deadline-first (EDF)
is known to be an optimal algorithm for scheduling upon a preemptive uniprocessor,
we will assume in this chapter that each individual processor will be EDF-scheduled
during run-time. We will consider approximate approaches to partitioning when the
scheduling algorithms upon each processor are restricted to being fixed-task-priority
(FTP) ones, in Sect. 11.3.

As we saw in Chap. 6 with respect to the partitioned scheduling of systems of Liu
and Layland tasks, most partitioning algorithms operate as follows:

1. Order the tasks according to some criterion.
2. Considering the tasks in this order, attempt to assign each to a processor upon

which it fits. (Here, “fits” requires that the newly-assigned task plus all the tasks
previously assigned to the processor, remain uniprocessor EDF-schedulable.)

11.1 Density-Based Partitioning

One approach to partitioning would be to consider the tasks in some order, and to
assign tasks to processors such that the total density assigned to a particular processor
does not exceed the capacity of the processor.

The correctness of this algorithm follows from the fact that a sufficient condition
for a sporadic task system to be EDF-schedulable on a preemptive uniprocessor
is that the total density of the system not exceed the capacity of the processor. It
is fairly straightforward to show that such density-based partitioning guarantees to
successfully schedule any sporadic task system τ upon m unit-capacity processors,
for which

denssum(τ ) ≤ m − (m − 1) × densmax(τ ). (11.1)

Although density-based partitioning is simple, it may perform very poorly–
Sect. 13.1, in a later chapter, discusses the limitations of density as a criterion for
scheduling three-parameter sporadic task systems. For instance, the following task
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Fig. 11.1 dbf(1) as an approximation of the dbf

system (see also Example 13.1) is one on which density-based partitioning performs
poorly.

Consider a task system with n tasks τ1, . . . , τn, with τi = (1, i, n). This system is
feasible upon a unit-capacity uniprocessor for all values of n (this may be validated by
observing that its synchronous arrival sequence is successfully scheduled by EDF—
each τi’s jobs execute over all the time intervals [(i − 1)mod n, i mod n)). This
task system’s density is given by the harmonic sum

∑n
i=1

1
i
, which increases without

bound as n increases—for any fixed number of processors m there is a value of n for
which this harmonic sum exceeds m.

11.2 Partitioning Based on Approximations to dbf

Recall the function dbf(k), an approximation to the dbf, that was defined in Eq. 10.4
(Sect. 10.3.1) for any fixed positive integer value of the integer k. For k ← 1, Eq. 10.4
instantiates to

dbf(1)(τi , t)
def=
⎧
⎨

⎩
0, t < Di

Ci + (t − Di)ui , t ≥ Di.

In essence, dbf(1)(τi , t) tracks dbf(τi , t) exactly for t ≤ Di , and thenceforth rep-
resents a linear approximation of dbf(τi , t) by a straight line with slope Ui—see
Fig. 11.1. This approximation upper bounds dbf(τi , t) at all other values of t , and is
exactly equal to dbf(τi , t) at all values of t that are of the form Di +kTi for all integer
k ≥ 0. Figure 11.2 depicts an alternative interpretation of the dbf(1) abstraction.
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timeDi Ti Ti+Di

Ci/Ti

Ci units here

Fig. 11.2 Pictorial representation of task τi ’s reservation of computing capacity in a processor-
sharing schedule

Intuitively, we can think of dbf(1)(τi , t) as accommodating τi’s worst-case compu-
tational demand by “reserving” Ci units of computing capacity for τi over the time in-
terval [0, Di), followed by a processor-sharing schedule (see the discussion following
Theorem 7.1) that reserves a fraction ui of a processor for τi for all time-instants ≥ Di .

From Lemma 10.2, we conclude the following property of the dbf(1) approxima-
tion to the dbf: for all τi and t ,

dbf(τi , t) ≤ dbf(1)(τi , t) < 2 × dbf(τi , t), (11.2)

with the “worst case” (the factor of 2) occurring just prior to t = (Di + Ti).
A partitioning algorithm for sporadic task systems was derived in [44–46], based

upon using the dbf(1) approximation in order to determine whether a task would “fit”
upon a processor during the process of partitioning the tasks amongst the processors.
Let τ denote a sporadic task system comprised of the n tasks τ1, τ2, . . . , τn, to be
partitioned upon a platform of m unit-capacity processors. With no loss of generality,
let us assume that the tasks in τ are indexed according to nondecreasing order of their
relative deadline parameters (i.e., Di ≤ Di+1 for all i, 1 ≤ i < n). The algorithm of
[44], represented in pseudocode form in Fig. 11.3, considers the tasks in the order
τ1, τ2, . . . . Suppose that the (i − 1) tasks τ1, τ2, . . . , τi−1 with the smallest deadlines
have all been successfully allocated, and task τi is being considered. Let τ (�) denote
the tasks that have already been allocated to the �’th processor, 1 ≤ � ≤ m. Task τi

is assigned to any processor k that satisfies the following two conditions:
⎛

⎝Di −
∑

τj ∈τ (k)

dbf(1)(τj , Di)

⎞

⎠ ≥ Ci (11.3)

and
⎛

⎝1 −
∑

τj ∈τ (k)

Cj/Tj

⎞

⎠ ≥ Ci/Ti . (11.4)

If no such processor exists, then the algorithm declares failure: it is unable to partition
τ upon the m-processor platform.
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PARTITION(τ,m)
The collection of sporadic tasks τ = {τ1,...,τn} is to be partitioned on m identical,
unit-capacity processors.  (Tasks are indexed according to non-decreasing value of
relative deadline parameter: Di ≤ Di+ 1 for all i.) τ(k) denotes the tasks assigned to
processor k; initially, τ(k) ←{ } for all k.

1 for i← 1 to n
2 for k← 1 to m
3 if τi satisfies Conditions 11.3 and 11.4 on processor πk then

assign τi to proc. k; proceed to next task
4 τ(k) ← τ(k) {τi}
5 goto line 7
6 end (of inner for loop)
7 if (k > m) return PARTITIONING FAILED
8 end (of outer for loop)
9 return PARTITIONING SUCCEEDED

Fig. 11.3 Pseudocode for partitioning algorithm

Run-time Complexity In attempting to map task τi , observe that Algorithm par-
tition essentially evaluates, in Eqs. 11.3 and 11.4, the workload generated by the
previously-mapped (i − 1) tasks on each of the m processors. Since dbf(1)(τj , t) can
be evaluated in constant time, a straightforward computation of this workload would
require O(i + m) time. Hence the runtime of the algorithm in mapping all n tasks is
no more than

∑n
i=1 O(i + m), which is O(n2) under the reasonable assumption that

m ≤ n.
The following lemma asserts that this algorithm never assigns more tasks to a

processor than can be EDF-scheduled upon it to meet all declines.

Lemma 11.1 If the tasks assigned to each processor prior to considering task τi

are EDF-schedulable on that processor and the partitioning algorithm assigns task
τi to the k’th processor, then the tasks assigned to each processor (including the k’th
processor) remain EDF-schedulable on that processor.

Proof : First, note that the EDF-schedulability of the processors other than the k’th
processor is not affected by the assignment of task τi to the k’th processor. It remains
to demonstrate that, if the tasks previously assigned to the k processor were EDF-
schedulable prior to the assignment of τi and Conditions 11.3 and 11.4 are satisfied,
then the tasks on the k’th processor remain EDF-schedulable after adding τi .

The scheduling of the k’th processor after the assignment of task τi to it is a
uniprocessor scheduling problem. As stated in Chap. 4, it is known (see e.g., [51])
that a uniprocessor system of preemptive sporadic tasks is EDF-schedulable if and
only if all deadlines can be met for the synchronous arrival sequence (i.e., when each
task has a job arrive at the same time-instant, and subsequent jobs arrive as rapidly
as legal). Also, recall that EDF is an optimal preemptive uniprocessor scheduling
algorithm. Hence to demonstrate that the k’th processor remains EDF-schedulable
after adding task τi to it, it suffices to demonstrate that all deadlines can be met for
the synchronous arrival sequence.
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This is easily seen to be true informally1, by using the intuitive interpretation of
dbf(1) presented in Fig. 11.2. In the context of this interpretation, Condition 11.3 can
be thought of as validating whether Ci units of execution can be guaranteed to τi on
the k’th processor, and Condition 11.4 whether a fraction Ui of the processor can
henceforth be reserved for τi . �

The correctness of Algorithm partition follows, by repeated applications of
Lemma 11.1:

Theorem 11.1 If Algorithm partition returns partitioning succeeded on task
system τ , then the resulting partitioning is EDF-schedulable.

Proof : Observe that Algorithm partition returns partitioning succeeded if and
only if it has successfully assigned each task in τ to some processor.

Prior to the assignment of task τ1, each processor is trivially EDF-schedulable.
It follows from Lemma 11.1 that all processors remain EDF-schedulable after each
task assignment as well. Hence, all processors are EDF-schedulable once all tasks
in τ have been assigned. �

Algorithm partition can be simplified further [45] if we restrict our attention to
constrained-deadline sporadic task systems:

Lemma 11.2 For constrained-deadline sporadic task systems, any τi satisfying
Condition 11.3 during the execution of Line 3 in Algorithm partition of Fig. 11.3
satisfies Condition 11.4 as well.

Proof : To see this, observe that it follows from the definition of dbf(1) that for all
t ≥ Dk it is the case that

dbf(1)(τk , t) = Ck + uk × (t − Dk) = uk(Tk + t − Dk).

Since Tk ≥ Dk for any constrained-deadline task τk , it must therefore hold that
dbf(1)(τk , t) ≥ uk × t for any such τk , and any t ≥ Dk . Hence,

Condition 11.3

⇔
⎛

⎝Di −
∑

τj ∈τ (k)

dbf(1)(τj , Di) ≥ Ci

⎞

⎠

⇒ Di −
∑

τj ∈τ (k)

(uj × Di) ≥ Ci

⇒ 1 −
∑

τj ∈τ (k)

uj ≥ Ci

Di

⇒ 1 −
∑

τj ∈τ (k)

uj ≥ ui

⇔ Condition 11.4

1 A formal proof is also straightforward, but omitted.
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That is, Condition 11.4 is guaranteed to hold if Condition 11.3 holds. �

Hence if the task system τ being partitioned is known to be a constrained task
system, we need to only check Condition 11.3 (rather than both Condition 11.3 and
Condition 11.4) on line 3 in Fig. 11.3.

11.2.1 Evaluation

Algorithm partition is not an exact partitioning algorithm: it is possible that there
are systems that are partitioned EDF-schedulable that will be incorrectly flagged as
“unschedulable” byAlgorithm partition. This is only to be expected since a simpler
problem—partitioning collections of implicit-deadline sporadic tasks—is known to
be NP-hard in the strong sense whileAlgorithm partition runs in O(n2) time. In this
section, we offer a quantitative evaluation of the efficacy of Algorithm partition, by
deriving some properties (Theorem 11.2 and Corollary 11.1) ofAlgorithm partition,
which characterize its performance.

A Note Theorem 11.2 and Corollary 11.1 are not intended to be used as schedulabil-
ity tests to determine whether Algorithm partition would successfully schedule a
given sporadic task system or not; sinceAlgorithm partition itself runs efficiently in
polynomial time, the “best” (i.e., most accurate) polynomial-time test for determin-
ing whether a particular system is successfully scheduled by Algorithm partition is
to actually run the algorithm and check whether it performs a successful partition or
not. These properties are instead intended to provide a quantitative measure of how
effective Algorithm partition is vis a vis the performance of an optimal scheduler.

Let us start out considering constrained-deadline task systems. Suppose that Al-
gorithm partition fails to assign some task τi to any processor while partitioning
constrained-deadline sporadic task system τ upon an m-processor platform. By
Lemma 11.2 we conclude that Condition 11.3 is violated upon each processor, i.e.,

Di −
∑

τj ∈τ (k)

dbf(1)(τj , Di) < Ci ,

for each processor k. Summing over all the m processors, we see that it must be the
case that

mDi −
∑

τj ∈(τ\{τi })
dbf(1)(τj , Di) < mCi

⇔
⎛

⎝mDi −
∑

τj ∈τ

dbf(1)(τj , Di) + Ci < mCi

⎞

⎠

⇔
⎛

⎝
∑

τj ∈τ

dbf(1)(τj , Di) > mDi − (m − 1)Ci

⎞

⎠
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We have seen (Eq. 11.2) that dbf(1)(τi , t) < 2 dbf(τi , t) for all τi and t . Hence,
we have

∑

τj ∈τ

dbf(1)(τj , Di) > mDi − (m − 1)Ci

⇒
⎛

⎝
∑

τj ∈τ

2dbf(τj , Di) > mDi − (m − 1)Ci

⎞

⎠

⇔
(

2

∑
τj ∈τ dbf(τj , Di)

Di

> m − (m − 1)
Ci

Di

)

⇒
(

2load(τ ) > m − (m − 1)max
τi∈τ

(
Ci

Di

))

thereby establishing the following sufficient schedulability condition for Algo-
rithm partition2:

Theorem 11.2 Any constrained-deadline sporadic task system τ satisfying

load(τ ) ≤ 1

2
×

(
m − (m − 1)densmax(τ )

)
(11.5)

is guaranteed to be successfully scheduled by Algorithm partition. �

Theorem 11.2 above may be used to establish the following speedup bound for
Algorithm partition:

Theorem 11.3 Any constrained-deadline sporadic task system that can be sched-
uled on an m-processor platform by an optimal clairvoyant scheduling algorithm
is successfully scheduled by Algorithm partition on m processors that are each
(3 − 1

m
) times as fast.

Proof : Any sporadic task system τ that is feasible upon a platform comprised of m

speed-(m/(3m − 1)) processors necessarily has

load(τ ) ≤ m2

3m − 1
and densmax(τ ) ≤ m

3m − 1

Such systems therefore satisfy Inequality 11.5, since

load(τ ) ≤ 1

2
×

(
m − (m − 1)densmax(τ )

)

⇐ m2

3m − 1
≤ 1

2
×

(
m − (m − 1)m

3m − 1

)

⇔ 2m2

3m − 1
≤ 3m2 − m − m2 + m

3m − 1

2 See Chap. 10 to review the definitions of load(τ ) and densmax(τ )



110 11 Partitioned Scheduling

⇔ 2m2

3m − 1
≤ 2m2

3m − 1

which is obviously true. This establishes the correctness of this theorem, since we
have just shown that any constrained-deadline sporadic task system that is feasible
upon m speed- m

3m−1 processors is successfully scheduled by Algorithm partition
on m speed-1 processors. �

The following result concerning arbitrary-deadline sporadic task systems was also
proved in [44]; we omit the proof.

Corollary 11.1 Algorithm partition makes the following performance guarantee:
if a sporadic task system is feasible on m identical processors each of a particular
computing capacity, then Algorithm partition will successfully partition this system
upon a platform comprised of m processors that are each (4 − 2

m
) times as fast as

the original.

11.3 Partitioned FTP Scheduling

In this section, we study approximation algorithms for partitioning a sporadic task
system upon an identical multiprocessor platform, under the restriction that only
FTP (Fixed-Task-Priority—see Sect. 3.2) scheduling algorithms may be deployed
on the individual processors during run-time. As in Sects. 11.1 and 11.2, the overall
approach is to consider the tasks in some particular order; in considering a task,
we seek to find a processor upon which it fits. The idea of a task “fitting” on a
processor requires some elaboration: recall that a task τi fits on a processor if it
can be assigned to the processor, and scheduled according to a given uniprocessor
scheduling algorithm such that τi and all previously-assigned tasks will always meet
all deadlines. The criteria for “fitting” on a processor are thus dependent on the
choice of scheduling algorithm at the uniprocessor level. In this section, we are
restricted to only consider the static-priority scheduling algorithms. Recall, from
Chap. 4, that the Deadline Monotonic (DM) scheduling algorithm , which assigns
priorities according to the relative deadline parameters—tasks with smaller relative
deadlines are assigned greater priority—is known to be optimal for the static-priority
scheduling of constrained-deadline sporadic task systems on uniprocessors [133]. We
restrict our attention in this section to constrained-deadline sporadic task systems, and
will therefore assume that each processor is scheduled using DM. Such a partitioning
algorithm, called Algorithm fbb-ffd, was defined in [88]; we describe this algorithm
below, and prove that it is correct (and has polynomial run-time)

Algorithm fbb-ffd is very similar to the EDF-partitioning algorithm of Sect.
11.2: tasks are again considered in nondecreasing order of their relative deadline
parameters. The only difference is that the conditions for determining whether a
task “fits” upon a processor is changed: the Conditions 11.3–11.4 of Sect. 11.2 are
replaced by the single Condition 11.6 below. A detailed description follows.
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Recall, from Sect. 10.5, the definition of the request bound function (rbf) of a
sporadic task, and of the approximation rbf∗ to the rbf that was defined in Eq. 10.5
as follows:

rbf∗(τi , t) = Ci + ti × t.

We use this approximation to perform partitioned DM scheduling below, much as
we used the dbf(1) approximation to the demand bound function (dbf) to perform
partitioned EDF scheduling in Sect. 11.2.

Given a sporadic task system τ comprised of n sporadic tasks τ1, τ2, . . . , τn,
and a processing platform comprised of m unit-capacity processors, fbb-ffd will
attempt to partition τ among the processors. Assume the tasks of τi are indexed in
nondecreasing order of their relative deadline (i.e., Di ≤ Di+1, for 1 ≤ i < n). The
fbb-ffd algorithm considers the tasks in increasing index order. We now describe
how to assign task τi assuming that tasks τ1, τ2, . . . , τi−1 have already successfully
been allocated among the m processors. Let τ (�) denote the set of tasks already
assigned to the �’th processor, 1 ≤ � ≤ m. We assign task τi to any processor k that
satisfies the following condition

⎛

⎝Di −
∑

τj ∈τ (k)

rbf∗(τj , Di)

⎞

⎠ ≥ Ci (11.6)

If no such πk exists, then Algorithm fbb-ffd returns partitioning failed: it
is unable to conclude that sporadic task system τ is feasible upon the m-processor
platform. Otherwise, fbb-ffd returns partitioning succeeded.

Computational Complexity As with Algorithm partition in Sect. 11.2, Algor-
tihm fbb-ffd is computationally very efficient. Sorting the tasks in (nondecreasing)
relative deadline order requires Θ(nlgn) time. In attempting to map task τi , observe
that Algorithm fbb-ffd essentially evaluates, in Eq. 11.6, the workload generated by
the previously-mapped (i − 1) tasks on each of the m processors. Since rbf∗(τj , t)
can be evaluated in constant time (see Eq. 10.6), a straightforward computation of
this workload would require O(i + m) time. Hence the runtime of the algorithm
in mapping all n tasks is no more than

∑n
i=1 O(i + m), which is O(n2) under the

reasonable assumption that m ≤ n.
The following lemma asserts that Algorithm fbb-ffd never overloads a processor.

Lemma 11.3 If the tasks previously assigned to each processor were DM-
schedulable on that processor and Algorithm fbb-ffd assigns task τi to the k’th
processor, then the tasks assigned to each processor (including the k’th processor)
remain DM-schedulable on that processor.

Proof : Observe that the DM-schedulability of the processors other than the k’th
processor is not affected by the assignment of task τi to the k’th processor. It remains
to demonstrate that, if the tasks assigned to k were DM-schedulable on the k’th
processor prior to the assignment of τi and Condition 11.6 is satisfied, then the tasks
on the k’th processor remain DM-schedulable after adding τi .
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The scheduling of the k’th processor after the assignment of task τi to it is a
uniprocessor scheduling problem. First, observe that since tasks are assigned in
order of nondecreasing deadlines the tasks previously assigned to the processor have
greater priority that τi ; hence, their schedulability is not compromised by assigning
τi to the processor. It merely remains to show that τi will also meet all its deadlines
on the k’th processor.

It is known (see e.g., [13]) that constrained-deadline sporadic task τi = (Ci , Di , Ti)
will always meet all its deadlines under preemptive uniprocessor DM scheduling if
there is some t , 0 ≤ t ≤ Ti , for which

Ci +
∑

τj ∈hp(τi )

rbf(τj , t) ≤ t , (11.7)

where hp(τi) denotes the set of tasks sharing the processor with τi , that have greater
DM priority than τi . But this is easily seen to be true for task τi on the k’th processor:
since it is assigned to the k’th processor by Algorithm fbb-ffd, it must be the case
that Condition 11.6 is satisfied:

Di −
∑

τj ∈τ (k)

rbf∗(τj , Di) ≥ Ci

⇔Ci +
∑

τj ∈τ (k)

rbf∗(τj , Di) ≤ Di

⇔Ci +
∑

τj ∈hp(τi )

rbf∗(τj , Di) ≤ Di

⇒Ci +
∑

τj ∈hp(τi )

rbf(τj , Di) ≤ Di

and Di therefore bears witness to the fact that Condition 11.7 is satisfied. �

The correctness of Algorithm fbb-ffd follows, by repeated applications of
Lemma 11.3:

Theorem 11.4 If the Algorithm fbb-ffd returns partitioning succeeded when
scheduling some constrained-deadline sporadic task system τ , then the resulting
partitioning is DM-schedulable.

Proof : Observe that Algorithm fbb-ffd returns partitioning succeeded if and
only if it has successfully assigned each task in τ to some processor.

Prior to the assignment of task τ1, each processor is trivially DM-schedulable. It
follows from Lemma 11.3 that all processors remain DM-schedulable after each task
DM-schedulable once all tasks in τ have been assigned. �

Suppose that Algorithm fbb-ffd fails to assign some task τi to any processor
while partitioning constrained-deadline sporadic task system τ upon an m-processor
platform. Condition 11.6 is therefore violated upon each processor, i.e.,

Di −
∑

τj ∈τ (k)

rbf∗(τj , Di) < Ci
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for each processor k. Summing over all the m processors, we see that it must be the
case that

mDi −
∑

τj ∈(τ\{τi })
rbf∗(τj , Di) < mCi

⇔
⎛

⎝mDi −
∑

τj ∈τ

rbf∗(τj , Di) + Ci < mCi

⎞

⎠

⇔
⎛

⎝
∑

τj ∈τ

rbf∗(τj , Di) > mDi − (m − 1)Ci

⎞

⎠

By Lemma 10.3, rbf∗(τj , t) < 3dbf(τj , t) for all τj and all t ≥ Dj . Since tasks
are considered in order of nondecreasing deadlines, this Di ≥ Dj for all tasks Dj

within the summation above, and hence we have
∑

τj ∈τ

rbf∗(τj , Di) > mDi − (m − 1)Ci

⇒
⎛

⎝
∑

τj ∈τ

3dbf(τj , Di) > mDi − (m − 1)Ci

⎞

⎠

⇔
(

3

∑
τj ∈τ dbf(τj , Di)

Di

> m − (m − 1)
Ci

Di

)

⇒
(

3load(τ ) > m − (m − 1)max
τi∈τ

(
Ci

Di

))

thereby establishing the following sufficient schedulability condition for Algo-
rithm fbb-ffd:

Theorem 11.5 Any constrained-deadline sporadic task system τ satisfying

load(τ ) ≤ 1

3
×

(
m − (m − 1)densmax(τ )

)
(11.8)

is guaranteed to be successfully scheduled by Algorithm fbb-ffd. �

Theorem 11.5 above may be used to establish the following speedup bound for
Algorithm fbb-ffd:

Theorem 11.6 Any constrained-deadline sporadic task system that is feasible on
an m-processor platform is successfully scheduled by Algorithm fbb-ffd on m

processors that are each (4 − 1
m

) times as fast.

Proof : Any sporadic task system τ that is feasible upon a platform comprised of m

speed-(m/(4m − 1) processors must have

load(τ ) ≤ m2

4m − 1
and densmax(τ ) ≤ m

4m − 1
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Such systems therefore necessarily satisfy Inequality 11.8, since

load(τ ) ≤ 1

3
×

(
m − (m − 1)densmax(τ )

)

⇐ m2

4m − 1
≤ 1

3
×

(
m − (m − 1)m

4m − 1

)

⇔ 3m2

4m − 1
≤ 4m2 − m − m2 + m

4m − 1

⇔ 3m2

4m − 1
≤ 3m2

4m − 1

which is obviously true. This establishes the correctness of this theorem. �

Sources

EDF-based partitioned scheduling was discussed in [44–46]; DM-based partitioning
was studied in [87]. A general task model was considered in [47]. Also see Fisher’s
dissertation [83].



Chapter 12
Global Scheduling: General Comments

The next several chapters delve into the global scheduling of three-parameter sporadic
task systems. There is a lot of material to cover here: the real-time scheduling research
community has devoted considerable effort to devise schedulability analysis tests for
such systems. Since many proposed tests are incomparable to each other in the sense
that there are task systems deemed schedulable by one that the others fail to identify
as being schedulable, it is difficult to choose just one or a few representative “best”
tests to include in this book.

Given the sheer volume of material here, we propose a few possibilities for
pursuing parts of this material.

• To obtain a mainly conceptual understanding of the foundations of global schedu-
lability analysis, we suggest that one read Chaps. 14,16, and 19 in-depth,
skimming the others at a first reading. Chapter 19 in particular describes the
best quantitative bounds known for global schedulability analysis. A high-level
comparison of the different tests is provided in Sect. 14.5.

• Schedulability experiments on randomly generated systems of tasks have offered
evidence that the tests in Chaps. 13,15, and 17 appear to be particularly effective
for the schedulability analysis of earliest-deadline-first (EDF)-scheduled task sys-
tems. From a pragmatic perspective, therefore, these chapters are worth reading
in-depth if one seeks to choose an EDF schedulability test to be implemented.
Chapter 18 describes tests analogous to the ones described in Chaps. 13,15, and 17,
but for the analysis of fixed task priority(FTP)-scheduled task systems; it should
be read if one is seeking to implement an FTP-schedulability analysis algorithm.

From a scheduling–theoretic perspective, the global multiprocessor scheduling of
systems of 3-parameter sporadic tasks is considerably more challenging than either
the (global and partitioned) scheduling of implicit-deadline sporadic task systems,
or the partitioned scheduling of 3-parameter sporadic task systems. We highlight a
couple of novel challenges that arise in the remainder of this chapter.

• Since any sporadic task system may generate infinitely many different collections
of jobs, each containing an unbounded number of jobs, it is not possible to val-
idate schedulability by exhaustive enumeration of all these collections of jobs.
Instead, the typical approach has been to identify one or a few worst-case job
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arrival sequences, each consisting of a bounded number of jobs, for a task system
for which it can be proved that if these job collections are scheduled, then all legal
job collections are schedulable. However, no small set of such worst-case collec-
tions of jobs are known for global scheduling, with respect to most scheduling
algorithms—this point is discussed in Sect. 12.1 below.

• We saw in Chap. 7 that there are optimal algorithms for the global scheduling of
implicit-deadline sporadic task systems—the pfair scheduling algorithm is one
such example of optimal algorithm. In contrast, it is known that there can be no
optimal algorithm for the global scheduling of 3-parameter sporadic task systems;
this is discussed further in Sect. 12.2 below.

12.1 Global Scheduling and Worst-Case Behavior

Recall that in order for a sporadic task system to be considered A-schedulable for a
given scheduling algorithm A, A must generate schedules meeting all deadlines for
all legal job-arrival sequences of the task system. As discussed above, any sporadic
task system has infinitely many different legal job arrival sequences; therefore, an
approach of exhaustive enumeration of such sequences, followed by simulating al-
gorithm A on each of these sequences, will not yield an effective schedulability test.
Instead, the typical approach has been to identify one or a few worst-case job arrival
sequences for a task system for which it can be proved that if algorithm A success-
fully schedules all these worst-case job arrival sequences, then A is guaranteed to
successfully schedule all legal job arrival sequences of the task system. For exam-
ple, with respect to EDF or deadline-monotonic (DM) scheduling upon preemptive
uniprocessors it is known [51, 132, 137] that there is a unique worst-case job arrival
sequence: Every task has one job arrive at the same instant in time, and each task
has subsequent jobs arrive as soon as legally permitted to do so. (Such a job arrival
sequence is often called the synchronous arrival sequence for the task system—see
Sect. 4.3.) Since run-time scheduling is performed on a per-processor basis (i.e., as
a collection of uniprocessor systems, one to each processor) under the partitioned
paradigm, it follows that the synchronous arrival sequence is also the worst-case job
arrival sequence for partitioned multiprocessor EDF and DM scheduling.

For global scheduling, however, the synchronous arrival sequence is not necessar-
ily the worst-case arrival sequence, as the following example illustrates with respect
to EDF scheduling.

Example 12.1 Consider the task system comprised of the three tasks τ1 = (1, 1, 2),
τ2 = (1, 1, 3), and τ3 = (5, 6, 6), executing upon two unit-capacity processors. It may
be seen (Fig. 12.1a) that the synchronous arrival sequence is successfully scheduled
by EDF to meet all deadlines. However, if task τ1’s second job were to arrive three,
rather than two, time units after the first (Fig. 12.1b), then EDF would miss some
deadline over the interval [0, 6] (and indeed, no scheduling algorithm can possibly
guarantee to meet all deadlines for this job arrival sequence—i.e., this task system
is in fact infeasible).
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a

b

τ1

τ2

τ3

0 1 2 6

6

3 4 5

τ1

τ2

τ3

0 1 2 3 4 5

Fig. 12.1 Figure for Example 12.1, illustrating that the synchronous arrival sequence does not
represent the worst case

Without knowing what the worst-case behavior of a sporadic task system may
be, it is not possible to design simulation-based exact (necessary as well as suf-
ficient) schedulability tests. To our knowledge, no finite collection of worst-case
job arrival sequences has been identified for global scheduling of sporadic task sys-
tems (although a hopelessly intractable—doubly exponential in the size of the task
system—exhaustive-search procedure is described in [61]). This, at a basic level,
is the fundamental difference between our understanding of partitioned and global
scheduling of sporadic task systems. As stated above, it is known that the synchronous
arrival sequence represents the worst-case behavior of a task system under partitioned
scheduling. Hence, partitioned schedulability testing can be solved in principle by
determining whether it is possible to partition the tasks among the processors such
that no deadlines are missed in the synchronous arrival sequence (although an al-
gorithm for solving this problem exactly is provably highly intractable, since the
partitioning step is itself intractable).

In the global case, however, we do not know how to determine schedulability even
if computational tractability were not an issue. That is, we do not yet have an adequate
understanding of what precisely the characteristics of a globally schedulable system
are. (In addition, we point out that Example 12.1 above illustrates that the load
parameter of a sporadic task system is not an exact indicator of feasibility: While
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load(τ ) ≤ m is clearly necessary for τ to be feasible on an m-processor platform,
the task system in Example 12.1 illustrates that this is not sufficient.)

12.2 The Impossibility of Optimal Online Scheduling

It is known that EDF is an optimal algorithm for scheduling collections of indepen-
dent jobs upon a preemptive uniprocessor (an informal proof of this fact is sketched
in Sect. 7.4), and hence for scheduling systems of sporadic tasks as well. It has
been shown [76] that in the multiprocessor case, no algorithm can be optimal for
scheduling collections of independent jobs:

Theorem 12.1 (Dertouzos and Mok 1989 [76]) For two or more processors, no
online scheduling algorithm can be optimal for arbitrary collections of real-time
jobs without a complete a priori knowledge of the deadline, execution time, and
arrival time of each job.

Of course, this negative result does not rule out the possibility of an optimal
multiprocessor scheduling algorithm for sporadic task systems, since an optimal
scheduling algorithm is only required to schedule all collections of jobs gener-
ated by feasible sporadic task systems. (Thus for example, the pfair algorithms
described in Chap. 7 are optimal online algorithms for implicit-deadline sporadic
task systems: They can schedule all collections of jobs generated by all feasible
implicit-deadline sporadic task systems.) With regards to constrained-deadline (and
therefore, arbitrary-deadline) 3-parameter sporadic task systems, it was shown [89]
that the task system consisting of the following six tasks is (i) feasible under global

Ci Di Ti

τ1 2 2 5

τ2 1 1 5

τ3 1 2 6

τ4 2 4 100

τ5 2 6 100

τ6 4 8 100

scheduling upon a 2-processor platform, and (ii) cannot be scheduled to always
meet all deadlines upon a 2-processor platform by any on-line scheduling algorithm,
thereby establishing Theorem 12.2.

Theorem 12.2 (Theorem 3 from [89]) No optimal online algorithm exists for the
multiprocessor scheduling of real-time, constrained-deadline sporadic task systems
on two or more processors.
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As stated above, this statement does not hold for implicit-deadline sporadic task
systems—the pfair scheduling algorithms discussed in Chap. 7 are optimal online
scheduling algorithms for such task systems.

Sources

The example illustrating that the synchronous arrival sequence does not correspond to
worst-case behavior for global multiprocessor scheduling is from [54]. The example
establishing the impossibility of optimal on-line scheduling is from [89].



Chapter 13
Density-Based Global Schedulability Tests

Most of the utilization-based schedulability tests presented in Chaps. 7–9 concerning
the global scheduling of systems of implicit-deadline tasks can be generalized to the
constrained- and arbitrary-deadline systems represented by the three-parameters task
model, by replacing the utilizations with densities (recall that the density densi of the
task τi = (Ci , Di , Ti) is defined to be (Ci/min(Di , Ti))). Thus for example, a direct
generalization of Theorem 7.1 yields

Theorem 13.1 Any three-parameter sporadic task system τ satisfying

denssum(τ ) ≤ m and densmax(τ ) ≤ 1

is feasible upon a platform comprised of m unit-capacity processors.
(Unlike Theorem 7.1 for implicit-deadline sporadic task systems, however, this is

merely a sufficient, rather than an exact—necessary and sufficient—feasibility test
for three-parameter sporadic task systems.)

Although this idea is very simple and not particularly deep, schedulability exper-
iments on randomly generated task systems [20, 55, 56] provide evidence that the
resulting EDF schedulability tests are remarkably effective.

13.1 Density as a Performance Metric

It is worth pointing out here some shortcomings of the density bound vis-à-vis the
utilization bound (Definition 5.1) as a metric for evaluating the effectiveness of
multiprocessor scheduling algorithms for sporadic task systems. Since the utilization
of a task represents a tight upper bound on the fraction of the computing capacity of a
processor that may be needed for executing jobs generated by the task, no scheduling
algorithm, not even a clairvoyant optimal one, may have a utilization bound greater
than the number of processors m. In other words, since no optimal algorithm has a
utilization bound greater than m, the utilization bound of an algorithm provides an
upper bound on its effectiveness compared to an optimal algorithm.

In contrast, there are three-parameter sporadic task systems with density arbitrar-
ily large that are feasible (and hence schedulable by a clairvoyant optimal algorithm)
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upon an m-processor platform for any m ≥ 1; hence, stating that a particular schedul-
ing algorithm A is able to schedule all task systems with density ≤ c for some value
of c does not tell us much about how A compares to an optimal algorithm. The exam-
ple below illustrates how a task system with any desired density may be constructed,
that is feasible, EDF schedulable, and DM schedulable on a unit-speed preemptive
uniprocessor platform.

Example 13.1 Consider a sporadic task system τ consisting of the n tasks
{τi = (1, i, n)}ni=1. It is easily validated, using any of the well-known uniproces-
sor EDF schedulability tests, that this task system is EDF schedulable upon a single
preemptive processor. This task system has a density denssum(τ ) equal to

n∑

i=1

1

i
,

which is the nth harmonic number. It is well known that the harmonic numbers
increase without bound with increasing n; hence denssum(τ ) can be made arbitrarily
large by increasing the number of tasks n in τ .

Despite this fact, schedulability experiments on synthetically generated task sets
have tended to indicate [20, 21, 55] that density-based tests for global schedulability
perform quite well in practice for certain classes of task systems. We will therefore
show below how the main results proved for global fixed job priority (FJP) and fixed
task priority (FTP) scheduling of implicit-deadline sporadic task systems, described
in Chaps. 8 and 9, can be generalized to yield density-based tests for arbitrary deadline
systems.

13.2 Density-Based Tests for FJP Scheduling

The utilization-based test of Theorem 8.5 can be generalized to systems having
deadlines different from periods as follows.

Theorem 13.2 A task set τ with arbitrary deadlines is EDF schedulable upon a
platform composed of m processors with unit capacity, if

denssum(τ ) ≤ m(1 − densmax(τ )) + densmax(τ ). (13.1)

Proof The proof essentially mimics the derivations in Chap. 8 that lead to the proof of
Theorem 8.5. Analogously to Theorem 8.3, it is straightforward to conclude that the
three-parameter sporadic task system τ is feasible upon some uniform multiprocessor
platform π satisfying Ssum(π ) = denssum(τ ) and Smax(π ) = densmax(τ ). Analogs of
Theorems 8.4 and 8.5 immediately follow, with Usum(τ ) replaced by denssum(τ ) and
Umax(τ ) replaced by densmax(τ ). �

Derivations analogous to those in Sect. 8.3 are also straightforward. Similarly to
Theorem 8.8, we can show that any task system τ with denssum(τ ) ≤ (M + 1)/2
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Algorithm fpEDF-density
Arbitrary-deadline sporadic task system τ = {τ1, τ2, . . . τn} to be scheduled on m processors
(It is assumed that densi ≥ densi+1 for all i,1 ≤ i < n)

for i= 1 to (m− 1) do
if (densi > 1

2 )
then τi’s jobs are assigned highest priority (ties broken arbitrarily)
else break

the remaining tasks’ jobs are assigned priorities according to EDF

Fig. 13.1 The FTP scheduling algorithm fpEDF-density

and densmax(τ ) ≤ 1/2 is successfully scheduled using EDF, allowing us to design
Algorithm fpEDF-density (Fig. 13.1) analogously of Algorithm fpEDF, and prove
that

Theorem 13.3 Algorithm fpEDF-density successfully schedules any task system
τ satisfying denssum(τ ) ≤ (m + 1)/2 upon m unit-speed processors.

13.3 Density-Based Tests for FTP Scheduling

Utilization-based results for the FTP scheduling of implicit deadline sporadic task
systems can similarly be generalized to arbitrary-deadline systems by using densities
instead of utilizations.

The following analog of Theorem 9.3 was established in [60]:

Theorem 13.4 (from [60]) Any periodic or sporadic task system τ satisfying

denssum(τ ) ≤ m

2
(1 − densmax(τ )) + densmax(τ ) (13.2)

is successfully scheduled by DM on m unit-speed processors.
Analogously to Theorem 9.1, it can be shown that any constrained-deadline

sporadic task system τ satisfying

denssum(τ ) ≤ m2/(3m − 2) and densmax(τ ) ≤ m/(3m − 2)

is successfully scheduled using DM. Similarly, Algorithm DM-DS(ξ ) (Fig. 13.2) can
be defined analogously to Algorithm RM-US(ξ ), and Theorem 9.5 generalizes to the
following:

Theorem 13.5 Algorithm DM-DS(1/3) schedules any constrained-deadline spo-
radic task system τ with denssum(τ ) ≤ (m + 1)/3 upon m unit-speed processors.
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Algorithm DM-DS(ξ )
Constrained-deadline sporadic task system τ = {τ1, τ2, . . . τn} to be scheduled on m processors
(It is assumed that densi ≥ densi+ 1 for all i, 1 ≤ i < n)

for i = 1 to (m− 1) do
if (densi > ξ )

then τi is assigned highest priority
else break

the remaining tasks are assigned priorities according to DM

Fig. 13.2 The FTP scheduling algorithm DM-DS(ξ )

Sources

The observation that schedulability tests for implicit-deadline systems may be ex-
tended to three-parameter systems by substituting the density parameter in place of
the utilization parameter was explicitly made in [59, 60].



Chapter 14
A Strategy for Global Schedulability Analysis

In this chapter, we describe, at a high level, a strategy that has proven effective in
deriving global schedulability tests. Various specific instantiations of this strategy,
yielding different sufficient schedulability tests, are described in the following chap-
ters. (Although we do not cover nonpreemptive schedulability analysis in the book,
we point out that this strategy has also been successfully applied to nonpreemptive
schedulability analysis [103].)

This chapter is organized as follows. We describe the general strategy in Sect. 14.1,
and illustrate its use in Sect. 14.2 by stating a well-known earliest-deadline-first-
(EDF)uniprocessor schedulability test in the terms of this strategy. Two concepts—
workload bounds and interference—that are central to the application of this strategy
are explored in Sects. 14.3 and 14.4 respectively. In Sect. 14.5 we provide a high-
level comparison of the features of the different tests that we will be studying in
detail in the later chapters.

14.1 Description of the Strategy

In broad terms, this strategy starts out assuming that a given sporadic task system τ

is not schedulable upon an m-processor platform by the scheduling algorithm under
consideration, and derives conditions that must necessarily be satisfied in order for
this to occur. A sufficient schedulability test is then obtained by negating these
conditions.

This strategy may be considered as being comprised of the following steps.

1. An unschedulable collection of jobs: If τ is unschedulable, there are collections
of jobs generated by τ upon which the scheduling algorithm will miss deadlines.
We reason about a particular collection of such jobs. This collection of jobs is
typically defined as possessing some additional properties—for instance, it may
be defined to be a minimal collection of jobs upon which a deadline is missed;
it may be a collection of jobs for which the deadline miss occurs at the earliest
time-instant, etc.
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2. An interval of interest: Next, we identify some time-interval of interest I such
that the computational demand W of this collection of jobs—the amount of com-
putation needed to meet all deadlines—over this interval must exceed some lower
bound in order to cause this deadline-miss. We determine a value WL for this lower
bound.

3. An upper bound on demand: Next, we compute an upper bound WU on W ,
denoting an upper bound on the maximum amount of work that could possibly
be generated by the task system τ over the interval I .

4. A sufficient schedulability condition: Hence,

∃ I :: WU > WL

denotes a necessary condition for a deadline miss; consequently, the negation of
this condition

∀ I :: WU ≤ WL

denotes a sufficient schedulability condition.

Different schedulability tests differ from one another in the manner in which they
identify the collection of unschedulable jobs and the interval of interest I , and in the
manner they compute values for WU ’s and WL’s.

14.2 Illustrating the Approach of Sect. 14.1: Uniprocessor EDF

Let us illustrate the strategy described in Sect. 14.1, by deriving the well-known
uniprocessor EDF schedulability test1.

Suppose that uniprocessor EDF misses a deadline at time-instant td while
scheduling a collection of jobs generated by sporadic task system τ .

1. Remove all jobs with deadline > td from the collection of jobs; since preemptive
EDF schedules the earliest-deadline job at each instant, it follows that EDF will
continue to miss a deadline at time-instant td , when scheduling this sequence of
jobs (with larger-deadline jobs removed).

2. Let to < td denote the latest instant at which the processor was idled by EDF while
scheduling this (reduced) collection of jobs—the interval [to, td ) is the interval of
interest.
An obvious lower bound WL on the demand W of τ over [to, td ) is given by the
amount of actual execution received by this workload.
Since EDF is a work-conserving algorithm, this is given by the interval-length
(td − to).

1 Although the strategy of Sect. 14.1 was specified for global multiprocessor scheduling, it can be
applied, as is being done here, to uniprocessor scheduling as well.
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Fig. 14.1 Body, carry-in and carry-out jobs of task τk .

3. By definition of the demand bound function dbf, (Sect. 10.3)
∑

τi∈τ dbf(τi , td−to)
is an upper bound WU on W .

4. Letting t
def=td − to, we have

∃ t : t > 0 :
∑

τi∈τ

dbf(τi , t) > t

as a necessary condition for uniprocessor EDF to miss a deadline. By negating this,
we obtain the following sufficient condition for uniprocessor EDF schedulability:

∀ t : t > 0 :
∑

τi∈τ

dbf(τi , t) ≤ t.

Now, the “goodness” of such a test depends upon how tight the bounds WU and WL

are. (In analyzing uniprocessor EDF scheduling above, e.g., it turns out that both the
bounds are exact, and the test is therefore an exact schedulability test.)

14.3 Determining Workload Bounds

The various global schedulability tests that we will study in upcoming chapters all
seem to more-or-less fit into the general strategy described in Sect. 14.1—they differ
from one another primarily in the manner in which they determine the upper and
lower bounds WU and WL on the workload within the interval of interest. When
computing the upper bound WU on the workload over some identified interval of
interest [a, b], the contributions of jobs to this workload are typically considered in
three separate categories (see Fig. 14.1):

• Body: jobs with both release time and deadline in the considered interval; each
such job contributes its entire execution requirement (its worst-case execution
time (WCET)) Ck to the workload in that interval.

• Carry-in: jobs with release time before a and deadline within the interval [a, b];
only a part εk ≤ Ck of the execution requirements of such jobs contribute to the
workload in the interval.
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The challenges associated with accurately bounding this carry-in workload are
discussed further in Sect. 16.1.1.

• Carry-out: jobs with release time before b and deadline after b; once again, only a
part zk ≤ Ck of the execution requirements of such jobs contribute to the workload
in the interval.

According to these definitions, a job with release time before a and deadline after
b is considered a carry-out job, while a job with release time before a and deadline
coinciding with b is considered a carry-in job.

Note that with constrained-deadline sporadic task systems, there can be at most
one carry-in job and one carry-out job for each task.

14.4 Interference

The workload contributing to the workload bounds discussed above can also be
considered from the perspective of interference: If a job of task τk is active but not
executing during some time-interval while a job of some τi , (i 
= k) is executing
during that interval, we say that τi is interfering with the execution of τk’s job during
that interval.

Definition 14.1 (interference (Ik , Ii,k)) The maximum interference Ik on a task τk is
the cumulative length of all intervals in which the job of τk with the largest response
time is ready to execute but it cannot execute due to higher priority jobs.

We also define the interference Ii,k of task τi on task τk as the cumulative length of
all intervals in which the job of τk with the largest response time is ready to execute
but not executing, while τi is executing.

Notice that by definition:

Ii,k ≤ Ik , ∀i, k. (14.1)

The following theorem is valid for any kind of work-conserving global scheduler.

Lemma 14.1 The interference that a constrained deadline task τk can suffer in
interval [a, b] is the sum of the interferences of all other tasks (in the same interval)
divided by the number of processors:

Ik =
∑

i 
=k Ii,k

m
. (14.2)

This follows from the observation that since the scheduling algorithm under con-
sideration is work-conserving, in the time instants in which the job of τk is active but
not executing, each of the m processors must be executing a job of some other task.
Since Ik,k = 0, we can exclude the contribution of τk to the total interference.
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14.5 Comparing Different Schedulability Tests

Given two different schedulability tests for a particular scheduling algorithm, one
schedulability test is said to dominate the other if all task systems that can be shown
schedulable by the second test can also be shown schedulable by the first, while the
converse of this statement is not true: there are task systems that can be shown to be
schedulable by the first test that the second test fails to establish as being schedulable.

Only a few dominance results can be claimed amongst the different global EDF
schedulability tests described in this book. Namely, it is possible to analytically prove
that:

1. The test described in Chap. 19 (we will call this the ff-dbf test) dominates the
density-based test (Theorem 13.2), and

2. The [rta] test described in Chap. 17 dominates the [bcl] test of Sect. 15.1.

All other pairs of tests are incomparable, meaning that for each pair of tests it is
possible to find EDF-schedulable task sets that are correctly identified as being so
by one of the tests but not by the other, and viceversa.

We now try to outline the main features that uniquely characterize each test.
The differences among the tests are mainly related to the considered interval of
interest, and the computed bound on the carry-in contributions to the workload—
i.e., the interference due to jobs not entirely contained inside the considered interval
of interest.

• The condition used in the [bak] test (Chap. 16) is derived by defining the interval
of interest in such a manner that a good bound can be derived on the maximum
carry-in contribution of each task.

• The unique feature of the [bar] test is that the interval of interest is defined in such
a manner that only (m − 1) jobs may contribute carry-in work, where m denotes
the number of processors.

• Extensions to the [bak] test, also described in Chap. 16, are able to limit both the
number of jobs that contribute carry-in work and the amount of carry-in work by
each such job.

• The advantageous feature of the [bcl] and [rta] tests is an iterative procedure
that allows for a reduction of the amount of carry-in work an individual job may
contribute;

• The ff-dbf test (described in Chap. 19) derives a better bound than earlier tests
on the total amount of carry-in work that is contributed by any task. A similar,
although weaker, bound is found in the density-based test as well.

Bertogna [56] conducted extensive schedulability experiments upon randomly-
generated task systems in an attempt to better characterize the relative effectiveness
of the above EDF schedulability tests.

In addition to the tests mentioned above and described in later chapters of this
book, a new test (denoted as [comp]) was also considered, that was obtained by
composing [rta], [bar] and the ff-dbf tests; Bertogna’s experiments indicate that
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[comp] appears to be the most effective test. In order to test a given task system for
EDF-schedulability, [comp] first tests the task system using an “integration” of the
[rta] and [bar] tests (the exact nature of this integration is detailed in [56, 57]); if
this fails to determine that the task system is EDF-schedulable, then [comp] tests the
system using the ff-dbf test.

It is shown in [56] how the integration of [rta] and [bar] in the [comp] test strictly
dominates the simple serial combination of both tests.

(As explained in [56], the [comp] test does not include the other tests mentioned
above since the density-based test and [bcl] are already dominated by the ff-dbf
test and [rta], respectively, while [bak] and its extension seemed to detect very few
additional schedulable tasks—less than one out of every 106 randomly-generated
task sets in the experiments reported in [56]).

14.5.1 Sustainability

Recall the concept of sustainability from Sect. 3.3, which seeks to formalize the
intuitive notion that the performance of a scheduling algorithm or schedulability test
should improve for systems that are “easier” to schedule: If a system is schedu-
lable by a particular scheduling algorithm (or deemed schedulable by a particular
schedulability test), then a system derived from the original by relaxing the param-
eters (e.g., decreasing the WCETs, increasing the periods and/or relative deadlines,
etc.) should also be schedulable by that algorithm (deemed schedulable by the same
schedulability test, respectively). It was argued in [40] that scheduling algorithms
and schedulability tests that do not possess this property, i.e., are not sustainable—are
not sufficiently robust for critical applications.

A scheduling policy or schedulability test for three-parameter sporadic task sys-
tems may be sustainable with respect to some, but not all three, job parameters.
A scheduling policy or a schedulability test for sporadic task systems is said to be
sustainable if it is sustainable with respect to all three parameters.

The notion of sustainability for schedulability tests for three-parameter sporadic
task systems was strengthened somewhat in [23]:

Definition 14.2 (sustainable schedulability test [23]) Let A denote a scheduling
policy, and F an A-schedulability test for three-parameter sporadic task systems. Let
τ denote any such task system deemed to be A-schedulable by F . Let J denote a
collection of jobs generated by τ . F is said to be a sustainable schedulability test if
and only if scheduling policy A meets all deadlines when scheduling any collection
of jobs obtained from J by changing the parameters of one or more individual jobs
in any, some, or all of the following ways: (i) decreased execution requirements,
(ii) larger relative deadlines, and (iii) later arrival times with the restriction that
successive jobs of any task τi ∈ τ arrive at least Ti time units apart.

As pointed out in [23], declaring a schedulability test for sporadic task systems
to be sustainable represents a stronger claim than simply that a task system deemed
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schedulable would remain schedulable with ‘‘better’’ parameters (e.g., with a larger
period or relative deadline, or a smaller execution requirement). In addition, sustain-
ability demands that a system deemed schedulable continue to meet all deadlines
even if the parameter changes are occurring ‘‘on line’’ during run-time. It is permit-
ted that the parameters change back and forth, on a job-to-job basis, arbitrarily many
times. The only restriction placed on such parameter-changing is that each generated
job have exactly one arrival time, execution requirement, and deadline during its
lifetime.

Sustainability of schedulability tests, as defined in Definition 14.2, provides a
guarantee that if a task system is deemed schedulable by the test, it will not fail to
meet all deadlines if the system behaves better at run time than the specifications.

A different kind of sustainability property for schedulability tests called self-
sustainability was also defined in [23]:

Definition 14.3 (self-sustainability [23]) A schedulability test is self-sustainable
if all task systems with “better” (less constraining) parameters than a task system
deemed schedulable by the test are also be deemed schedulable by the test.

This form of sustainability was called self-sustainability to emphasize the differ-
ence between this and the preceding definition of sustainability: The system is not
only required to remain schedulable under various parameter relaxations but also it is
required to be verifiably schedulable by the same test. The notion of self-sustainability
is motivated in [23] by the requirements of the incremental, interactive design process
that is typically used in the design of real-time systems and in the evolutionary devel-
opment of fielded systems. Ideally, such a design process allows for the interactive
exploration of the space of possible designs by the system designer; such interactive
design exploration is greatly facilitated if changes that are viewed as relaxations of
constraints actually result in making feasible larger regions of the design space. If
a self-sustainable schedulability test is used, then relaxing timing constraints (e.g,
increasing relative deadlines or periods, or decreasing worst-case execution times)
will not render schedulable subsystems unschedulable (or the practical equivalent:
unverifiable). For example, suppose one were designing a composite system com-
prised of several subsystems, and had reached a point where most subsystems are
deemed schedulable by the schedulability test. One could safely consider relaxing
the task parameters of the schedulable subsystems in order to search for neighboring
points in the design state space in which the currently unschedulable subsystems may
also be deemed schedulable, without needing to worry that the currently schedulable
subsystems would unexpectedly be deemed unschedulable.

The following results concerning sustainability of global EDF were established
in [23]:

1. EDF is a sustainable scheduling policy with respect to WCET and periods.
2. It is not known whether EDF is sustainable with respect to the relative deadline

parameter. That is, it is not known whether a task system τ ′ that is derived from
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an EDF-schedulable task system τ by increasing the relative deadline parameters
of some or all of the tasks in τ is also EDF-schedulable or not.2

3. The [bcl] test is not self-sustainable with respect to relative deadlines—i.e., it is
possible that a task system will be deemed EDF-schedulable by the [bcl] test but
another task system in which each task has a relative deadline no smaller than
that of this original task system will not.

4. The EDF schedulability test specified in Theorem 16.2, which is derived from
the [bak] test, is also not self-sustainable with respect to relative deadlines.

5. However, the EDF schedulability test specified in Theorem 16.4, which is also
derived from the [bak] test, is indeed self-sustainable with respect to relative
deadlines.

A few sustainability results in addition to the ones from [23] listed above are known:

1. All density-based tests (and, therefore, the corresponding utilization-based tests)
are sustainable with respect to all the parameters—WCET, period, and relative
deadline.

2. [bcl] and [rta] are sustainable with respect to WCET and task periods.

And finally, an application of Lemma 14.2, also from [23], specifies that EDF is
sustainable upon simultaneous relaxations of both periods and WCETs:

Lemma 14.2 If a scheduling policy is sustainable under individual kinds of pa-
rameter relaxations, for sporadic task systems, then it is sustainable under the same
relaxations in any combination.

Sources

The general strategy for designing global multiprocessor schedulability tests that
was described in Sect. 14.1 abstracted out from the many tests that we will study
in the following chapters, as are the notions of workload bounds and interference
discussed in Sects. 14.3 and 14.4 respectively. The uniprocessor test that is described
in Sect. 14.2 in terms of the strategy of Sect. 14.1, is from [51]. The observations
comparing the various schedulability tests that are presented in Sect. 14.5 are pri-
marily taken from [56, 57]. The concept of sustainability was introduced in [40];
as stated in Sect. 3.3, it is closely related to the earlier notion of predictability that
was introduced by Ha and Liu [105–107]. Sustainability properties in multiprocessor
scheduling was studied in [23].

2 As pointed out in [23], this fact is not a particularly severe impediment to the use of EDF for
scheduling sporadic task systems in a robust manner: An EDF implementation that uses specified,
rather than actual, job deadlines to determine job priority during run-time will maintain schedula-
bility even in the event of the actual deadlines during run-time being greater than those specified
for the system that was verified for schedulability.



Chapter 15
The [bcl] and [bar] Tests

In this chapter, we will describe some of the tests that have been developed for global
earliest-deadline-first (EDF) schedulability analysis of three-parameter sporadic task
systems. Each test will be denoted with an acronym, generally derived from the names
or initials of the authors of the publication in which the test was first presented1. Not
surprisingly given the negative results in Chap. 12, these tests are all sufficient rather
than exact. They are also by and large incomparable in the sense that none dominates
all the others—there are task systems determined to be schedulable by each test that
the others fail to show as being schedulable.

Throughout this chapter, we will consider a sporadic task system τ comprised
of the n tasks τ1, τ2, . . . , τn, with τi having parameters (Ci , Di , Ti), that is to be
scheduled upon an m-processor platform. To keep the presentation simple we will
assume that τ is a constrained-deadline task system: Di ≤ Ti for all i, 1 ≤ i ≤ n; we
will occasionally, informally explain how the results described here may be extended
to arbitrary-deadline sporadic task systems.

The first test ([bcl]) is described in Sect. 15.1; this test has the virtues of simplicity,
elegance, and low run-time complexity. Second test, [bar], is then described in
Sect. 15.2; the [bar] test essentially represents a direct extension of the technique
outlined in Sect. 14.2 from uniprocessor to multiprocessor systems. It has a greater
run-time complexity than the [bcl] test.

1 Brian Kernighan, one of the authors of the AWK programming language, is said to have noted that
“Naming a language after its authors [· · · ] shows a certain poverty of imagination.” Nevertheless,
this particular practice seems to have become established with respect to global schedulability tests.

© Springer International Publishing Switzerland 2015 133
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15.1 The [bcl] Test

We first describe the test devised by Bertogna et al. [59], for constrained-deadline
sporadic task systems. As per the template outlined in Chap. 14 we assume that the
task system τ is not EDF schedulable upon m unit-speed processors, and identify
conditions that are necessary for that to happen. The negate of these conditions will
yield the sufficient schedulability test.

Identifying an Unschedulable Collection of Jobs Since τ is assumed to not be
EDF schedulable, there must, by definition, exist collections of jobs generated by
τ upon which deadlines are missed by EDF. Let us suppose that it is a job of task
τk = (Ck , Dk , Tk) that misses its deadline for some such collection of jobs, and
let td denote the instant at which this deadline miss occurs. We can obtain another
unschedulable collection of jobs of τ from this collection, such that the amount of
execution received by τk’s job prior to its deadline is less than Ck by an arbitrarily
small amount in the EDF schedule—such a collection of job is easily obtained from
the original, by appropriately reducing the (actual) execution-times of jobs other than
the job of τk , to allow τk’s job more execution.

The Interval of Interest is the scheduling window—the interval between a job’s
arrival instant and its deadline—of the job of τk that misses its deadline.

Since EDF is a work-conserving algorithm (i.e., it never idles a processor while
there are active jobs eligible to execute awaiting execution), τk’s job must be executing
at all time-instants during its scheduling window when some processor is available
(it may execute at other instants as well). By the manner in which the unschedulable
collection of jobs was selected above, we know that τk executes for less than Ck time
units.

Hence, all m processors must be executing other jobs for > (Dk −Ck) time units,
and a lower bound on the demand W over the interval of interest is given by

WL = Ck + m(Dk − Ck).

An Upper Bound on Demand Let Ii,k denote an upper bound on the interference
of τi on the job of τk that misses its deadline. An upper bound on the computational
demand W by the considered collection of jobs over the interval of interest is then
given by

WU = Ck +
∑

i 
=k

Ii,k

To provide an upper bound on the interference of τi on a job of τk , we compute an
upper bound on the workload that τi can execute in the interval of interest.

We note that no carry-out job can interfere with task τk in the considered interval,
since it has, by definition, a later deadline than τk’s. We can therefore consider a
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Fig. 15.1 Scenario that produces the maximum possible interference of task τi on a job of task τk
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Fig. 15.2 Illustrating Eq. 15.1. There are four jobs of τi with both release time and deadline within
the interval of interest (the scheduling window of τk’s job). The second term on the right-hand side
of Eq. 15.1 denotes the execution requirement of the carry-in job of τi , under the assumption that it
executes with zero laxity. Dk mod Ti denotes the portion of carry-in job’s scheduling window that
intrudes into the scheduling window of τk’s job is Dk mod Ti

situation in which the last job of τi has its deadline at the end of the interval, i.e.,
coinciding with τk’s deadline, and every other instance of τi is executed as late as
possible. The situation is depicted in Fig. 15.1.

To express τi’s workload, we separate the contribution of the first job contained
in the interval (not necessarily the carry-in job) from the rest of the jobs of τi . Each
one of the jobs after the first one may contribute as much as its entire worst-case
computation time Ci . There are �(Dk/Ti)� such jobs. However, the first job may
contribute no more than min(Ci , Dk mod Ti).

We therefore obtain the following expression (see Fig. 15.2):

Ii,k ≤
⌊

Dk

Ti

⌋
Ci + min (Ci , Dk mod Ti) . (15.1)

We can obtain a different bound on Ii,k , by the following argument. By the defi-
nition of interference, Ii,k cannot exceed the duration of τk’s job scheduling window
minus the amount of execution received by τk’s job prior to its deadline. Since we
chose our unschedulable collection of jobs, such that τk’s job executes for just a bit
less than Ck time units over the scheduling window, it follows this interference can
be no more than (Dk − Ck + ε), where ε is an arbitrarily small positive number. We
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therefore have

Ii,k < Dk − Ck + ε.

Putting the pieces together, we obtain

Ii,k ≤ min

(
Dk − Ck + ε,

⌊
Dk

Ti

⌋
Ci + min (Ci , Dk mod Ti)

)
(15.2)

Determining a Sufficient Schedulability Condition Since a necessary condition
for τk to miss its deadline under EDF scheduling is that

(WU > WL) ≡
⎛

⎝Ck+
∑

i 
=k

Ii,k > Ck+m(Dk − Ck)

⎞

⎠ ≡
⎛

⎝
∑

i 
=k

Ii,k > m(Dk − Ck)

⎞

⎠ .

Its negation yields a sufficient condition for EDF schedulability.

Theorem 15.1 Task system τ is EDF-schedulable if, for each τk ∈ τ ,

∑

i 
=k

min

(
Dk − Ck + ε,

⌊
Dk

Ti

⌋
Ci + min(Ci , Dk mod Ti)

)
≤ m(Dk − Ck) .

(15.3)

Note that in the special case when the time domain of the task parameters is
integer, ε can be set to 1. The reason why this term is needed is to rule out the
scenario in which there are a total of m+1 tasks, and each of the other m tasks τi has
Ii,k strictly greater than (Dk − Ck); in this case, these other m tasks could interfere
for more than Dk − Ck time units, leading to a deadline miss. Without the ε term,
the test would instead incorrectly deem this system schedulable.

Alternatively, it is possible to avoid using the ε term by using a strict inequality,
as follows

Theorem 15.2 Task system τ is EDF schedulable if, for each τk ∈ τ ,

∑

i 
=k

min

(
Dk − Ck ,

⌊
Dk

Ti

⌋
Ci + min(Ci , Dk mod Ti)

)
< m(Dk − Ck) . (15.4)

Extension to Arbitrary-Deadline Systems As described above, the [bcl] test is
only applicable to constrained-deadline systems. It has, however, been extended to
systems of arbitrary-deadline tasks, by essentially “offsetting” all job times to the
deadline of the prior job of the same task, and hence doing the equivalent of replacing
each task with Di > Ti with one having Di = Ti .
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Fig. 15.3 Notation. A job of task τk arrives at ta and misses its deadline at time-instant td . The latest
time-instant prior to ta when not all m processors are busy is denoted to

15.2 The [bar] Test

We now present the test proposed in [31].
This test differs from the one in Sect. 15.1 in several ways: (i) it runs in time

pseudo-polynomial in the representation of the task system, while it is evident from
inspecting Theorem 15.2 that the [bcl] test has a polynomial run-time complexity;
(ii) it considers intervals of intervals [to, td ) that do not necessarily coincide with
the scheduling window of the task τk being assumed to miss its deadline; (iii) in
computing interference, it allows us to bound the number of tasks carrying in work
into the interval [to, td ) at (m−1), where m is the number of processors in the system;
however, the amount of interference allowed in by each of these (m−1) tasks by this
test may exceed the amount of carry-in interference allowed by the test in Sect. 15.1.
It will be shown (Corollary 15.1) that this test, unlike the [bcl] test, generalizes the
known exact EDF-schedulability test on uniprocessors. The two tests are known to
be incomparable: Schedulable task systems have been identified that can be detected
by each of the tests but not by the other. In particular, the test of the previous section
appears to be superior upon task systems where there is a limited number of tasks
with large Ci values, but suffers when there are > m tasks with “large” execution
requirements (Ci’s).

As with the [bcl] test, this test, too, considers each task τk separately; when
considering a specific τk , it seeks to identify sufficient conditions for ensuring that
τk cannot miss any deadlines. To ensure that no deadlines are missed by any task in
τ , these conditions must be checked for each of the n tasks τ1, τ2, . . . , τn.

Identifying an Unschedulable Collection of Jobs Consider any legal sequence of
job requests of task system τ , on which EDF misses a deadline. Suppose that a job
of task τk is the one to first miss a deadline, and that this deadline miss occurs at
time-instant td (see Fig. 15.3). Let ta denote this job’s arrival time: ta = td − Dk .

Discard from the legal sequence of job requests all jobs with deadline > dk , and
consider the EDF schedule of the remaining (legal) sequence of job requests. Since
later-deadline jobs have no effect on the scheduling of earlier-deadline ones under
preemptive EDF, it follows that a deadline miss of τk occurs at time-instant td (and
this is the earliest deadline miss), in this new EDF schedule.

Identifying an Interval of Interest Let to denote the latest time-instant ≤ ta at
which at least one processor is idled in this EDF schedule. (Since all processors are,
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by definition, idle prior to time-instant t = 0, such a to is guaranteed to exist.) The
interval of interest is the interval [to, td ).

Let Ak
def= ta − to.

Our goal now is to identify a lower bound on the computational demand over
this interval of interest, that ensures a deadline miss for τk’s job at time td , i.e.,
for τk’s job to execute for strictly less than Ck time units over [ta , td ). In order for
τk’s job to execute for strictly less than Ck time units over [ta , td ), it is necessary
that all m processors be executing jobs other than τk’s job for strictly more than
(Dk − Ck) time units over [ta , td ). Let us denote by Γk a collection of intervals, not
necessarily contiguous, of cumulative length (Dk − Ck) over [ta , td ), during which
all m processors are executing jobs other than τk’s job in this EDF schedule.

For each i, 1 ≤ i ≤ n, let I (τi) denote the contribution of τi to the work done in
this EDF schedule during [to, ta)

⋃
Γk . In order for the deadline miss to occur, it is

necessary that the total amount of work that executes over [to, ta)
⋃

Γk satisfies the
following condition

∑

τi∈τ

I (τi) > m × (Ak + Dk − Ck) ; (15.5)

this follows from the observation that all m processors are, by definition, completely
busy executing this work over the Ak time units in the interval [to, ta), as well as the
intervals in Γk of total length (Dk − Ck).

Observe that the total length of the intervals in [to, ta)
⋃

Γk is equal to (Ak +Dk −
Ck).

An Upper Bound on Demand Recall that we say that τi has a carry-in job in this
EDF schedule if there is a job of τi that arrives before to and has not completed
execution by to. In the following, we compute upper bounds on I (τi) if τi has no
carry-in job (this is denoted as I1(τi)), or if it does (denoted as I2(τi)).

• Computing I1(τi). If a task τi contributes no carry-in work, then its contribution
to this total amount of work that must execute over [to, ta)

⋃
Γk is generated by

jobs arriving in, and having deadlines within, the interval [to, td ). Let us first
consider i 
= k; in that case, it follows from the definition of the demand bound
function (DBF —see Sect. 10.3) that the total work is at most DBF(τi , Ak + Dk);
furthermore, this total contribution cannot exceed the total length of the intervals
in [to, ta)

⋃
Γk . Hence, the contribution of τi to the total work that must be done

by EDF over [to, ta)
⋃

Γk is at most

min(DBF(τi , Ak + Dk), Ak + Dk − Ck).

Now, consider the case i = k. In that case, the job of τk arriving at time-instant
ta does not contribute to the work that must be done by EDF over [to, ta)

⋃
Γk;

hence, its execution requirement must be subtracted.Also, this contribution cannot
exceed the length of the interval [to, ta), i.e., Ak .
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Fig. 15.4 Computing DBF′(τi , t)

Putting these pieces together, we get the following bound on the contribution of
τi to the total work that must be done by EDF over [to, ta)

⋃
Γk:

I1(τi)
def=

⎧
⎨

⎩
min(DBF(τi , Ak + Dk), Ak + Dk − Ck) if i 
= k

min(DBF(τi , Ak + Dk) − Ck , Ak) if i = k
(15.6)

• Computing I2(τi). Let us now consider the situation when τi is active at to, and
hence potentially carries in some work.
It was shown in [59] that the total work of τi in this case can be upper-bounded
by considering the scenario in which some job of τi has a deadline at td , and all
jobs of τi execute at the very end of their scheduling windows.
Let us denote as DBF′(τi , t) the amount of work that can be contributed by τi over a
contiguous interval of length t , if some job of τi has its deadline at the very end of
the interval and each job of τi executes during the Ci units immediately preceding
its deadline. It is easily seen (see Fig. 15.4), that there are exactly �t/Ti� complete
jobs of τi within this interval, and an amount min(Di , t mod Ti) of the scheduling
window of an additional, carry-in, job.
This carry-in scheduling window may bring in at most Ci units of execution,
yielding the following expression for DBF′(τi , t):

DBF′(τi , t)
def=
⌊

t

Ti

⌋
× Ci + min(Ci , t mod Ti) (15.7)

In computing τi’s contribution to the total amount of work that must execute over
[to, ta)

⋃
Γk , let us first consider i 
= k. In that case, it follows from the definition

of the demand bound function (DBF′, as defined above) that the total work is at
most DBF′(τi , Ak + Dk); furthermore, this total contribution cannot exceed the
total length of the intervals in [to, ta)

⋃
Γk . Hence, the contribution of τi to the

total work that must be done by EDF over [to, ta)
⋃

Γk is at most

min(DBF′(τi , Ak + Dk), Ak + Dk − Ck).

Now, consider the case i = k. In that case, the job of τk arriving at time-instant
ta does not contribute to the work that must be done by EDF over [to, ta)

⋃
Γk;
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hence, its execution requirement must be subtracted.Also, this contribution cannot
exceed the length of the interval [to, ta), i.e., Ak .
From the discussion above, we get the following bound on the contribution of τi

to the total work that must be done by EDF over [to, ta)
⋃

Γk:

I2(τi)
def=

⎧
⎨

⎩
min(DBF′(τi , Ak + Dk), Ak + Dk − Ck) if i 
= k

min(DBF′(τi , Ak + Dk) − Ck , Ak) if i = k
(15.8)

Deriving a Sufficient Schedulability Condition Let us denote by IDIFF(τi) the
difference between I2(τi) and I1(τi):

IDIFF(τi)
def= I2(τi) − I1(τi) (15.9)

By definition of to, at most (m − 1) tasks are active at time-instant to. Consequently,
there are at most (m − 1) tasks τi that contribute at amount I2(τi), and the remaining
(n−m+1) tasks must contribute I1(τi). Hence Eq. 15.5 may be rewritten as follows:

∑

τi∈τ

I1(τi) +
∑

the (m − 1) largest

IDIFF(τi) > m(Ak + Dk − Ck) (15.10)

Observe that all the terms in Eq. 15.10 are completely defined for a given task system,
once a value is chosen for Ak . Hence for a deadline miss of τk to occur, there must
exist some Ak such that Eq. 15.10 is satisfied. Conversely, in order for all deadlines of
τk to be met it is sufficient that Eq. 15.10 be violated for all values of Ak . Theorem 15.3
follows immediately:

Theorem 15.3 Task system τ is EDF-schedulable upon m unit-capacity processors
if for all tasks τk ∈ τ and all Ak ≥ 0,

⎛

⎝
∑

τi∈τ

I1(τi) +
∑

the (m − 1) largest

IDIFF(τi)

⎞

⎠ ≤ m(Ak + Dk − Ck) (15.11)

where I1(τi) and IDIFF(τi) are as defined in Eqs. 15.6 and 15.9 respectively. �

The earlier tests—the density and [bcl] tests—are not exact even for uniprocessor
systems. (This is also indicated by the fact that all these prior tests have polynomial
run-time, while EDF-schedulability analysis of sporadic task systems on uniproces-
sors has been shown to be NP-hard [81].) The following corollary asserts that the
[bar] test is superior to earlier tests in this regard:

Corollary 15.1 The EDF schedulability test of Theorem 15.3 is a generalization of
the exact uniprocessor EDF schedulability test of [51].
Proof Sketch: For m = 1, there are (m − 1) = 0 tasks that are active at time-instant
to, i.e., to is the classical “idle instant” of uniprocessor real-time scheduling theory.
By adding Ck to both the LHS and the RHS of Condition 15.11, it can be shown
that the LHS reduces to the sum of the demand bound functions of all tasks over an
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interval of size Ak + Dk , and the RHS reduces to the interval length. Hence, when
m = 1 Condition 15.11 is asserting that the cumulative processor demand over all
intervals must not exceed the interval length, which is exactly what the uniprocessor
EDF schedulability test of [51] checks. �

15.2.1 Run-Time Complexity

For given τk and Ak , it is easy to see that Condition 15.11 can be evaluated in time
linear in n:

• Compute I1(τi), I2(τi), and IDIFF(τi) for each i—total time is O(n).
• Use linear-time selection [61] on {IDIFF(τ1), IDIFF(τ2), . . . , IDIFF(τn)} to deter-

mine the (m − 1) tasks that contribute to the second sum on the LHS.

How many values of Ak must be tested, in order for us to be able to ascertain that
Condition 15.11 is satisfied for all Ak ≥ 0? Theorem 15.4 provides the answer.

Theorem 15.4 If Condition 15.11 is to be violated for any Ak , then it is violated
for some Ak satisfying the condition below:

Ak ≤ CΣ − Dk(m − Usum(τ )) + ∑
i (Ti − Di)Ui + mCk

m − Usum(τ )
(15.12)

where CΣ denotes the sum of the (m − 1) largest Ci’s.

Proof It is easily seen that I1(τi) ≤ DBF(τi , Ak + Dk), and I2(τi) ≤ DBF(τi , Ak +
Dk) + Ci . From this, it can be shown that the LHS of Condition 15.11 is ≤ CΣ +∑

τi∈τ DBF(τi , Ak + Dk).
For this to exceed the RHS of Condition 15.11, it is necessary that

CΣ + DBF(τ , Ak + Dk) > m(Ak + Dk − Ck)

⇒ (bounding DBF using the technique of [51])

CΣ + (Ak + Dk)Usum(τ ) +
∑

i

(Ti − Di)Ui > m(Ak + Dk − Ck)

⇔ CΣ + DkUsum(τ ) +
∑

i

(Ti − Di)Ui − m(Dk − Ck) > Ak(m − Usum(τ ))

⇔ Ak ≤ CΣ − Dk(m − Usum(τ )) + ∑
i (Ti − Di)Ui + mCk

m − Usum(τ )

which is as claimed in the theorem. �

It can also be shown that Condition 15.11 need only be tested at those values of
Ak at which DBF(τi , Ak + Dk) changes for some τi . Corollary 15.2 follows.

Corollary 15.2 The condition in Theorem 15.3 can be tested in time pseudo-
polynomial in the task parameters, for all task systems τ for which Usum(τ ) is bounded
by a constant strictly less than the number of processors m. �
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15.2.2 A Simpler Formulation

Letting Δ
def= (td − to), Condition 15.10, our necessary condition for a deadline miss,

can be expressed as

mΔ − (m − 1)Ck > DBF(τ , Δ) + CΣ

for some Δ ≥ Dk . The contrapositive of the above statement, in conjunction with
the result of Theorem 15.4, gives the following somewhat simpler formulation of the
[bar] schedulability test

Theorem 15.5 A sufficient condition for EDF-schedulability is

∀ Δ : Dk ≤ Δ ≤ Δ̂ : mΔ − (m − 1)Ck ≤ DBF(τ , Δ) + CΣ ,

where

Δ̂ ← Dk + CΣ − Dk(m − Usum(τ )) + ∑
i (Ti − Di)Ui + mCk

m − Usum(τ )

and CΣ denotes the sum of the (m − 1) largest Ci’s.

15.2.3 Non-preemptive Scheduling

Although we are not covering non-preemptive scheduling in this book, we note
in passing that a clever extension of this idea for non-preemptive scheduling was
explored in [103]. It was observed there that for non-preemptive scheduling, the
necessary condition for a job of some task τk to miss its deadline at time at some
time-instant td is that it not have started execution prior to time-instant td −Ck . Hence
(with to defined as above—see Fig. 15.3), the interval of interest for non-preemptive
scheduling becomes [to, td − Ck) rather than [to, td ), and it must be the case that all
m processors are executing other work throughout this interval. This observation
was exploited to obtain a very effective schedulability test for non-preemptive EDF;
details may be found in [103].

Sources

The [bcl] test was first described in [59]; it was elaborated upon and extended in
Bertogna’s dissertation [55]. The [bar] test was first proposed in [31].



Chapter 16
The [bak] Test

In this chapter, we present the sufficient schedulability test for global EDF that was
obtained by Baker [19]. This test is based on some very deep insights, and contains
some remarkably sophisticated ideas which were incorporated into tests developed
later by other researchers. We consider the [bak] test, and some related results
that are also discussed in this chapter, to have played a crucial role in enabling the
development of many advanced results concerning global multiprocessor real-time
scheduling. However, the [bak] test itself (as opposed to the ideas contained within
it) is of limited significance today.

• From the practical perspective of actually testing sporadic task systems in order to
determine whether they are schedulable or not, there is some evidence to suggest
that the [bak] test is, in general, inferior to the [bcl] test. This is partly because
the more sophisticated analysis of the [bak] test prevents the use of some of
the simpler techniques for computing workload bounds that seem to make a big
contribution to the effectiveness of the [bcl] test. (A specific example is being
able to bound the contribution of τi , i 
= k, to Dk − Ck .) Here is one opinion1

regarding the relativeness effectiveness of the [bak] test vis a vis other tests:
“It seems that many of the cases where [the [bak]] test does better than the [bcl]
test are also cases where the density test works, and many of the cases where [the
[bak]] does better than the density test the [bcl] test also works."

• In contrast to the density, [bcl], and [bar] tests, the [bak] test could be analyzed to
quantify its effectiveness via the speedup factor metric (Definition 5.2). However,
subsequent analysis [63] has yielded sufficient schedulability tests for global EDF
with superior speedup bounds (these will be discussed in Chap. 19), which means
that the [bak] test is no longer the best-known one from the perspective of speedup
factor, either.

The [bak] test nevertheless remains worthy of examination, given the interesting
ideas contained in it—we believe that pursuing these ideas provides a good deal of
insight into the mechanism of global scheduling.

1 Personal email communication from Ted Baker (22 January 2007).
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16.1 Overview of the [bak] Test

Recall the general strategy towards global schedulability analysis that was described
in Sect. 14.1. We will assume that a task system τ is not global EDF-schedulable
upon m unit-capacity processors, and consider a sequence of job requests of τ on
which global EDF misses one or more deadlines. Suppose that a job of some task
τk ∈ τ is the first job that misses its deadline, at some time-instant td . We will analyze
the situation over some time interval [to, td ). We will compute upper bounds on the
amount of work that EDF is required to execute over the interval [to, td ), and obtain a
necessary unschedulability condition by setting this bound to be large enough to deny
τk’s job Ck units of execution over its scheduling window. By negating this necessary
unschedulability condition, we will obtain our desired schedulability condition.

16.1.1 The Problem of Carry-ins

The “goodness” of our general strategy depends on the accuracy of the upper bound
on the amount of work that EDF is required to execute over the interval of interest.
The major problem with obtaining an accurate upper bound is the problem of carry-in
jobs, which were discussed in Sect. 14.3.

Recall that a carry-in job is a job that arrives prior to, and has a deadline within,
the interval of interest. Uniprocessor schedulability tests are so accurate because they
generally do not need to deal with carry-in jobs—by defining the start of the interval
of interest to be the latest time-instant at which the processor is idled, we guarantee
that there are no carry-in jobs to worry about.

For most global multiprocessor scheduling algorithms, it seems very difficult to
accurately estimate the amount of work that the carry-in jobs contribute to the total
work over the interval of interest.

Early global schedulability tests tended to be very pessimistic in this regard: For
example, the [bar] test adds the entire execution requirement of each carry-in job to
the total work to be done over the interval of interest, while the [bcl] test assumes (see
Fig. 15.2) that each carry-in job executes at the very end of its scheduling window.

16.1.2 The [bak] Breakthrough

In [18], Baker came up with a clever technique for bounding the amount of work
contributed by the carry-in jobs. The idea was to define the start of the interval
of interest in a manner which allowed us to bound not just the number of carry-in
jobs (as we saw being done for uniprocessors, and in the [bar] test), but also their
individual workload contributions. The basic idea, to be fleshed out in the remainder
of this chapter, is this.
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Fig. 16.1 Notation. A job of task τk arrives at ta and misses its deadline at time-instant td

• Let us suppose that a job of τk , arriving at time-instant ta , misses its deadline at
td = ta + Dk – see Fig. 16.1.

• We can determine a lower bound on the amount of work that the scheduling
algorithm needed (and failed) to complete over the interval [ta , td ) (an example
of such a bound is (Dk − Ck)m + Ck , since all m processors must have been
busy whenever τk’s job was not executing). Let μ denote this lower bound on
work, normalized by the interval-length (td − ta) (for the example lower bound of
(Dk − Ck)m + Ck , μ equals m − (m − 1) Ck

Dk
, since the interval is of length Dk).

• Define the start of the interval of interest to be the earliest t ≤ ta such that the
work that the scheduling algorithm needs to complete over [t , td ) is greater than
(td − t)μ. Let to(μ) denote this start of the interval of interest.

• Consider a carry-in job of some task τi , that arrives at time-instant (to(μ) − φi).
– By definition of to(μ) as the earliest t for which work to be done by the schedul-

ing algorithm over [t , td ) exceeds (td−t)μ, it follows that the work to be done by
the scheduling algorithm over [to(μ)−φi , td ) is no larger than (td−to(μ)+φi)μ.

– Therefore, the amount of work that was actually done by the scheduling al-
gorithm over [to(μ) − φi , to(μ)) can be bounded from above. (Intuitively, the
amount of work to be done by time-instant td , normalized by the time remain-
ing until td , has increased over [to(μ) − φi , to(μ)); this allows us to compute
an upper bound on the amount of work that was actually completed during this
interval.)

– Using this bound on the total amount of work that was done during to(μ) −
φi , to(μ)), we can obtain an upper bound on the duration over [to(μ)−φi , to(μ))
during which all m processors could have simultaneously been busy.

– The carry-in job of τi must have been executing during those instants [to(μ) −
φi , to(μ)) at which at least one processor is idle; this yields a lower bound on
the amount of execution that this carry-in job must have received prior to the
interval of interest.

• Only the portion of this carry-in job of τi that was not thus shown to have to
execute over [to(μ) − φi , to(μ)) contributes to the workload over the interval of
interest.

This is a very clever and sophisticated technique, based on a deep understanding
of the behavior of multiprocessing, for obtaining bounds on carry-in that are better
than the naive bounds that were previously used. The [bak] test, as well as several
subsequent tests, have all exploited this technique for obtaining better upper bounds
WU upon the computational workload that must be executed within the interval of
interest.
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16.2 Details

We now present the detailed derivation of the [bak] test. We will restrict our attention
to constrained-deadline sporadic task systems; however, the test has been extended
to arbitrary-deadline task systems using a technique similar to that used in extending
the [bcl] test.

Identifying an Unschedulable Collection of Jobs Consider any legal sequence of
job requests of task system τ , on which EDF misses a deadline. Suppose that a job
of task τk is the one to first miss a deadline, and that this deadline miss occurs at
time-instant td (see Fig. 16.1). Let ta denote the arrival time of this job that misses
its deadline: ta = td − Dk .

Determining the Interval of Interest Discard from the legal sequence of job re-
quests all jobs with deadline > td , and consider the EDF schedule of the remaining
job requests. Since later-deadline jobs have no effect on the scheduling of earlier-
deadline ones under preemptive EDF, it follows that a deadline miss of τk occurs at
time-instant td (and this is the earliest deadline miss), in this new EDF schedule.

We introduce some notations now.
For any time-instant t ≤ td , let W (t) denote the cumulative execution requirement

of all the jobs in the collection of jobs, minus the total amount of execution completed
by the EDF schedule prior to time-instant t . (Thus, W (t) denotes the amount of work
remaining to be done at time-instant t .)

Observe that the computational demand over the interval of interest, which had
been referred to as W in the generic description of this technique, is equal to W (ts),
where ts denotes the (not yet defined) start of the interval of interest.

Let Ω(t) denote W (t) normalized by the interval-length:

Ω(t)
def=W (t)/(td − t). (16.1)

Observe that

W (0) ≤
∑

τi∈τ

DBF(τi , td )

This follows from the definition of the demand bound function, and the observation
that all the work contributing to W (0) has deadline at or before td . Thus,

Ω(0) ≤
∑

τi∈τ dbf(τi , td )

td
≤ load(τ ) . (16.2)

Since τk’s job receives strictly less than Ck units of execution over [ta , td ), all m

processors must be executing tasks other than τk’s job for a total duration greater
than ((td − ta) − Ck) over this interval. Hence it must be the case that W (ta) >

(td − ta − Ck)m + Ck; equivalently,

Ω(ta) >
(td − ta − Ck)m + Ck

td − ta
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= m − (m − 1)
Ck

td − ta

≥ m − (m − 1)
Ck

Dk

= m − (m − 1)densk

Let

μk
def= m − (m − 1)densk (16.3)

We thus have Ω(ta) > μk; previously (Inequality 16.2 above), we had seen that
Ω(0) ≤ load(τ ). Assuming that load(τ ) < μk , we can therefore define, for each
μ ∈ [load(τ ), μk], an earliest time-instant t at which Ω(t) ≥ μ.

A further definition: Let us define μ(τ ) to be maxτk∈τ {μk}; equivalently,

μ(τ )
def= m − (m − 1)densmax(τ ) (16.4)

Rather than having just one interval of interest as in the [bcl] test, the [bak] test
considers multiple intervals of interest. Informally speaking, the different intervals
are defined by different values of μ in the range [load(τ ), μk]—for each such value
of μ, a different interval of interest [to(μ), dk) is defined. We will later optimize
over all these intervals of interest, choosing the “best” one to come up with our final
schedulability test.

For any μ ∈ [load(τ ), μk], let to(μ) denote the smallest value of t ≤ ta such that

Ω(t) ≥ μ. Let Δ(μ)
def= td − to(μ).

We now derive a lower bound WL on the computational demand W = W (to(μ))
over the interval of interest.

By definition of to(μ), Ω(to(μ)) ≥ μ. Hence

W = W (to(μ)) = Ω(to(μ)) × (td − to(μ)) ≥ μ × Δ(μ)

⇒ WL
def= μ × Δ(μ) (16.5)

Computing an Upper Bound on Demand For each τi , the [bak] test derives an
upper bound Wi,k on the amount of work that jobs of τi contribute to W . The upper
bound WU on the demand W over the interval of interest is then given by

WU =
n∑

i=1

Wi,k .

Computing Wi,k . The [bak] test is able to bound the amount of carry-in by a job of
τi into the interval of interest, based on the property that the interval is defined to
have a minimum load.

This is because, as we had briefly explained in Sect. 16.1 above, some of the
carry-in job must have executed prior to the start of the interval.
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We now elaborate upon the technique, outlined in Sect. 16.1 above, for bounding
carry-in. Suppose that there is carry-in by task τi , for some i 
= k.

1. Assume that the job carrying in arrives at time-instant ti , which is φi time units
prior to time-instant to(μ) (i.e., ti = to(μ) − φi—see Fig. 16.1).

2. Suppose that τi’s job executed for y time-units over [ti , to(μ)) (leaving the rest of
its execution as carry-in). All m processors must have been busy executing other
jobs for (φi − y) time units during this interval; hence, the amount of execution
that occurs over [φi , to(μ)) is at least (m(φi − y) + y).

3. By using this work bound along with the facts that W (to(μ), td ) ≥ μΔ(μ) while
W (ti , td ) < μ(Δ(μ) + φi), we obtain

m(φi − yi) + yi < μφi

⇒ mφi − (m − 1)yi < (m − (m − 1)densk)φi

⇔ yi > φidensk (16.6)

4. Since there are
⌊

Δ(μ)+φi−Di

Ti
+ 1

⌋
jobs of τi in the interval of length Δ(μ) + φi ,

it follows that Wi,k , the total execution needed by τi over [to, td ) is bounded as
follows

Wi,k ≤
⌊

Δ(μ) + φi − Di

Ti

+ 1

⌋
Ci − φidensk

≤ Δ(μ) + φi + Ti − Di

Ti

Ci − φidensk

≤ (Δ(μ) + Ti − Di)Ui + φi(Ui − densk) (16.7)

5. If (Ui ≤ densk), the quantity in (16.7) above is ≤ (Δ(μ) + Ti − Di)Ui .
6. If (Ui ≥ densk), we can use the fact that φi ≤ Di to derive that the quantity

in (16.7) above is ≤ (Δ(μ) + Ti)Ui − Didensk .
7. Hence when τi has a carry-in, the total execution needed by τi over [to, td ) is

bounded as follows:

Wi,k ≤ (Δ(μ) + Ti)Ui − Dimin(densk , Ui) . (16.8)

If there is no carry-in for τi , then the total execution needed by τi over [to, td ) is at
most (Δ(μ) + Ti − Di)Ui , which is clearly no greater than the quantity in (16.8)
above.

We therefore have the following result: for all tasks τi ,

Wi,k ≤ (Δ(μ) + Ti)Ui − Dimin(densk , Ui) .

The desired upper bound WU on the demand W (which, as we had pointed out, is
equal to W (to(μ))) is thus

WU
def=
∑

τi∈τ

(
(Δ(μ) + Ti)Ui − Dimin(densk , Ui)

)
. (16.9)
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Determining a Sufficient Schedulability Condition A necessary condition for τk

to miss a deadline in an EDF schedule of τ is that

WU > WL

where WU is as given in Eq. 16.9 and WL is as given in Eq. 16.5. Now, this must be
true for each μ ∈ [load(τ ), μk]:

∃τk : τk ∈ τ : ∀μ : load(τ ) ≤ μ ≤ μk :
∑

τi∈τ

(
(Δ(μ) + Ti)Ui − Dimin(λk , Ui)

) ≥ μ × Δ(μ) . (16.10)

Taking the contrapositive (and dividing throughout by Δ(μ)), we obtain a sufficient
schedulability condition:

∀τk : τk ∈ τ : ∃μ : load(τ ) ≤ μ ≤ μk :
∑

τi∈τ

((
1 + Ti

Δ(μ)

)
Ui − Di

Δ(μ)
min(λk , Ui)

)
< μ (16.11)

Next, [bak] uses the fact that Δ(μ) is, by definition, ≥ Dk to obtain the following
sufficient schedulability condition2:

∀τk : τk ∈ τ : ∃μ : load(τ ) ≤ μ ≤ μk :

∑

τi∈τ

((
1 + Ti

Dk

)
Ui − Di

Dk

min(λk , Ui)

)
< μ (16.12)

The [bak] test is stated in the following theorem.

Theorem 16.1 Task system τ is global EDF schedulable on m unit-capacity
processors if for each τk ∈ τ there is a λk ≥ Ck

Dk
such that

∑

τi∈τ

βk,i < m − (m − 1)λk ,

where βk,i is defined as follows:

βk,i
def=(1 + Ti)Ui − Di

Dk

min(λk , Ui) . (16.13)

§. We need to only consider values of λk in the set
{

Ck

Dk

}⋃{
Ui | Ui ≥ Ck

Dk

}
.

2 Observe that Δ(μ) ≤ Dk means that the LHS of Inequality 16.12 is no larger than the LHS of
Inequality 16.11; consequently, Inequality 16.12 does indeed imply Inequality 16.11.
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16.3 A Quantitative Bound

By computing the upper bound on demand somewhat differently than was done
above, a modified version of the [bak] test was obtained [35], for which a speedup
bound could be determined. We describe this modified test below.

The first two steps of the general strategy for global schedulability analysis that
was enumerated in Sect. 14.1—identifying an unschedulable collection of jobs and
determining the interval of interest—proceed in exactly the same manner as in the
[bak] test as described above. We describe the remainder of the modified test below.

Computing an Upper Bound on Demand Recall that W (to(μ)) denotes the amount
of work that the EDF schedule needs (but fails) to execute over [to(μ), td ). This work
in W (to(μ)) arises from two sources: (i) those jobs that arrived at or after to(μ), and
(ii) the carry-in jobs, that arrived prior to to(μ) but have not completed execution in
the EDF schedule by time-instant to(μ).

The total work contributed by those jobs that arrived at or after to(μ) can be
bounded from above by using the dbf; in the next two lemmas, we will bound the
amount of work that can be contributed by the carry-in jobs. We do this by bounding
the number of tasks that may have carry-in jobs (Lemma 16.1), and the amount of
work that each such task may contribute (Lemma 16.2). The product of these bounds
yields an upper bound on the total amount of carry-in work.

Lemma 16.1 The number of tasks that have carry-in jobs is ≤ �μ� − 1.

Proof Let ε denote an arbitrarily small positive number. By definition of the instant
to(μ), Ω(to(μ) − ε) < μ while Ω(to(μ)) ≥ μ; consequently, strictly fewer than μ

jobs must have been executing at time-instant to(μ). And since μ ≤ m (as can be
seen from Eq. 16.3 above), it follows that some processor was idled over [to(μ) −
ε, to(μ)), implying that all tasks with jobs awaiting execution at this instant would
have been executing. This allows us to conclude that there are strictly fewer than
μ—equivalently, at most (�μ� − 1)—tasks with carry-in jobs. �

Lemma 16.2 Each carry-in job has < Δ(μ) × densmax(τ ) remaining execution
requirement at time-instant to.

Proof Let us consider a carry-in job of some task τi that arrives at time-instant
ti < to(μ) (see Fig. 16.1) and has, by definition of carry-in job, not completed

execution by time-instant to(μ). As specified in Fig. 16.1, φi
def=to(μ) = ti .

By definition of to(μ) as the earliest time-instant t ≤ ta at which Ω(t) ≥ μ, it
must be the case that Ω(ti) < μ. That is,

W (ti) < μ(Δ(μ) + φi) (16.14)

On the other hand, Ω(to(μ)) ≥ μ, meaning that

W (to(μ)) ≥ μΔ(μ) (16.15)

From Inequalities 16.14 and 16.15 and the definition of W ( · ), it follows that the
amount of work done in the EDF schedule over [ti , to(μ)) is less than μφi .
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Let yi denote the amount of time over this interval [ti , to(μ)), during which some
job of τi is executing. All m processors must be executing jobs from tasks other than
τi for the remaining (φi −yi) time units, implying that the total amount of work done
in the EDF schedule over [ti , to(μ)) is at least m(φi −yi) +yi . From these upper and
lower bounds, we have

m(φi − yi) + yi < μφi

⇒ m(φi − yi) + yi < μ(τ )φi [Since by Eq. 16.3), μ ≤ μ(τ )]

⇔ mφi − (m − 1)yi < (m − (m − 1)densmax(τ ))φi

⇔ yi > φidensmax(τ ) (16.16)

As argued above, the total amount of work contributed to W (to(μ)) by all the carry-
in jobs of τi is bounded from above by dbf(τi , φi + Δ(μ)) minus the amount of
execution received by jobs of τi over [ti , to(μ)). This is in turn bounded from above
by

dbf(τi , φi + Δ(μ)) − yi

< dbf(τi , φi + Δ(μ)) − φi densmax(τ )

(by Inequality 16.16 above)

≤ (φi + Δ(μ))densi − φi densmax(τ ) (from Lemma 10.1)

≤ (φi + Δ(μ))densmax(τ ) − φi densmax(τ )

= Δ(μ) densmax(τ )

as claimed in the lemma. �

We can now compute the upper bound WU on the workload over the interval of
interest [to(μ), td ).

• First, there are the carry-in jobs: by Lemmas 16.1 and 16.2, there are at most
(�μ(τ )� − 1) of them, each contributing at most Δ(μ)densmax(τ ) units of work.
Therefore their total contribution to W (to) is at most (�μ(τ )�−1)Δ(μ)densmax(τ ).

• All other jobs that contribute to W (to) arrive in, and have their deadlines within the
Δ(μ)-sized interval[to, td ). Their total execution requirement is therefore bounded
from above by Δ(μ)load(τ ).

We therefore have the following upper bound on the amount of work over the interval
of interest:

Δ(μ)load(τ ) + (�μ(τ )� − 1)Δ(μ)densmax(τ ) (16.17)

Determining a Sufficient Schedulability Condition Based upon Lemmas 16.1
and 16.2, we obtain the following:

Theorem 16.2 Constrained-deadline sporadic task system τ is EDF-schedulable
upon a platform comprised of m unit-speed processors provided

load(τ ) ≤ μ(τ ) − (�μ(τ )� − 1)densmax(τ ), (16.18)
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where μ(τ ) is as defined in Eq. 16.4.

Proof The proof is by contradiction: We obtain necessary conditions for the scenario
above—when τk’s job misses its deadline at td—to occur. Negating these conditions
yields a sufficient condition for EDF schedulability.

By Eq 16.17 above, it follows that:

W (to(μ(τ ))) < Δ(μ(τ ))load(τ ) + (�μ(τ )� − 1)Δ(μ(τ ))densmax(τ ) (16.19)

Since Ω(to(μ(τ )))
def=W (to(μ(τ )))/(td − to(μ(τ ))) = W (to)/Δ(μ(τ )), we have

Ω(to(μ(τ ))) < load(τ ) + (�μ(τ )� − 1)densmax(τ )

Since by the definition of to(μ(τ )) it is required that Ω(to(μ(τ ))) ≥ μ(τ ), we must
have

load(τ ) + (�μ(τ )� − 1)densmax(τ ) > μ(τ )

as a necessary condition to miss a deadline. By negating this, we get that

load(τ ) + (�μ(τ )� − 1)densmax(τ ) ≤ μ(τ )

is sufficient for EDF-schedulability. The theorem follows. �

Theorem 16.3 Any sporadic task system that is feasible upon a multiprocessor plat-
form comprised of m speed- 3−√

5
2 processors is determined to be EDF-schedulable

on m unit-capacity processors by the EDF-schedulability test of Theorem 16.2.

Proof Suppose that τ is feasible upon m speed-x processors. For all values of
x ≤ (3 − √

5)/2, we will show below that the test of Theorem 16.2 determines that
τ is EDF-schedulable upon m unit-speed processors.

Any sporadic task system τ that is feasible in m speed-x processors satisfies

densmax(τ ) ≤ x and load(τ ) ≤ mx

For τ to be deemed EDF-schedulable on m unit-capacity processors by the EDF-
schedulability test of Theorem 16.2, it must be the case that

load(τ ) ≤ μ(τ ) − (�μ(τ )� − 1)densmax(τ )

⇐ (Since �x� − 1 ≤ x for any x)

load(τ ) ≤ μ(τ ) − μ(τ )densmax(τ )

⇔ load(τ ) ≤ μ(τ )(1 − densmax(τ ))

⇔ load(τ ) ≤ (m − (m − 1)densmax(τ ))(1 − densmax(τ ))

⇐ mx ≤ (m − (m − 1)x)(1 − x)

⇔ mx ≤ (m(1 − x) + x)(1 − x)
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⇐ mx ≤ m(1 − x)(1 − x)

⇔ x2 − 3x + 1 ≥ 0

⇐ x ≤ 3 − √
5

2

We have thus shown that τ being feasible upon m speed-(3 − √
5)/2 processors

implies its EDF-schedulability upon m unit-speed processors. �

Observing that

1

(3 − √
5)/2

= 2

3 − √
5

= 3 + √
5

2
,

we have the following corollary:

Corollary 16.1 The processor speedup factor of the EDF-schedulability test of
Theorem 16.2 is no greater than

(
3+√

5
2

)
.

A somewhat superior EDF schedulability condition that is a bit more complex
(to both state and prove) than the one presented in Theorem 16.2 above was derived
in [27]; we present this theorem without proof below:

Theorem 16.4 (from [27]) Constrained-deadline sporadic task system τ is EDF-
schedulable upon a platform comprised of m unit-speed processors provided

load(τ ) ≤ max
{
μ(τ ) − (�μ(τ )� − 1)densmax(τ ), (�μ(τ )� − 1)

− (�μ(τ )� − 2)densmax(τ )
}

where μ(τ ) is as defined in Eq. 16.4.

Sources

In a series of papers [17–19], Ted Baker laid out the framework that formed the basis
of many of the subsequently developed sufficient schedulability tests—the techniques
and results that we have described in Sects. 16.1–16.2 were first proposed in those
papers. The results in Sect. 16.3 build upon this framework to derive the schedulability
tests of Theorem 16.2 and Theorem 16.4, for which quantitative speedup bounds may
be derived. Theorem 16.2 was derived in [35]; Theorem 16.4 is from [27].



Chapter 17
Response Time Analysis: The [rta] Test

We now describe a refinement to the basic [bcl] procedure that was proposed by
Bertogna and Cirinei [58], that uses response times of tasks to further reduce poten-
tially the workload of interfering tasks in the considered interval of interest. Since
these response times are of course not known prior to performing schedulability
analysis, the procedure takes on an iterative flavor—maximum (or minimum) values
are estimated for response times of all tasks, and these estimated values are then
used to iteratively decrease (or increase) the estimations. The details are described in
Sect. 17.1 below. This test, which aggregates clever ideas from many prior tests into
an integrated framework, appears to perform the best in schedulability experiments
upon randomly generated workloads.

17.1 Response Time Analysis [rta]

One of the main sources of pessimism in the global schedulability tests described
above is related to the difficulties in obtaining tight upper bounds upon the carry-in
contribution into the window of interest. The test presented in this section allows for
a further reduction of the carry-in contributions of individual tasks, by computing
a response time upper bound for each task. The analysis is similar to that of [bcl],
using a smaller interval of interest.

Before deriving the analysis, let us first start by deriving some useful results
regarding the interference that a task can suffer due to the simultaneous execution
of other tasks. (It may be helpful to review the definitions and notation concerning
interference that were introduced in Sect. 14.4.) These results are applicable to any
system of sporadic tasks that are scheduled with a work-conserving policy.

Lemma 17.1 For any x ≥ 0, Ik ≥x iff
∑

i 
=k min
(
Ii,k , x

)≥mx.

Proof Only If. Let ξ denote the number of tasks for which Ii,k ≥ x holds. If ξ > m,
then

∑
i 
=k min(Ii,k , x) ≥ ξx > mx. Otherwise (m − ξ ) ≥ 0 and, using Lemma 14.1

and Eq. 14.1, we get

© Springer International Publishing Switzerland 2015 155
S. Baruah et al., Multiprocessor Scheduling for Real-Time Systems,
Embedded Systems, DOI 10.1007/978-3-319-08696-5_17



156 17 Response Time Analysis: The [rta] Test

∑

i 
=k

min
(
Ii,k , x

) = ξx +
∑

i:Ii,k<x

Ii,k = ξx + mIk −
∑

i:Ii,k≥x

Ii,k

≥ ξx + mIk − ξIk = ξx + (m − ξ )Ik ≥ ξx + (m − ξ )x = mx.

If. Note that if
∑

i min
(
Ii,k , x

) ≥ mx, it follows

Ik =
∑

i 
=k

Ii,k

m
≥
∑

i 
=k

min
(
Ii,k , x

)

m
≥ mx

m
=x. �

The following part of the analysis will consider the particular instance of task τk

that is subject to the maximum possible interference. The finishing time of such an
instance coincides with the response time of τk , which we denote as Rk . The interval
of interest is then defined as the window between the release of the instance, denoted
here as rk , and its finishing time: [rk , rk + Rk].

We now derive a result that will be useful to compute the worst-case response
time of each task. For simplifying the schedulability condition, we assume all task
parameters to be in an integer time domain1.

Theorem 17.1 A task τk has a response time bounded by Rub
k if

∑

i 
=k

min
(
Ii,k , Rub

k − Ck + 1
)

< m(Rub
k − Ck + 1)

Proof If the inequality holds for τk , from Lemma 17.1 we have

Ik < (Rub
k − Ck + 1).

As we assumed an integer time-domain, each instance of τk will be therefore in-
terfered for at most Rub

k − Ck time units. From the definition of interference, it
follows that every job of τk will be completed after at most Rub

k time-units from its
release. �

Note that the above theorem formally proves that when computing an upper bound
on the response time of a task τk , no other task can interfere more than (Rk −Ck +1)
time-units.

To effectively use Theorem 17.1, it would be necessary to compute the interfering
terms Ii,k . As it is hard to compute these terms, we adopt the following upper bound on
the interfering workload, which follows directly from the definition of interference.

Observation 17.1 The interference Ii,k that a task τi causes on a task τk cannot be
greater than the effective workload of τi in the window of interest:

∀i, k : Ii,k ≤ Wi(rk , rk + Rk) ≤ Rk. (17.1)

1 A similar relation can be derived for systems without an integer time-domain, using a slightly
more complex condition.
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rhi dhi rh+1
i dh+1

i rh+2
i dh+2

i

Ti − Di

La b

i Ti

Fig. 17.1 Densest possible packing of jobs of τi , when Rub
i is a safe upper bound on the response

time of τi

17.1.1 [rta] for Work-Conserving Schedulers

As exactly computing the effective workload executed by each interfering task within
the interval of interest is hard, we seek for an upper bound of the workload that each
task τi can execute in a generic window of length Rk . To do so, we seek to find the
densest possible packing of jobs that can be generated by a legal schedule. Note that
we are not relying on any particular scheduling policy, but are providing a bound
that is valid for any work-conserving scheduler.

With these premises and as long as there are no deadline misses, a bound on the
workload of a task τi in a generic interval [a, b) can be determined by considering
a situation in which the carry-in job begins executing right at the beginning of the
interval of interest, with a response time equal to the worst-case response time of τi

(therefore rε
i = a + Ci − Ri) and every other instance of τi is executed as soon as

possible. The situation is represented in Fig. 17.1.
As by definition of Ri , each job J

j

i executes only in [rj

i , rj

i + Ri) and for at most
Ci time units, it immediately follows that the depicted situation provides the highest
possible amount of execution in interval [a, b): By “sliding” the interval backwards,
the carry-in cannot increase while the carry-out decreases. Similarly, if the interval
were slid forward, the carry-in decreases, while the carry-out can increase by at most
the same amount.

Using Fig. 17.1, we now compute the effective workload of task τi in an interval
[a, b) of length L in the situation described above.

Note that the first job of τi after the carry-in is released at time a + Ci − Ri + Ti .
The next jobs are then released periodically every Ti time units. Therefore the number
of body jobs within the interval is

⌊
(a + L) − (a + Ci − Ri + Ti)

Ti

⌋
=

⌊
L + Ri − Ci − Ti

Ti

⌋
.

Adding the (full) carry-in contribution, the number Ni(L) of jobs of τi that contribute
with an entire worst-case execution time (WCET) to the workload in an interval of

length L is given by
(⌊

L+Ri−Ci−Ti )
Ti

⌋
+ 1

)
. Hence

Ni(L) =
⌊

L + Ri − Ci

Ti

⌋
. (17.2)
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The contribution of the carry-out job can then be bounded by

min(Ci , (L + Ri − Ci) mod Ti).

A bound on the workload of a task τi in a generic interval of length L is then:

Ŵi(L) =
⌊

L + Ri − Ci

Ti

⌋
Ci + min(Ci , (L + Ri − Ci) mod Ti). (17.3)

We are now ready to state a first result valid for any work-conserving scheduler.

Theorem 17.2 An upper bound on the response time of a task τk in a multiprocessor
system scheduled with a work-conserving algorithm can be derived by the fixed point
iteration on the value Rub

k of the following expression, starting with Rub
k = Ck:

Rub
k ← Ck +

⎢⎢⎢⎣ 1

m

∑

i 
=k

min(Ŵi(R
ub
k ), Rub

k − Ck + 1)

⎥⎥⎥⎦ , (17.4)

where Ŵi(Rk) is given by Eq. 17.3.

Proof The proof is by contradiction. Suppose the iteration ends with a value Rub
k ≤

Dk , but the response time of τk is higher than Rub
k . Since the iteration ends, it is

Rub
k = Ck +

⎢⎢⎢⎣ 1

m

∑

i 
=k

min(Ŵi(R
ub
k ), Rub

k − Ck+1)

⎥⎥⎥⎦

For Eq. (17.1) and Wi(rk , rk + Rk) ≤ Ŵi(Rub
k ),

Ii,k ≤ Ŵi(R
ub
k ).

Therefore, as long as Rub
k ≤ Dk ,

Rub
k ≥ Ck +

⎢⎢⎢⎣ 1

m

∑

i 
=k

min(Ii,k , Rub
k − Ck + 1)

⎥⎥⎥⎦ .

Since, by hypothesis, the response time of τk is higher than Rub
k , the inverse of

Theorem 17.1 gives
∑

i 
=k

min
(
Ii,k , Rub

k − Ck + 1
) ≥ m(Rub

k − Ck + 1).

Therefore,

Rub
k ≥ Ck +

⌊
1

m
m(Rub

k − Ck + 1)

⌋
= Rub

k + 1

reaching a contradiction.
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It remains to show that the iteration converges in a finite amount of time. This
is assured by the integer time assumption, and by noting that the assignment of
Eq. (17.4) is a monotonically nondecreasing function of Rub

k . �

A schedulability test could be performed by repeating the iteration described above
for every task τk ∈ τ . If every iteration ends before the corresponding deadline value,
then the task set is schedulable. However, the problem in applying this schedulability
test is that, when computing Ŵi(Rub

k ) with Eq. 17.3, the response times Ri of all
interfering tasks τi should be known.

To sidestep this problem, we will compute Eq. 17.3 using the response time upper
bounds Rub

i , instead of Ri . In this respect, two possible strategies can be adopted.
With the first strategy, all response time upper bounds are initially set to Rub

i =
Di , ∀τi . Then, for each considered task τk , Eq. (17.4) is used to compute a new
response time bound. If the computed bound is ≤ Dk , Rub

k is replaced with the new
value. Otherwise, the task is temporarily set aside, continuing to the next task. If for
each task τk , a bound ≤ Dk is computed, the task system is deemed schedulable.
Otherwise, another round of updates is performed for all tasks using the new (smaller)
response time upper bounds. When no further update is possible for any of the n tasks,
and at least one task has a bound exceeding the corresponding deadline, the test fails.

Basically, when the computed response time bound of a task is > Dk , the test does
not immediately fail, but it tries decreasing the bounds Rub

i of the interfering tasks τi .
As Ŵi(L) is a nonincreasing function of the response times of the interfering tasks,
using smaller response time bounds Rub

i in Eq. 17.3 may result in a smaller workload
Ŵi(L) imposed on τk’s scheduling window. Equation (17.4) may then return a value
Rub

k ≤ Dk . The convergence of the algorithm is guaranteed by the monotonicity
of Ŵi(L), ∀τi with respect to L and to the response times of the interfering tasks.

A more formal version of the schedulability algorithm is shown in Fig. 17.2. Pro-
cedure ComputeResponse(τk) returns the response time upper bound Rub

k computed
using Theorem 17.2.

The second strategy for updating the response time upper bounds is initially setting
all response time upper bounds Rub

i = Ci , ∀τi , i.e., to their minimum possible value.
Then, for each task τk , Eq. (17.4) is used to compute a new tentative response time
upper bound Rub

k . If the computed bound is > Dk , the test fails, as there is no
possibility for further improvements. Otherwise, if the new bound is larger than
the previous one, Rub

k is updated to the new value, passing to the next task. When
an update took place, another round of updates needs to be performed for all n

tasks. When no update takes place during a whole round, the test deems the task set
schedulable.

This second strategy dominates the previous one, as it allows finding tighter worst-
case response time upper bounds. It indeed considers a smaller (tentative) interval
of interest, resulting in a possibly smaller interfering workload. However, it may
require a larger run-time complexity for schedulable task systems. This is because
every time there is an update in the response time bound of one of the tasks, another
round of updates is triggered for the whole task system. This is not the case with the
first strategy, which may deem a task set schedulable as soon as for each tasks τk a
bound Rub

k ≤ Dk is computed.
This second strategy is formalized in Fig. 17.3.
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SCHEDCHECK(τ )
� Check the schedulability of a task set τ.
� All response-time upper bounds are initially set to Rub

k = Dk,∀k;
� Updated = true.

1 while (Updated== true) do
2 Feasible← true
3 Updated← false
4 for k = 0 to n do

� Try to update Rub
k for task τk

5 NewBound← COMPUTERESPONSE(τk)
6 if (NewBound> Dk) Feasible← false
7 if (NewBound< Rub

k )
8 { Rub

k ← NewBound
9 Updated← true }

end for
� When no task is infeasible, declare success

10 if (Feasible== true) return true
done
� When no Rub

k can be updated anymore, stop the test
11 return false

Fig. 17.2 Response time analysis: first strategy

SCHEDCHECK(τ )
� Check the schedulability of a task set τ.
� All response-time upper bounds are initially set to Rub

k =Ck,∀k;
� Updated = true.

1 while (Updated== true) do
2 Updated← false
3 for k = 0 to n do

� Try to update Rub
k for task τk

4 NewBound← COMPUTERESPONSE(τk)
5 if (NewBound> Dk) return false
6 if (NewBound> Rub

k )
7 { Rub

k ← NewBound
8 Updated← true }

end for
done
� When bounds converged and no task is infeasible, declare success

9 return true

Fig. 17.3 Response time analysis: second strategy

17.1.2 [rta] for EDF

When adopting an earliest-deadline-first (EDF) scheduler, a tighter upper bound on
the workload executed by the interfering tasks within the interval of interest can be
derived, by noting that no job can be interfered with, by jobs with later deadlines. As
in Sect. 15.1, we will consider the worst-case workload produced by an interfering
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rhi dhi rh+1
i dh+1

i rh+2
i dh+2

i

rjk djk

Dk

εi Di − Rub
i Ti

Fig. 17.4 Scenario that produces, with EDF, the maximum possible interference of task τi on a job
of task τk , when Rub

i is an upper bound on τi ’s response time

task τi when it has an absolute deadline coincident to a deadline of τk , and every
other instance of τi is executed as late as possible.

Consider the situation in Fig. 17.4. Note that the interval of interest coincides with
the full scheduling window of τk , i.e., from the release time to the deadline of the
considered job. We express τi’s workload separating the contributions of the first job
that has a deadline inside the considered interval, from the contributions of later jobs

of τi . There are
⌊

Dk

Ti

⌋
later jobs, each one contributing for an entire worst-case com-

putation time. Instead, the first job contributes for max
(
0, Dk mod Ti − (Di − Rub

i )
)
,

when this term is lower than Ci . We therefore obtain the following expression:

Ii,k ≤ Îi,k
.=
⌊

Dk

Ti

⌋
Ci + min

(
Ci ,

(
Dk mod Ti − Di + Rub

i

)
0

)
. (17.5)

Note that when Rub
i = Di , Eq. (17.5) reduces to Eq. (15.1).

The above bound, along with the bounds presented for a general work-conserving
scheduler, yields the following theorem.

Theorem 17.3 An upper bound on the response time of a task τk in a multiprocessor
system scheduled with global EDF can be derived by the fixed point iteration on the
value Rub

k of the following expression, starting with Rub
k = Ck:

Rub
k ← Ck +

⎢⎢⎢⎣ 1

m

∑

i 
=k

min(Ŵi(R
ub
k ), Îi,k , Rub

k − Ck + 1)

⎥⎥⎥⎦ , (17.6)

where Ŵi(L) and Îi,k are given by Eq. 17.3 and 17.5, respectively.

Proof The proof is identical to that of Theorem 17.2. �

The iterative schedulability test we described for general work-conserving algo-
rithms, applies as well to the EDF case. The only difference lies at line 2 of procedure
SchedCheck(τ ) in Fig. 17.2, where procedure ComputeResponse(τk) returns the
response time bound computed using Theorem 17.3.
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This [rta] test dominates the [bcl] test, improving the analysis by (i) reducing the
individual carry-in contributions, and (ii) considering a smaller interval of interest
(corresponding to the worst-case response time of the considered task instead of its
full scheduling window) and thereby potentially decreasing the number of jobs of
every other task that may overlap this interval of interest.

17.1.3 Computational Complexity

The complexity of the response time analysis presented in this section depends
on the number of times the response time bound of a task can be updated. Con-
sider a call to procedure SchedCheck(τ ), which will repeatedly invoke procedure
ComputeResponse(τk). The complexity of procedure ComputeResponse(τk) is
comparable to the classic response time analysis for uniprocessor systems (see
Sect. 4.2). Assuming an integer model for time, the procedure will converge, or
fail, in at most (Dk − Ck) steps, each one requiring a sum of n contributions. The
complexity is then O(nDmax).

Since procedure ComputeResponse(τk) is invoked once for each task, (through
the inner (for) cycle from 1 to n), the complexity of a single round of response
time bound updates through all n tasks is O(n2Dmax). Now, the outer (while) cycle is
iterated as long as there is an update in one of the response time bounds. Since, for the
integer time assumption, each bound can be updated at most Dk −Ck times, a rough
upper bound on the total number of iterations of the outer cycle is

∑
k (Dk − Ck) =

O(nDmax). The overall complexity of the whole algorithm is then O(n3D2
max).

While the worst-case complexity of the two different strategies in Fig. 17.2 and
Fig. 17.3 is the same, the first strategy can be modified by stopping the test after a
finite number of iterations N . If this is the case, the total number of steps taken by
the schedulability algorithm is O(n3NDmax).

The average run-time could be further improved by noting that a potential weak-
ness is given by the contribution (Rub

k −Ck + 1) in the minimum of the RHS term of
Eq. 17.6. This value can cause a slow progression of the iteration towards the final
value, due to the low rate at which the response time is increased at each step. If the
final response time is very late in time, the iteration will potentially converge after a
lot of iterations. A simple modification can be made to provide a faster convergence,
by splitting the procedure into two stages. In the first stage, the value (Rub

k −Ck + 1)
is replaced by (Dub

k − Ck + 1). If the task converges to a value Rub
k ≤ Dk , it is then

possible to refine the derived bound on the response time in a second stage, using the
original term (Rub

k −Ck +1), starting with the value Rub
k derived in the previous stage.

This allows proceeding at bigger steps towards the final bound, eventually retreating
if the step was too big. The simulations we ran with this alternative strategy did not
show significant losses in the number of schedulable task sets detected in comparison
with the original algorithm.
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17.1.4 Reduction of Carry-in Instances

The interval of interest adopted by the [rta] test does not allow for limiting the
number of carry-in instances to at most m − 1 of them, as done with the [bar] test.
Therefore, the tests are incomparable. However, it is possible to limit the number of
carry-in instances to at most m− 1 by changing the interval of interest considered in
the [rta] analysis. Consider an interval of interest that is similar to the one adopted
for the [bar] test. Let to be the start of the interval, coinciding with the last time-
instant prior to the arrival of the problem job of τk at which some processor is idle
or executing a job with lower priority. Different from the [bar] test, the end of the
interval is not the deadline of the problem job, but its finishing time.

For any work-conserving scheduler, no processor is idled when there are jobs
awaiting execution. There are therefore at most (m−1) carry-in jobs at the beginning
of the interval. Note that from to to the release of the problem job, all processors are
busy executing higher-priority jobs. Therefore, if the release of the problem job of τk

is shifted left to the beginning of the interval of interest (while keeping its deadline
and all previous instances of τk as they are), its response time cannot decrease.

An upper bound on the response time of τk can then be given considering a situation
in which there are only m − 1 carry-in instances. However, since previous instances
of τk can execute at the beginning of the interval, the interfering workload should be
computed extending the sum to all tasks contributions, including τk’s (the [rta] test,
instead, limited the interfering workload to the tasks τi 
=k , as evident from Eq. 17.6).

For each carry-in task τi 
=k , the upper bound Ŵi(L) on the workload in a window of
length L given by Eq. 17.3 for a generic work-conserving scheduler can still be used.
An upper bound on the workload executed in the interval of interest by previous jobs
of τk can be derived by subtracting the problem job’s contribution from Ŵi(L). In
both cases, it is sufficient to consider the amount of interfering contribution smaller
than L − Ck + 1. Therefore, an upper bound on the carry-in workload in the interval
of interest is

ŴCI
i (L)

.=
{

min
(
Ŵi(L), L − Ck + 1

)
, if i 
= k

min
(
Ŵi(L) − Ck , L − Ck + 1

)
, if i = k.

(17.7)

For tasks without carry-in, the worst-case workload is computed considering the
situation in Fig. 17.5, where each interfering task is released at the beginning of the
window of interest.

The number of τi’s jobs with both release and deadline within the interval of inter-
est is �L/Ti�, and the contribution of the carry-out job is at most min(Ci , LmodTi).
The contribution of previous jobs of τk can again be derived by subtracting the prob-
lem job contribution. Considering the amount of interfering contribution smaller than
L−Ck +1, an upper bound on the workload of a task with no carry-in in the interval
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Fig. 17.5 Scenario that produces the densest possible packing of jobs of a task τi with no carry-in

of interest is then

ŴNC
i (L)

.=
⎧
⎨

⎩
min

(⌊
L
Ti

⌋
Ci + min(Ci , L mod Ti), L − Ck + 1

)
, if i 
= k

min
(⌊

L
Ti

⌋
Ci + min(Ci , L mod Ti) − Ck , L − Ck + 1

)
, if i = k.

(17.8)

Let us denote by Ŵ ε
i the difference between ŴCI

i and ŴNC
i :

Ŵ ε
i (L)

.= ŴCI
i (L) − ŴNC

i (L). (17.9)

The next theorem considers that at most (m− 1) tasks contribute at amount ŴCI
i ,

and the remaining (n − m + 1) ones must contribute ŴNC
i .

Theorem 17.4 An upper bound on the response time of a task τk in a multiprocessor
system scheduled with a global work-conserving scheduler can be derived by the fixed
point iteration on the value Rub

k of the following expression, starting with Rub
k = Ck:

Rub
k ← Ck +

⎢⎢⎢⎣ 1

m

⎛

⎝
∑

τi∈τ

ŴNC
i (L) +

∑

i|(m−1) largest

Ŵ ε
i (L)

⎞

⎠

⎥⎥⎥⎦ , (17.10)

where ŴNC
i (L) and Ŵ ε

i (L) are given by Eq. 17.8 and 17.9, respectively .
As the sum of the interfering contribution is extended to all tasks, the above

theorem is incomparable with the [rta] test for work-conserving schedulers given
by Theorem 17.2, as well as with the [rta] test for systems scheduled with global
EDF given by Theorem 17.3.

Sources

The response-time analysis for global work-conserving schedulers and EDF has been
presented in [58]. The reduction of the carry-in instances to consider, presented in
Sect. 17.1.4, is from [123].



Chapter 18
Global Fixed-Task-Priority Scheduling

We now describe some of the main schedulability tests for 3-parameter sporadic
task systems that are globally scheduled using fixed-task-priority (FTP) scheduling
algorithms. It will become evident that many of these tests are derived from the tests
presented in the previous chapters for general work-conserving schedulers.

We start out presenting the FTP versions of the [bcl] (Sect. 15.1) and [rta]
(Sect. 17.1) tests. Then, we show that the idea described in Sect. 17.1.4 for reducing
the number of carry-in instances that must be considered, is more effective when
applied to the schedulability analysis of FTP scheduling algorithms.

Finally, we address the priority assignment problem and discuss a strategy that
makes use of the presented schedulability tests.

Before presenting the tests, we make an important observation concerning the
interference (see Sect. 14.4) imposed by lower-priority tasks in FTP schedules.

Observation 18.1 In FTP scheduling no task suffers interference from any lower-
priority task. Hence

Ii,k = 0 ∀i, k | τi has lower priority than τk

Assuming tasks are indexed by decreasing priorities (i > k ⇒ τk has scheduling
priority over τi), Lemma 14.1 then specializes as follows.

Theorem 18.1 The interference on a constrained deadline task τk is the sum of the
interferences of all higher-priority tasks divided by the number of processors:

Ik =
∑

i<k Ii,k

m
. (18.1)

18.1 The [bcl] Test for FTP Algorithms

The “workload versus demand” strategy adopted in the [bcl] test presented in
Sect. 15.1 can be applied also in the FTP case. However, a different upper bound on
the interference of each task τi on the problem job of τk needs to be provided. While
no carry-out job interferes with the problem job in EDF, this is not the case with a
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Fig. 18.1 Response-time analysis for FTP systems

general FTP scheduler. A different situation than the one depicted in Fig. 15.1 needs
to be considered.

A bound on the workload of a task τi in the problem job’s scheduling window
[rk , rk + Dk] can be computed by considering a situation in which the carry-in job
starts executing as close as possible to its deadline and right at the beginning of the
interval of interest, and every other instance of τi is executed as soon as possible.
The situation is represented in Fig. 18.1. The analysis is similar to that presented for
deriving Eq. 17.3 for the [rta] test.

The first job of τi after the carry-in job is released at time (rk +Ci +Ti −Di). The
next jobs are then released periodically every Ti time units. Therefore the number of
body jobs within the interval is

⌊
(rk + Dk) − (rk + Ci − Di + Ti)

Ti

⌋
=

⌊
Dk + Di − Ci − Ti

Ti

⌋
.

Adding the (full) carry-in contribution, the number of τi’s jobs that contribute with an
entire Worst-case Execution Times (WCET) to the workload in an interval of length
Dk is

⌊
Dk + Di − Ci

Ti

⌋
.

The contribution of the carry-out job can then be bounded by

min(Ci , (Dk + Di − Ci) mod Ti).

A bound on the workload of a task τi in the problem job’s scheduling window is
then:

⌊
Dk + Di − Ci

Ti

⌋
Ci + min(Ci , (Dk + Di − Ci) mod Ti). (18.2)

While this bound is weaker than that for EDF given by Eq. (15.2), the performance
of the [bcl] test for FTP systems is significantly improved by applying Theorem 18.1.

The FTP analog of the [bcl] Theorem 15.2 is given by the following theorem.
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Theorem 18.2 ([bcl] for FTP) Task system τ is FTP schedulable if, for each τk ∈ τ ,

∑

i<k

min

(
Dk−Ck ,

⌊
Dk+Di−Ci

Ti

⌋
Ci + min(Ci , (Dk + Di−Ci) modTi)

)

< m(Dk−Ck) . (18.3)

As in the EDF case, the schedulability test consists of n inequalities, each a sum
of n terms. The computational complexity is therefore polynomial, at O(n2).

18.2 The [rta] Test for FTP Scheduling

It is possible to similarly specialize the [rta] test [58] to FTP-scheduled systems by
applying Theorem 18.1, as the result of Theorem 17.1 can be specialized to FTP-
scheduled systems by eliminating consideration of interference by all lower-priority
tasks.

Theorem 18.3 A task τk scheduled with FTP has a response time bounded by Rub
k

if
∑

i<k

min
(
Ii,k , Rub

k − Ck + 1
)

< m(Rub
k − Ck + 1)

The bound Ŵi(L) on the generic workload in a window of length L given by
Eq. 17.3 is still valid. It is then possible to compute an upper bound on the response
time of a task τk as follows.

Theorem 18.4 [[rta] for FTP] An upper bound on the response time of a task τk

in a multiprocessor system scheduled with FTP can be derived by the fixed point
iteration on the value Rub

k of the following expression, starting with Rub
k = Ck:

Rub
k ← Ck +

⌊
1

m

∑

i<k

min(Ŵi(R
ub
k ), Rub

k − Ck + 1)

⌋
, (18.4)

where Ŵi(Rk) is given by Eq. 17.3.
The iterative schedulability test previously described for EDF and general work-

conserving schedulers in Figs. 17.2 and 17.3 can be simplified for systems scheduled
with FTP. By updating the response time upper bounds in priority order, the test can
be stopped after the first round of updates. Indeed, tighter estimations of the inter-
ferences produced by lower priority tasks cannot possibly produce an improvement
in the response time bound of a higher-priority task.

This observation enables the limiting of the number of updates to one for each
task. Therefore, a simpler strategy can be adopted, as reported in Fig. 18.1 with pro-
cedure [schedcheckfp](τ ). Function computeresponse(τk) returns the response
time bound computed using Theorem 18.4.



168 18 Global Fixed-Task-Priority Scheduling

As in the EDF case, the [rta] test dominates the [bcl] test. However, the com-
plexity of the [rta] test for FTP systems is smaller than in the EDF and general
cases. As mentioned in Sect. 17.1.3, computing a response time bound for a task
takes O(nDmax). Since there is only one round of slack updates for n tasks, the over-
all complexity is O(n2Dmax), instead of O(n3D2

max). This reduced complexity, along
with the improvement resulting from being able to neglect the interference of lower-
priority tasks, makes the [rta] particularly suitable for the schedulability analysis of
FTP-scheduled systems. In fact, schedulability experiments on randomly generated
workloads [55, 58] seem to indicate that procedure [schedcheckfp] outperforms the
corresponding procedure [schedcheckfp] for EDF-scheduled systems, in terms of
the number of schedulable task sets detected among randomly generated workloads.

18.3 Reducing the Number of Carry-in Instances

In Sect. 17.1.4, we showed how the number of carry-in tasks that need to be consid-
ered in the computation of interfering workload can be reduced to m − 1 for general
work-conserving schedulers. A similar argument is applicable to FTP-scheduled sys-
tems, with an additional improvement: besides ignoring the interference from lower
priority tasks, there is no need to consider previous jobs of τk in the computation of
the workload interfering with the problem job of τk .

Theorem 18.5 (Improved [rta] for FTP) An upper bound on the worst-case re-
sponse time Rk of a task τk in a multiprocessor system scheduled with global FTP
can be derived by the fixed point iteration on the value Rub

k of the following expression,
starting with Rub

k = Ck:

Rub
k ← Ck +

⎢⎢⎢⎣ 1

m

⎛

⎝
∑

i<k

ŴNC
i (L) +

∑

i<k|(m−1) largest

Ŵ ε
i (L)

⎞

⎠

⎥⎥⎥⎦ , (18.5)

where ŴNC
i (L) and Ŵ ε

i (L) are given by Eqs. (17.8) and (17.9), respectively.

Proof Consider an interval of interest that starts at the last time-instant, prior to the
arrival of the problem job of τk , at which some processor is idle or is executing a
task with priority lower than or equal to τk . Let to denote this time-instant.

Note that as long as Rk ≤ Tk , the previous instances of the problem job do not
contribute to the interfering workload in the considered interval. Also, from to to the
release of the problem job, all processors are busy executing higher-priority jobs.
Therefore the response time of the problem job cannot decrease if we were to shift
all τk’s instances to the left (i.e., earlier in time), so that the release of the problem
job coincides with to.

By the definition of to, there are at most (m − 1) carry-in tasks interfering with
τk . An upper bound on the response time of τk can then be obtained by considering
a situation in which there are only m − 1 carry-in instances.
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The theorem follows by considering that at most (m−1) tasks contribute at amount
ŴCI

i , given by Eq. (17.7), and the remaining (n − m + 1) ones must contribute
ŴNC

i . �

Note that there is no need to consider the case i = k in the terms ŴNC
i (L) and

ŴCI
i (L) given by Eqs. (17.8) and (17.7).
Differently from the EDF and general work-conserving cases, the above theorem

dominates its original [rta] counterpart given by Theorem 18.4, which considers the
full carry-in contribution ŴCI

i for all tasks. However, when the number of tasks is
n ≤ 2m, both theorems are equivalent [74].

Lemma 18.1 The response time upper bounds of the m highest-priority tasks
computed with Theorem 18.4 and 18.5 are equal to their worst-case execution times:

Rub
k = Ck , ∀1 ≤ k ≤ m.

Proof This can be seen by considering Eqs. (18.4) and 18.5 starting with Rub
k = Ck .

The bounds ŴNC
i (L) and ŴCI

i (L) given by Eqs. (17.8) and (17.7) are limited by
the Rub

k − Ck + 1 term in the minimum, which is equal to 1. Since there are at
most m − 1 higher priority tasks, the floor function in Eqs. (18.4) and 18.5 gives
�(m−1)/m� = 0. Hence, the fixed point iteration immediately terminates, returning
a value of Rub

k = Ck , ∀1 ≤ i ≤ m. �

Theorem 18.6 Theorem 18.4 and 18.5 are equivalent when n ≤ 2m.

Proof From Lemma 18.1, we know that both theorems are equivalent when n ≤ m.
Now, consider the tasks with priorities from m+1 to 2m. The interference from the m

highest priority tasks τi can be computed considering that ∀1 ≤ i ≤ m : Rub
i = Ci . In

these conditions, the term ŴCI
i (L) given by Eq. (17.7) is equal to the corresponding

term ŴNC
i (L) given by Eqs. (17.8), for all 1 ≤ i ≤ m, so that Ŵ ε

i (L) = 0 for all
1 ≤ i ≤ m. Out of the first 2m − 1 tasks, at most 2m − 1 − m = m − 1 of them
can have Ŵ ε

i (L) ≥ 0. Limiting the sum of the Ŵ ε
i (L) terms in Eq. 18.5 to the largest

m − 1 contributions has therefore no effect for each of the 2m higher-priority tasks.
Hence, Eq. 18.5 reduces to Equation (18.4), proving the theorem. �

18.3.1 Reducing the Number of Carry-in Instances for [bcl]

The idea explored above for limiting the contribution of carry-in in the [rta] test is
also applicable to the [bcl] test presented in Sect. 18.1; the proof is identical to that
of Theorem 18.5.

Theorem 18.7 (Improved [bcl] for FTP) Task system τ is FTP schedulable if, for
each τk ∈ τ ,

⎛

⎝
∑

i<k

ŴNC
i,k +

∑

i<k|(m−1) largest

Ŵ ε
i,k

⎞

⎠ < m(Dk − Ck), (18.6)
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where

ŴNC
i,k = min

(⌊
Dk

Ti

⌋
Ci + min(Ci , Dk mod Ti), Dk − Ck

)
, (18.7)

ŴCI
i,k = min

(
Ŵi(Dk), Dk − Ck

)
, (18.8)

Ŵ ε
i,k

.= ŴCI
i,k − ŴNC

i,k , (18.9)

and Ŵi(L) is given by Eq. 17.3.

18.4 The Priority Assignment Problem

All the FTP schedulability tests that we have described above check whether a task
system is schedulable for a given priority assignment. We now consider the design
problem of assigning the priorities: given a task system that must be scheduled
using FTP scheduling, how do we assign priorities to the tasks in order to ensure
schedulability?

We had seen in Sect. 4.2 that the priority assignment problem is solved for
constrained-deadline 3-parameter sporadic task systems upon preemptive unipro-
cessors: deadline monotonic (DM) priority assignment is optimal in the sense
that if a task system is FTP schedulable under any priority assignment then it is
also FTP-schedulable under the DM priority assignment. However, it is easy to
construct examples showing that DM is not optimal for global scheduling upon
multiprocessors.

A very general scheme for assigning priorities on uniprocessor platforms was
proposed by Audsley [12, 14, 15]1.

This scheme, depicted in pseudocode form in Fig. 18.2, seeks to recursively iden-
tify a task that may be assigned lowest priority; once such a task has been identified,
it is removed from consideration and the process repeated with the remaining tasks.

This is guaranteed to find a priority assignment that is feasible according to schedu-
lability test S, if one exists. The test is invoked at most n(n + 1)/2 times where n

denotes the number of tasks in the system, which is significantly better than inspect-
ing all n!-possible priority orderings. However, S cannot be just any schedulability
test; in [74], a set of three conditions are identified for a schedulability test to be
compatible with the Audsley algorithm.

Theorem 18.8 (from [74]) A schedulability test S is compatible with the Audsley
algorithm if and only if the following three conditions are met:

1 This can be thought of as a generalization of the technique introduced earlier by Lawler [122] to
recurrent tasks.
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1. The S-schedulability of a task does not depend on the relative priority ordering
of higher-priority tasks.

2. The S-schedulability of a task does not depend on the relative priority ordering
of lower-priority tasks.

3. A task that is S schedulable remains S schedulable if it is assigned a higher
priority.

It is easy to see that the above conditions are needed because the assignment of prior-
ities with Audsley’s algorithm is agnostic of the relative priority ordering mentioned
in the conditions.

The schedulability tests presented in this chapter are not all compatible with the
Audsley algorithm. While Condition 2 and 3 hold for all of them, the same is not
true for Condition 1. In particular, both the [rta] and the improved [rta] tests do
not meet Condition 1 and are, therefore, not compatible, as can be seen with the
following example (from [74]).

Example 18.1 Consider a task set composed of the following four tasks: τ1 =
(10, 20, 20), τ2 = (10, 20, 20), τ3 = (10, 20, 100), τ4 = (20, 55, 55). When m = 2,
the task set is deemed schedulable by [rta] test with upper bounds on task response
times of 10, 10, 20, and 55, respectively. However, by switching the priorities of
τ2 and τ3, the response time upper bound of τ2 increases to 20. This increases the
interference bound of τ2 on τ4, so that τ4 is no longer deemed schedulable by [rta].

Using Theorem 18.6, the same example can be used to prove that the improved
[rta] is not compatible with the Audsley algorithm either.

A pessimistic version of the [rta] that is compatible with the Audsley algo-
rithm can be derived by considering Ri = Di for all higher-priority tasks τi when
computing Rub

k , as stated in the following theorem.

Theorem 18.9 (Pessimistic [rta] for FTP) An upper bound on the response time of
a task τk in a multiprocessor system scheduled with FTP can be derived by the fixed
point iteration on the value Rub

k of the following expression, starting with Rub
k = Ck:

Rub
k ← Ck +

⌊
1

m

∑

i<k

min
(
Ŵ ∗

i (Rub
k ), Rub

k − Ck + 1
)
⌋

, (18.10)

where

Ŵ ∗
i (L) =

⌊
L + Di − Ci

Ti

⌋
Ci + min(Ci , (L + Di − Ci) mod Ti). (18.11)

Since Ŵ ∗
i (L) ≥ Ŵi(L) as long as Ri ≤ Di , Theorem 18.9 is more pessimistic

than the original [rta]. However, the response time-bound Rub
k does not depend on

the response time bounds of higher priority tasks, so that it is insensitive of their
relative priority ordering, meeting Condition 1.

A pessimistic version of the test of Theorem 18.5 can similarly be formulated
using Ŵ ∗

i (L) instead of Ŵi(L) when computing the Ŵ ε
i (L) terms. Also in this case,

this pessimistic version is compatible with the Audsley algorithm.
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OPTIMALPRIORITY(τ)
� Optimal priority assignment for single processor systems.

1 for k = n to 1 do
2 for each task τi ∈ τ do
3 if τi is schedulable at priority k using test S

ytiroirpngissA4 k to τi
5 Remove τi from τ

� Exit the inner loop
6 break

end for
7 if no task has been assigned priority k
8 return unschedulable

end for
� When all priorities have been assigned, declare success

9 return schedulable

Fig. 18.2 The Audsley algorithm for priority assignment in single processor systems

Regarding the [bcl] test and its improved version (Theorems 18.2 and 18.7), it
can be verified that both tests are compatible with the Audsley algorithm.

A priority assignment for multiprocessor systems globally scheduled with FTP can
be derived by using the Audsley algorithm together with a compatible schedulability
test. The tightest test among the compatible ones presented in this chapter appears
to be the pessimistic version of Theorem 18.5 that replaces Ŵi(L) with Ŵ ∗

i (L).
If the use of a tighter schedulability test that is not compatible with the Audsley

algorithm is desired, an alternative is to choose a priority assignment, such as deadline
monotonic or [DM-DS], and then check this priority assignment for schedulability.
Davis and Burns [74] conducted schedulability experiments comparing a variety
of different priority assignments, including DM, slack monotonic, etc., in terms
of schedulable task sets among randomly generated workloads. Summarizing their
conclusions (the detailed discussion may be found in [74]), it appears that theAudsley
algorithm coupled with a compatible test generally outperforms any of the other
studied priority assignments coupled with a tighter schedulability test.

Sources

The response-time analysis for global FTP has been presented in [58]. The reduction
of the carry-in instances to consider, presented in Sect. 18.3, is from [100]. Theorem
18.6 and the considerations on the priority assignment problem are from [74].



Chapter 19
Speedup Bounds for Global Scheduling

In the preceding chapters, we have seen a variety of global schedulability analysis
tests for the fixed job priority (FJP) scheduling algorithm EDF, the fixed task priority
(FTP) scheduling algorithm deadline monotonic (DM), and the dynamic priority
scheduling algorithm [EDZL]. When applied to systems of sporadic three-parameter
task systems, the only one of these tests for which a quantitative metric of worst-
case performance was obtained is the [bak] test (Chap. 16): Corollary 16.1 showed
that the processor speedup factor of the [bak] test is no larger than (3 + √

5)/2, or
≈ 2.6181. In this chapter, we will describe the results of [63] deriving a tight speedup
bound of (2− 1

m
) for global EDF scheduling of three-parameter sporadic task systems

upon m processors, and a tight speedup bound of (3 − 1
m

) for global DM scheduling
of three-parameter sporadic task systems upon m processors. We will also describe
how these speedup bounds were used [36, 37, 63] to derive pseudopolynomial time
schedulability tests that are within a factor ε away from optimal, for ε an arbitrarily
small positive number.

Recall the definition of the speedup factor metric (Definition 5.2 in Chap. 5). A
schedulability test is defined to have a processor speedup factor f , f ≥ 1, if any
task system not deemed to be schedulable by this test upon a particular platform is
guaranteed to not be feasible—schedulable by an optimal clairvoyant scheduler—
upon a platform in which each processor is at most 1/f times as fast. As stated above,
we will now determine the processor speedup factor of global EDF and global DM
when scheduling sporadic task systems; for ease of presentation, we restrict our
attention here to constrained task systems.

The remainder of this chapter is organized as follows. We describe a characteri-
zation of a task’s demand called forced-forward demand in Sect. 19.1 below. This
allows for the derivation of a tighter lower bound than DBF (Sect. 10.3) upon the
largest amount of execution that may be demanded by a task over an interval.

In Sect. 19.2, we determine sufficient schedulability conditions for both EDF
and DM. From these, we derive speedup bounds in Sect. 19.3. The idea behind
these speedup bounds can be expanded to develop sufficient schedulability tests with
superior speedup bounds; we illustrate this by developing such a test for EDF in
Sect. 19.4.
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Fig. 19.1 Illustrating Example 19.1.

19.1 The Forced-Forward Demand Bound Function

It was observed [24, 63] that some jobs arriving and/or having deadlines outside an
interval could also contribute to the cumulative execution requirement placed on the
computing platform within the interval. This observation led to the introduction of
a notion called minimum demand [24]. The minimum demand of a given collection
of jobs in a particular interval of time is the minimum amount of execution that the
sequence of jobs could require within that interval in order to meet all its deadlines.1

We illustrate the difference between demand and minimum demand by a simple
example.

Example 19.1 Consider a sequence of jobs comprised of a single job that arrives at
time-instant zero, has an execution requirement equal to 5, and a deadline at time-
instant 10 (Fig. 19.1). The demand of this sequence of jobs over the time-interval
[0, t) is 0 for all t < 5, and 3 for all t ≥ 5. The minimum demand of this sequence
of jobs over the time-interval [0, t) is equal to

• zero, for values of t ≤ 2;
• t − 2, for t ∈ (2, 5], since the sole job must execute for at least t − 2 units over

the interval if it is to meet its deadline; and
• 3, for t > 5.

The minimum demand concept is extended to sporadic tasks as follows. By definition,
a sporadic task τi may generate infinitely many different collections of jobs. For a
given interval-length t , τi’s maxmin demand is defined to be the largest minimum
demand over an interval of length t , by any collection of jobs that could legally be
generated by τi .

The maxmin demand of a sporadic task system τ for interval-length t is defined
as the sum of the maxmin demands of the tasks in τ , each for an interval-length t .

The maxmin load of τ is defined as the maximum value of the maxmin demand
of τ for t , normalized by the interval length.

Forced-Forward Demand Bound Function In [36, 37, 63], these concepts of
maxmin demand and maxmin load were generalized in the following manner to be
applicable to execution on speed-σ processors, for arbitrary σ > 0.

1 An essentially identical concept was independently introduced in [63], and called the necessary
demand; a related concept called forced-forward demand was also introduced.
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Fig. 19.2 Illustrating ff-DBF(τi , t , σ ).

Let τi denote a sporadic task, t any positive real number, and σ any positive real
number ≤ 1. The forced-forward demand bound function ff-DBF(τi , t , σ ) is defined
as follows:

ff-DBF(τi , t , σ )
def= qiCi +

⎧
⎪⎪⎨

⎪⎪⎩

Ci if ri ≥ Di

Ci − (Di − ri)σ if Di > ri ≥ Di − Ci

σ

0 otherwise

(19.1)

where

qi
def=
⌊

t

Ti

⌋
and ri

def= t mod Ti .

Informally speaking, ff-DBF(τi , t , σ ) can be thought of as denoting the maxmin
demand of τi for interval-length t , when execution outside the interval occurs on
a speed-σ processor—see Fig. 19.2. The demand bound function DBF described in
Sect. 10.3 is a special case of ff-DBF, in which it is assumed that execution outside
the interval occurs on an infinite-speed processor:

DBF(τi , t) = ff-DBF(τi , t , ∞) .

Some additional notation: for a task system τ

ff-DBF(τ , t , σ )
def=

∑

τ�∈τ

ff-DBF(τ�, t , σ ) . (19.2)

ff-load(τ , σ )
def= max

t>0

(
ff-DBF(τ , t , σ )

t

)
. (19.3)

It follows from the results in [81] that the exact determination of ff-DBF and ff-load
is computationally intractable (co-NP hard).
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Fig. 19.3 Notation used in Sect. 19.2.

19.2 Sufficient Schedulability Conditions

Both EDF and DM are work-conserving algorithms: they never idle any processor
while there are jobs awaiting execution. As we will see below, this work-conserving
property implies that a deadline miss can only follow an interval during which a
considerable amount of execution must have occurred. This property is formalized
in Observation 19.1 below, based upon the following reasoning.

Let A denote some work-conserving algorithm that misses a deadline while
scheduling some legal collection of jobs generated by τ on a unit-speed proces-
sor. Let us now examine A’s behavior on some minimal2 legal collection of jobs of
τ on which it misses a deadline.

Let t0 denote the instant at which the deadline miss occurs. Let j1 denote a job
that misses its deadline at t0, and let t1 denote j1’s arrival-time.

Let s denote any constant satisfying densmax(τ ) ≤ s ≤ 1.
(Observe that, since s ≥ densmax(τ ) and j1 has not completed execution by t0, it

has executed for strictly less than (t0 − t1) × s units over the interval [t1, t0).)
We define a sequence of jobs ji , time-instants ti , and an index k, according to the

following pseudo-code (also see Fig. 19.3):

for i← 2 3 do
let ji denote a job that

– arrives at some time-instant t i< ti−1;
– has a deadline after ti−1;
– has not completed execution by ti−1; and
– has executed for strictly less than (ti−1 − ti)× s units over the interval

.,, . .

if there is no such job then
k← (i−1)
break (out of the for loop)

end if
end for

[t_i, t_{i-1}).

2 By minimal we mean that A is able to successfully schedule every proper subset of this collection
of jobs.
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Let W denote the amount of execution that occurs in this schedule over the interval
[tk , t0). Observation 19.1 derives a lower bound on W for any work-conserving
algorithm A.

Observation 19.1

W > (m − (m − 1)s) × (t0 − tk) .

Proof This is easily shown by an application of the technique in [155].
For each i, 1 ≤ i ≤ k, let Wi denote the total amount of execution that occurs

over the interval [ti , ti−1). Hence, W = ∑k
i=1 Wi .

Let xi denote the total length of the time-intervals over [ti , ti−1) during which job
ji executes.

By choice of job ji , it is the case that

xi < (ti−1 − ti) · s .

By choice of job ji , it has not completed execution by time-instant ti−1. Hence over
[ti , ti−1), all m processors must be executing whenever ji is not; it follows that

Wi ≥ m(ti−1 − ti − xi) + xi

= m(ti−1 − ti) − (m − 1)xi

> m(ti−1 − ti) − (m − 1)(ti−1 − ti)s

= (m − (m − 1)s) × (ti−1 − ti) .

The observation, follows, by summing
∑k

i=1 Wi . �

Observation 19.1 above derived a lower bound on the amount of work W that
is executed over [tk , t0). In the following two observations, we will derive upper
bounds on W when the scheduling algorithm is EDF and DM respectively; necessary
conditions for nonschedulability under EDF and DM will follow, by requiring that
the respective upper bounds be at least as large as the lower bound.

Observation 19.2 (EDF) If the work-conserving algorithm A is EDF, then

W ≤ ff-DBF(τ , (t0 − tk), s) .

Proof Recall our assumption that we are analyzing a minimal unschedulable collec-
tion of jobs. If EDF is the scheduling algorithm, then such a minimal unschedulable
collection will not contain any job that has its deadline > t0 (since the presence of
such jobs cannot effect the scheduling of jobs with deadline ≤ t0, the collection of
jobs obtained by removing all such jobs is also unschedulable by EDF.)

Thus all jobs that execute in [tk , t0) (and thereby contribute to W ) have their
deadlines within the interval [tk , t0). Some of them will also have arrived within this
interval, while others may not.
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Now it may be verified that the amount of execution that jobs of any task τ�

contribute to W is bounded from above by the scenario in which a job of τ� has
its deadline coincident with the end of the interval t0, and prior jobs have arrived
exactly T� time-units apart. Under this scenario, the jobs of τ� that may contribute to
W include

• at least q�
def= �(t0 − tk)/T�� jobs of τ� that lie entirely within the interval [tk , t0);

and
• (perhaps) an additional job that has its deadline at time-instant tk + r�, where

r�
def= (t0 − tk) mod T�.

We now consider two separate cases:

1. r� ≥ D�; i.e., the additional job with deadline at tk + r� arrives at or after tk . In
this case, its contribution is C�.

2. r� < D�; i.e., the additional job with deadline at tk + r� arrives prior to tk . From
the exit condition of the for-loop, it must be the case that this job has completed at
least (D� − r�)× s units of execution prior to time-instant tk; hence, its remaining
execution is at most max(0, C� − (D� − r�) × s).

In either case, it may be seen that the upper bound on the total contribution of
τ� to W is equal to ff-DBF(τ�, t0 − tk , s) (see Eq. 19.1). Summing over all �, we
conclude that the total contribution of all the tasks to W is bounded from above by∑n

�=1 (ff-DBF(τ�, t0 − tk , s)). �

Observation 19.3 (DM) If the work-conserving algorithm A is DM, then

W ≤ ff-DBF(τ , 2(t0 − tk), s) .

Proof Recall once again our assumption that we are analyzing a minimal unschedu-
lable collection of jobs. If DM is the scheduling algorithm, then such a minimal
unschedulable collection will not contain any job with relative deadline greater than
the relative deadline of j1, the job that misses its deadline at time-instant t0 (since
such jobs are assigned lower priority than j1 under DM, and hence cannot effect the
ability or otherwise of j1 to meet its deadline.)

By the definition of t1, the relative deadline of j1 is (t0 − t1). For any job with
relative deadline < (t0 − t1) to contribute to W (and hence execute prior to t0), it
must have a deadline ≤ (t0 + (t0 − t1)), i.e., 2t0 − t1.

As in the proof of Observation 19.2 above, it may be verified that the amount
of execution that jobs of any task τ� contribute to W is bounded from above by the
scenario in which a job of τ� has its deadline coincident with the end of the interval
(i.e., at 2t0 − t1), and prior jobs have arrived exactly T� time-units apart. Under this
scenario, it follows by an argument essentially identical to the one used in the proof
of Observation 19.2 that the total contribution of all the tasks to W is bounded from
above by ff-DBF(τ , 2t0 − t1 − tk , s). But since tk ≤ t1, (2t0 − t1 − tk) ≥ 2(t0 − tk),
and the observation is proved. �
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Lemma 19.1 (EDF) Suppose that constrained-deadline sporadic task system τ is
not schedulable by global EDF upon m unit-speed processors. For each s, s ≥
densmax(τ ), there is an interval-length L(s) such that

ff-DBF(τ , L(s), s) > (m − (m − 1)s)L(s) .

Proof Follows by chaining the lower bound on W of Observation 19.1 with the
upper bound of Observation 19.2, with L(s) ← (t0 − tk). �

Lemma 19.2 (DM) Suppose that constrained-deadline sporadic task system τ is not
schedulable by global DM upon m unit-speed processors. For each s, s ≥ densmax(τ ),
there is an interval-length L(s) such that

ff-DBF(τ , L(s), s) > (m − (m − 1)s)
L(s)

2
.

Proof Follows by chaining the lower bound on W of Observation 19.1 with the
upper bound of Observation 19.3, with L(s) ← 2(t0 − tk). �

Sufficient Schedulability Conditions The contrapositive of Lemma 19.1 above
represents a global EDF schedulability condition: any task system τ satisfying
(∃σ :σ ≥ densmax(τ ) :

(∀Δ : Δ ≥ 0 :
(
ff-DBF(τ , Δ, σ ) ≤ (m − (m − 1)σ ) × Δ

)))

(19.4)

is EDF-schedulable upon m unit-speed processors.
Similarly, the contrapositive of Lemma 19.2 represents a global DM schedulability

condition: any task system τ satisfying

(∃σ :σ ≥ densmax(τ ) :
(∀Δ : Δ ≥ 0 :

(
ff-DBF(τ , Δ, σ ) ≤ (m − (m − 1)σ ) × Δ

2

)))

(19.5)

is DM-schedulable upon m unit-speed processors.

19.3 Determining Processor Speedup Factor

We now determine, in Theorems 19.1 and 19.2 below, the processor speedup factors
of schedulability tests for EDF and DM, respectively, based on checking the sufficient
schedulability conditions derived in Sect. 19.2 above.

In [24] (Theorem 2), necessary conditions for global multiprocessor schedulabil-
ity were identified; these necessary conditions generalize to our context and notation
in the following manner:

Lemma 19.3 If ff-load(τ , σ ) > mσ then τ is not feasible on m speed-σ
processors.
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Proof Suppose that ff-load(τ , σ ) > mσ .
Let t0 denote a value for t that maximizes the RHS of Eq. 19.3, and hence

determines the value of ff-load(τ , σ ):

ff-load(τ , σ ) = (∑

τ�∈τ

ff-DBF(τ�, t0, σ )
)
/t0.

By definition of ff-DBF, each task τ� can generate a sequence of jobs that together
require ≥ ff-DBF(τ�, t0, σ ) units of execution over some interval of length t0, when
executing upon speed-σ processors. Since the different tasks of a sporadic task system
are assumed to be independent of each other, such intervals for the different tasks can
be aligned; the total execution requirement by all the tasks over the aligned interval
is

≥
∑

τ�∈τ

ff-DBF(τ�, t0, σ )

= ff-load(τ , σ ) × t0 (By definition of t0)

> mσt0 (Since ff-load(τ , σ ) is assumed to be > mσ ).

But mσt0 denotes the total computing capacity over an interval of size t0 upon m

speed-σ processors. We therefore conclude that the total execution requirement by
all the tasks in τ over the interval cannot be met, and some deadline must necessarily
be missed. �

Lemma 19.4 If task system τ does not satisfy Condition 19.4, then it is not feasible
upon a platform comprised of m speed- m

2m−1 processors.

Proof First, any τ not satisfying Condition 19.4 that has densmax(τ ) > m/(2m − 1)
is trivially not feasible on speed- m

2m−1 processors.
Next, consider τ with densmax(τ ) ≤ m/(2m − 1). Suppose that τ does not satisfy

Condition 19.4: for all values of σ > densmax(τ ), there is an interval-length Δ ≥ 0
such that ff-DBF(τ , Δ, σ ) > (m − (m − 1)σ ) × Δ.

Let us instantiate this inequality for σ ← m/(2m − 1):

∀ Δ ≥ 0 : ff-DBF(τ , Δ,
m

2m − 1
)

>
(
m − (m − 1)

m

2m − 1

) × Δ

⇒ ff-load(τ ,
m

2m − 1
) > m − (m − 1)

m

2m − 1

⇔ ff-load(τ ,
m

2m − 1
) >

2m2 − m − m2 + m

2m − 1

⇔ ff-load(τ ,
m

2m − 1
) > m

m

2m − 1
.

It therefore follows, from Lemma 19.3, that τ is not feasible upon a platform
comprised of m speed- m

2m−1 processors. �
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By taking the contrapositive of Lemma 19.4 above and observing that 1/( m
2m−1 )

is equal to (2 − 1
m

), we have

Theorem 19.1 The processor speedup factor of an EDF schedulability test based on
checking Condition 19.4 has a processor speedup factor of (2− 1

m
) on an m-processor

platform.
Reasoning very similar to that used in Lemma 19.4 and Theorem 19.1 above are

now applied to DM scheduling:

Lemma 19.5 If task system τ fails the DM schedulability test of Condition 19.5,
then it is not feasible upon a platform comprised of m speed- m

3m−1 processors.

Proof Suppose that τ fails the schedulability test of Condition 19.5.
If densmax(τ ) > (m/(3m − 1) then τ is trivially not feasible on a platform

comprised of (any number of) speed-(m/(3m − 1) processors, and we are done.
Assume now that densmax(τ ) ≤ (m/(3m − 1). Suppose that τ does not satisfy

Condition 19.5: for all values of σ > densmax(τ ), there is an interval-length Δ ≥ 0
such that ff-DBF(τ , Δ, σ ) > (m − (m − 1)σ ) × Δ

2 .
Let us instantiate this inequality for σ ← m/(3m − 1):

∀ Δ ≥ 0 : ff-DBF(τ , Δ,
m

3m − 1
)

>
(
m − (m − 1)

m

3m − 1

) × Δ

2

⇒ ff-load(τ ,
m

3m − 1
) > (m − (m − 1)

m

3m − 1
) × 1

2

⇔ ff-load(τ ,
m

3m − 1
) >

3m2 − m − m2 + m

2(3m − 1)

⇔ ff-load(τ ,
m

3m − 1
) > m

m

3m − 1
.

It therefore follows from Lemma 19.3 above that τ is not feasible upon a platform
comprised of m speed- m

3m−1 processors. �

By taking the contrapositive of Lemma 19.4 above and observing that 1/( m
3m−1 )

is equal to (3 − 1
m

), we have Theorem 19.2

Theorem 19.2 The processor speedup factor of a DM schedulability test based on
checking Condition 19.5 has a processor speedup factor of (3− 1

m
) on an m-processor

platform.

19.4 Improved Schedulability Tests

Condition 19.4 is the contrapositive of the EDF unschedulability condition of
Lemma 19.1; it states that in order to show that a task system τ is EDF-schedulable,
it suffices to demonstrate that there exists a σ ≥ densmax(τ ) such that
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ff-DBF(τ , t , σ ) ≤ (m − (m − 1)σ ) × t (19.6)

for all values of t ≥ 0. Such a σ is called a witness to the EDF-schedulability of
τ . In order to obtain a schedulability test with the optimal processor speedup factor
of (2 − (1/m)), we have seen (Theorem 19.1 above) that we need only consider
σ ← m/(2m − 1) as a potential witness, declaring the task set as not being EDF
schedulable if this value of σ fails to satisfy Inequality 19.6 for all t ≥ 0.

However, by testing only one out of all the values of σ that could bear witness to a
task system’s schedulability, this test clearly fails to make full use of the insight into
EDF-schedulability that Lemma 19.1 affords us. We will derive an algorithm that
fully exploits the insight of Lemma 19.1, by correctly identifying all task systems
for which any σ would cause Inequality 19.6 to evaluate to true for all t ≥ 0.

(We note that a similar exercise may be conducted for the DM schedulability
test derived from Condition 19.5, the contrapositive of the DM unschedulability
condition of Lemma 19.2. The steps are essentially identical to the ones for EDF
as described below; hence, we will not describe the details for DM schedulability
analysis here.)

Note that there are infinitely many different values of σ that could potentially
be witnesses to the EDF-schedulability of a task system. For each such potential
witness, there are infinitely many values of t for which it must be validated that
Inequality 19.6 is satisfied. Two questions must therefore now be answered:

Q1: What values of σ need to be considered as potential witnesses to the EDF-
schedulability of τ?

Q2: In order to determine whether a particular σ is indeed a witness or not, for which
values of t does Condition 19.6 need to be evaluated?

We address the second of these questions first, in Sect. 19.4.1 below; the first question
is addressed in Sect. 19.4.2.

19.4.1 Bounding the Range of Time-Values that Must Be Tested

We now address Q2, the second of the questions listed above: for a given value of σ ,
for which values of t must we validate Condition 19.6 in order to be able to conclude
that it holds for all t?

Claim 19.1 For a given σ and τ , if Condition 19.6 is violated for any t then it is
violated for some t in

⋃

τi∈τ

{
kTi + Di , kTi + Di − min(Ci/σ , Di) | k ∈ N

}
(19.7)

Proof Sketch: This follows from the observation (also see Fig. 19.2) that
ff-DBF(τi , t , σ ) increases with a constant slope between kTi + Di − min(Ci/σ , Di)
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and kTi + Di , and remains unchanged elsewhere, for all k ∈ N. Hence the LHS of
Condition 19.6 increases with constant slope with increasing t between two consec-
utive t’s in this set; since the RHS also increases with constant slope with increasing
t , it is guaranteed that if this condition is violated at some t̃ it will be violated at one
of the two t’s in this set that neighbor t̃ . �

Claim 19.1 above tells us that we need evaluate Condition 19.6 for only countably
many t’s; Claims 19.2 and 19.3 below allow us to bound the actual number.

Claim 19.2 If Condition 19.6 is violated at some t for a given τ and m, and a
particular σ ≤ (m−U (τ ))/(m−1), then it is violated at some t no larger than P (τ ).

Proof Recall that P (τ ) denotes the hyperperiod—the least common multiple of the
task period parameters—of τ .

Since for all τi the period Ti divides the hyperperiod P (τ ), it follows from Eq. 19.1
(also see Fig. 19.2) that

ff-DBF(τ , t + P (τ ), σ ) = P (τ ) × U (τ ) + ff-DBF(τi , t , σ )

≤ P (τ ) × (m − (m − 1)σ ) + ff-DBF(τi , t , σ )

(since we are assuming that σ ≤ (m − (U (τ ))/(m − 1)). Hence if Condition 19.6 is
to be violated for some tv > P (τ ), it will also be violated for tvmodP (τ ). �

Claim 19.2 tells us that P (τ ) is an upper bound on the values of t for which
Condition 19.6 needs to be evaluated. Claim 19.3 below provides another upper
bound.

Claim 19.3 If Condition 19.6 is violated at some t for a given τ and m, and a
particular σ ≤ (m − U (τ ))/(m − 1), then t is no larger than

∑
τi∈τ Ci

m − (m − 1)σ − U (τ )
. (19.8)

Proof We first observe that it directly follows from the definition of ff-DBF (Eq. 19.1,
also see Fig. 19.2) that for all t ≥ Di and for all σ ,

ff-DBF(τi , t , σ ) ≤
(

t

Ti

+ 1

)
Ci.

Suppose that ff-DBF(τ , t , σ ) > (m− (m−1)σ)t for some t > maxτi∈τ {Di}. We then
have

ff-DBF(τ , t , σ ) > (m − (m − 1)σ)t

⇒
∑

τi∈τ

(
t
Ci

Ti

+ Ci

)
> (m − (m − 1)σ)t

⇔ tU (τ ) +
∑

τi∈τ

Ci > (m − (m − 1)σ)t
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⇔ t <

∑
τi∈τ Ci

m − (m − 1)σ − U (τ )

and the lemma is proved. �

Testing Set For a given σ and τ , let T S(τ , σ ) denote the testing set of values of t

that lie in the set defined in Eq. 19.7 and are no larger than both P (τ ) and the bound
defined by Eq. 19.8.

How large can this testing set be? As shown in Claim 19.2, we need not consider
any t exceeding the hyperperiod P (τ ). It is easily seen that there are at most expo-
nentially many points in the set defined in Eq. 19.7 not exceeding P (τ ); hence, the
testing set contains at most exponentially many points.

Suppose, however, that we were to enforce an additional restriction that we would
not consider any σ greater than

(
m − U (τ ) − ε

)
/(m − 1) (19.9)

where ε is an arbitrarily small positive constant.
It would then follow from Inequality (19.8) that the upper bound on the values

in T S(τ , σ ) is guaranteed to be ≤ (
∑

τi∈τ Ci)/ε, which is pseudopolynomial in
the representation of the task system τ . Thus, this restriction immediately yields a
pseudopolynomial upper bound on the number of elements in T S(τ , σ ).

The consequence of enforcing the restriction of Eq. 19.9 above is that the test we
develop is no longer able to identify all task systems satisfying Condition 19.4: task
systems that only satisfy Condition 19.4 for values of σ in (m − U (τ ) − ε)/(m −
1) ε, (m − U (τ ))/(m − 1)] would not be identified by our test. In exchange for
this slight loss of optimality (the degree of which can be controlled by choosing
ε to be appropriately small), we would restrict the size of the testing set to be
pseudopolynomial.

19.4.2 Choosing Potential Witnesses to Test

We next address Q1, the first of the two questions listed earlier in this section. That
is, we set about restricting the candidate field of σ ’s that need be tested as potential
witnesses to the EDF-schedulability of τ .

Claim 19.4 No value of σ that is greater than (m − U (τ ))/(m − 1) can possibly
result in Condition 19.6 evaluating to true for all values of t (and hence, no such
value of σ can attest to the EDF-schedulability of τ ).

Proof Observe that ff-DBF(τi , t , σ ) asymptotically approaches t × (Ci/Ti) as t →
∞. Hence ff-DBF(τ , t , σ ) asymptotically approaches t × U (τ ) with increasing t . In
order to have ff-DBF(τ , t , σ ) ≤ (m − (m − 1)σ )t for all t , therefore, we need

U (τ ) ≤ m − (m − 1)σ
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⇔ σ ≤ m − U (τ )

m − 1
.

�

As a consequence of Claim 19.4 above, we can restrict the range of values for
σ that are potential witnesses to the EDF-schedulability of τ . However, there are
still infinitely many distinct values in this range, and we clearly cannot exhaustively
check all these infinitely many values. Fortunately, it so happens that we can restrict
the actual number of values of σ within this range that need be considered as potential
witnesses to the EDF-schedulability of τ , as we will now show.

Let us suppose that we have identified a particular σcur, such that we know that no
σ < σcur can possibility bear witness to the EDF-schedulability of τ . Suppose that
we then test σcur, and determine that it is not a witness to the EDF-schedulability of τ

either. Let tcur denote a value of t that causes Condition 19.6 to evaluate to false when
σ ← σcur. Let σnew denote the smallest value of σ > σcur such that Condition 19.6
evaluates to true with (σ ← σnew; t ← tcur). (We describe below, in Sect. 19.4.4,
how the value of σnew is computed.) It is clear that tcur rules out the possibility of
any σ ∈ [σcur, σnew) bearing witness to the EDF-schedulability of τ ; hence, the next
value of σ that we will need to consider is σnew.

So we have seen how, if we know a constant σcur such that no σ ≤ σcur can be a
witness to the EDF-schedulability of τ , we can determine the next potential witness
σnew that we must consider. Claim 19.5 below tells us that in considering σnew, we
need not revisit values of TS(τ , σnew) that are ≤ tcur:

Claim 19.5 Suppose that τ is not EDF-schedulable. By Lemma 19.1, it must be the
case for each s ≥ densmax(τ ) there is an L(s) such that

ff-DBF(τ , L(s), s) > (m − (m − 1)s) × L(s).
Consider some s1 and t1 ≤ L(s1) such that

ff-DBF(τ , t1, s1) > (m − (m − 1)s1) × t1.

For any s2 > s1, there is a t2, t1 ≤ t2 ≤ L(s2) such that

ff-DBF(τ , t2, s2) > (m − (m − 1)s2) × t2.

Proof The claim would follow if we were able to show that L(s1) ≤ L(s2); since
the claim assumes that t1 ≤ L(s1), setting t2 ← L(s2) would then bear witness to its
correctness.

That L(s1) is no larger than L(s2) follows from the observation that the jobs
j1, j2, . . . that are defined according to the pseudocode given in Sect. 19.2 for a
given value of s (say, s ← s1), are also valid for larger values of s (say, s ← s2).
This is easily shown by induction. Assume that j1, . . . , ji−1 as defined for s ← s1

are valid for s ← s2: this implies that ti−1 is the same when s ← s1 and s ← s2. The
job ji as defined for s ← s1 has executed for less than (ti−1 − ti)s1 prior to ti−1. But
since s2 > s1, it has also executed for less than (ti−1 − ti)s2 prior to ti−1, and hence
satisfies the condition to be considered as job ji for s ← s2 as well. �
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19.4.3 Putting the Pieces Together: The EDF Schedulability Test

We are now ready to put the pieces together, and specify our schedulability test.
This schedulability test is a methodical quest for a value of σ for which there is
no t causing Condition 19.6 to evaluate to false (and which is thus a witness to the
EDF-schedulability of τ ). Based on Claim 19.5 above, we will start out testing a
small value for σ ; if this fails, we can try a larger value for σ and use the result of
Claim 19.5 to trim the set of potential values of t that need to be tested for this larger
value of σ . In greater detail, our algorithm is the following.

S1 Let σcur denote the value of σ currently being evaluated (i.e., the potential witness
currently under consideration).
This is initialized as follows: σcur ← densemax(τ ).
We will also use an additional variable tcur, initialized to zero: tcur ← 0.

S2 If σcur is larger than (m−U (τ )−ε)/(m−1) where ε is an arbitrarily small positive
constant that has been a priori determined, then we exit the test, having failed to
show τ is EDF schedulable. (Here, we are using the result shown in Claim 19.4,
modified as discussed in Eq. 19.9 to yield a testing set of pseudopolynomial size,
to restrict the range of values of σ that we need test as potential witnesses to the
EDF schedulability of τ .) Otherwise by the results of Sect. 19.4.1, we need only
evaluate Condition 19.6 for values of t ∈ TS(τ , σcur) to determine whether it is
satisfiable or not.
We begin at the smallest value in TS(τ , σcur) that is greater than tcur, and consider
the values in TS(τ , σcur) in increasing order.
If no value of t in TS(τ , σcur) causes Condition 19.6 to evaluate to false for this
current value of σcur, then we exit the test, having succeeded in showing that τ

is EDF schedulable.
S3 Suppose, however, that there is some value of t that causes Condition 19.6 to

evaluate to false for this value of σcur. Assign tcur this value of t .
By Claim 19.5, if τ is not EDF schedulable then for all values of σ > σcur there
is some t ≥ tcur which causes Condition 19.6 to evaluate to false.
Let σnew denote the smallest value of σ ′ > σcur, such that

ff-DBF(τ , tcur, σ
′) ≤ (m − (m − 1)σ ′) × tcur .

We compute σnew using the technique described in Sect. 19.4.4 below, assign
σcur this value σnew, and go to Step S2.

Computational Complexity Observe that the values assigned to the variable tcur

during the above algorithm are monotonically increasing—once we assign tcur a
particular value, we never assign it a smaller value even after we have changed the
value assigned to σcur. This observation can be used to show that the total number
of values assigned to tcur is no more than the cardinality of T S(τ , σ ), for the largest
value of σ that is tested. And we have seen in Sect. 19.4.1 that this number is
pseudopolynomially bounded in the representation of the task system τ . We will see
in Sect. 19.4.4 below that σnew can be computed in polynomial time, while the rest of
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the processing above for a given value of tcur is easily seen to also take polynomial
time. This yields the following result:

Theorem 19.3 This EDF schedulability test has pseudopolynomial time complexity.

19.4.4 Computing σnew

It remains to specify how the the value ofσnew is determined in the algorithm described
above. That is, given fixed values for tcur and σcur such that

ff-DBF(τ , tcur, σcur) > (m − (m − 1)σcur) × tcur ,

we are to compute σnew, the smallest σ ′ > σcur such that

ff-DBF(τ , tcur, σ
′) ≤ (m − (m − 1)σ ′) × tcur .

Let us examine how ff-DBF(τi , tcur, σ ) changes as σ is increased in the neighbor-
hood of σcur, while the task τi and the interval-length tcur are kept unchanged.

From Eq. 19.1, we know that ff-DBF(τi , tcur, σ ) depends on qi and ri ,
where qi = �tcur/Ti� and ri = tcur mod Ti . Notice that the values of qi and ri do

not depend on σ . Hence,

(a) ff-DBF(τi , tcur, σ ) does not vary with σ if ri ≥ Di (the first case in Eq. 19.1).
(b) It varies linearly with σ while Di > ri ≥ Di − Ci

σ
. That is, if ri < Di then

ff-DBF(τi , tcur, σ ) decreases linearly with increasing σ while σ ≤ Ci/(Di − ri).
This is the second case in Eq. 19.1.

(c) Once σ increases such that it is > Ci/(Di − ri), ff-DBF(τi , tcur, σ ) remains
unchanged with further increase in the value of σ . This is the third case in
Eq. 19.1.

In order to compute σnew given values for tcur and σcur, we would therefore

L1 Classify each task τi as being either in class (a), (b), or (c) according to the above
classification. That is, a task τi for which ri ≥ Di would be classified as being
in class (a); one with ri < Di and ri ≥ Di − Ci

σcur
would be classified as being in

class (b); while one with ri < Di − Ci

σcur
would be classified as being in class (c).

For each task τi in class (b), let σ̂i
def= Ci/(Di −ri). Increasing σ to make it greater

than σ̂i would cause τi to no longer be a class (b) task.
L2 Observing that only tasks in class (b) have their ff-DBF’s change—linearly—

with changing σ , we can set up and solve a linear equation to determine σo, the
smallest σ ′ > σcur for which

ff-DBF(τ , tcur, σo) = (m − (m − 1)σo) × tcur .

L3 If this computed value of σo is ≤ σ̂i for all tasks τi in class (b), then we have
computed the desired value for σnew. Else,
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a) assign σcur the value of the smallest σ̂i from among all those computed for
tasks in class (b), and

b) repeat from step L1 above.

Computational Complexity It is not difficult to see that σnew can be computed in
time polynomial in the representation of τ . This follows from the observations that

• Steps L1, L2, and L3 above each take polynomial time.
• During each iteration of the three-step process L1–L3 either (i) we determine the

value of σnew and exit; or (ii) at least one task that was in class (b) will henceforth
be placed in class (c) in the subsequent iteration, whereas no additional tasks
become class (b) tasks. Thus, the number of iterations of L1–L3 is bounded from
above by the number of tasks initially in class (b), which is, of course, itself
bounded by the number of tasks in τ .

Sources

The forced-forward demand bound function was proposed in [63] as a refinement to
the demand bound function; ideas leading up to it were previously suggested in [24].
The speedup bounds for EDF and DM presented here were derived in [63]. The EDF
schedulability test we describe here was first presented in [36, 37].



Chapter 20
Global Dynamic Priority Scheduling

In this chapter, we briefly describe the research that had been conducted in the
dynamic-priority scheduling of systems of three-parameter sporadic tasks. In con-
trast to the situation with respect to Liu and Layland task systems (Chap. 7) where
there is a very large body of work to discuss, the research on dynamic priority
(DP) scheduling of three-parameter sporadic task systems is rather sparse. The one
scheduling algorithm that has been explored in some detail—earliest deadline zero
laxity (edzl) (discussed in Sect. 20.2)—is “almost” a fixed job priority (FJP) algo-
rithm in a sense that will become clearer upon reading Sect. 20.2, and hence most of
the analyses conducted on edzl are similar to the analyses seen in earlier chapters
regarding earliest-deadline-first (EDF).

20.1 Least Laxity Scheduling

The laxity of a job at any instant in time in a schedule is defined to be its deadline
minus the sum of its remaining processing time and the current time. The Least-
Laxity-scheduling algorithm assigns greater priority to jobs with smaller laxity; since
the laxities of jobs may change during run-time (the laxity a job that is executing
remains the same, while that of a non-executing job increases), Least Laxity (LL) is
a dynamic priority (DP) scheduling algorithm. It is known that LL is optimal upon
preemptive uniprocessors in the same sense that EDF is (see Sect. 4.1). Although
the results of Dertouzos and Mok [77] rule out the possibility of LL being optimal
upon multiprocessors, it was generally believed (see, e.g., [133]) that LL is strictly
superior to EDF for scheduling sporadic task systems upon preemptive multiproces-
sors. However, this was shown to not be true by Kalyanasundaram et al. [117]; this,
in addition to the fact that it seems very difficult to obtain efficient implementations
of LL schedulers, has resulted in this algorithm falling out of favor.
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20.2 EDZL Scheduling

A somewhat more promising application of laxity-based scheduling is to be found
in the edzl scheduling algorithm [125]. The edzl scheduling algorithm combines
EDF with laxity-based scheduling: Jobs are initially assigned priorities according to
their deadlines, but if the laxity of any job becomes equal to zero it gets promoted to
the highest priority level. It is easy to show that edzl strictly dominates EDF; since
any job that has its laxity become equal to zero must immediately begin executing
and continue to do so until it completes if it is to be guaranteed to complete by its
deadline, the only cases where edzl makes a scheduling decision different from that
made by EDF is if EDF could have missed a deadline. This dominance result implies
that every sufficient EDF-schedulability test is also an edzl sufficient schedulability
test.

In addition, Piao et al. proved in [156] the following utilization bound for edzl-
scheduled implicit deadline systems:

Usum(τ ) ≤ m + 1

2
, (20.1)

and Baker et al. [25, 71] have derived sufficient schedulability conditions for edzl-
scheduled task systems with deadlines different from periods. We will not discuss
these results in this book, but refer the interested reader to [25] for details.

The dominance of edzl over EDF also means that edzl exhibits good pre-
emption and migration properties despite not being a priority-driven algorithm—
Definition 3.3—for which, as discussed in Sect. 2.3.3, it is possible to bound the
number of preemptions and migrations. Specifically, an edzl-generated scheduled
has no more preemptions and migrations than a correct EDF schedule; addition-
ally, it can be shown that since any individual job has its priority changed only
once—when/if it becomes a zero-laxity job—an edzl schedule will have at most
one additional preemption and migration per job.



Chapter 21
The Sporadic DAG Tasks Model

The Liu and Layland task model and the three-parameter sporadic task model both
assume that there is a single thread of execution within each task; they do not allow
for the modeling of parallelism within individual tasks. This was not seen as a
shortcoming of the models when they were first being developed, since both were
proposed in the context of uniprocessor real-time systems for which the presence of
just a single processor ruled out parallel execution.

However, the trend toward implementing real-time systems upon multiproces-
sor and multicore platforms has given rise to a need for models that are capable of
exposing any possible parallelism that may exist within the workload, to the schedul-
ing mechanism. There has therefore recently been a move toward developing new
models that allow for the representation of partial parallelism within a task itself,
as well as for precedence dependencies between different parts of each individual
task. Earlier models of this form include the moldable tasks model [146], the mal-
leable tasks model [72], the fork-join or parallel synchronous task model [120], etc.
The sporadic DAG tasks model [38], which we had briefly described informally in
Sect. 2.1.3, generalizes these earlier models. In this chapter, we will formally define
the sporadic directed acyclic graph (DAG) tasks model, and seek to obtain an intuitive
understanding of the kinds of workload parallelism that can be modeled using this
task model. We will study the schedulability of systems of sporadic DAG tasks, both
for the special case of implicit-deadline systems and for more general task systems.

21.1 The Sporadic DAG Tasks Model

As we had stated in Sect. 2.1.3, each recurrent task in the sporadic DAG tasks model
is modeled as a DAG Gi = (Vi , Ei). Each vertex v ∈ Vi of the DAG corresponds
to a sequential job, and is characterized by a worst-case execution time (WCET) ev.
Each (directed) edge of the DAG represents a precedence constraint: If (v, w) is a
(directed) edge in the DAG then the job corresponding to vertex v must complete
execution before the job corresponding to vertex w may begin execution. Groups of
jobs that are not constrained (directly or indirectly) by precedence constraints in such
a manner may execute in parallel if there are processors available for them to do so.
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The task is further characterized by a (relative) deadline parameter Di and a period
Ti . The interpretation of these parameters is as follows. We say the task Gi releases a
dag-job at time-instant t when it becomes available for execution. When this happens,
we assume that all |Vi | of the jobs become available for execution simultaneously,
subject to the precedence constraints. During any given run the task may release an
unbounded sequence of dag-jobs; all |Vi | jobs that are released at some time-instant
t must complete execution by time-instant t + Di . A minimum interval of duration
Ti must elapse between successive releases of dag-jobs.

More formally, in the sporadic DAG model a task τi is specified as a three-tuple
(Gi , Di , Ti), where Gi is a DAG, and Di and Ti are positive integers.

• The DAG Gi is specified as Gi = (Vi , Ei), where Vi is a set of vertices and Ei a
set of directed edges between these vertices (it is required that these edges do not
form any cycle). Each v ∈ Vi denotes a sequential operation (a “job”). Each job
v ∈ Vi is characterized by a WCET ev ∈ N. The edges represent dependencies
between the jobs: if (v1, v2) ∈ Ei then job v1 must complete execution before
job v2 can begin execution. (We say a job becomes available—i.e., eligible to
execute—once all its predecessor jobs have completed execution.)

• A period Ti ∈ N. A release or arrival of a dag-job of the task at time-instant t

means that all |Vi | jobs v ∈ Vi are released at time-instant t . The period denotes
the minimum amount of time that must elapse between the release of successive
dag-jobs: If a dag-job is released at t , then the next dag-job may not be released
prior to time-instant t + Ti .

• A deadline Di ∈ N. If a dag-job is released at time-instant t then all |Vi | jobs that
were released at t must complete execution by time-instant t + Di .

Analogously with three-parameter sporadic tasks, we may define a system τ of
sporadic DAG tasks to be implicit-deadline if Di = Ti for all τi ∈ τ , constrained-
deadline if Di ≤ Ti for all τi ∈ τ , and arbitrary-deadline otherwise.

If Di > Ti for some task τi in an arbitrary-deadline system, then the task may
release a dag-job prior to the completion of all jobs of the previously-released dag-
jobs—the model does not require that all jobs of a dag-job complete execution before
jobs of the next dag-job can start executing.

Some additional notation and terminology:

• A chain in the sporadic DAG task τi = (Gi , Di , Ti) is a sequence of nodes
v1, v2, . . . , vk in Gi such that (vi , vi+1) is an edge in Gi , 1 ≤ i < k. The length of
this chain is defined to be the sum of the WCETs of all its nodes:

∑k
i=1 evk

.
• leni denotes the length of the longest chain in Gi . We point out that leni can be

computed in time linear in the number of vertices and the number of edges in
Gi , by first obtaining a topological sorting of the vertices of the graph and then
running a straightforward dynamic program.

• voli = ∑
v∈Vi

ev denotes the total WCET of each dag-job of the task τi . Note that
voli can be computed in time linear in the number of vertices in Gi .

• The density of task τi is defined as densi
def= leni/Di and its utilization as

ui
def= voli/Ti .
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Fig. 21.1 Example sporadic
DAG task τ1. Vertices are
labeled with the WCET’s of
the jobs they represent (the
WCET is also indicated by
the size of the vertex)
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• For a DAG sporadic task system τ we define its maximum density densmax(τ ) to be
the largest density of any task in τ : densmax(τ ) = maxτi∈τ {densi}; its utilization
U (τ ) to be the sum of the utilizations of all the tasks in τ : Usum(τ ) = ∑

τi∈τ ui ; and
its hyperperiod P (τ ) to be the least common multiple of the period parameters
of all the tasks in τ : P (τ ) = lcmτi∈τ {Ti}.

Example 21.1 An example sporadic DAG task τ1is depicted graphically in Fig. 21.1.
The DAG Gi for this task consists of six vertices and five directed edges denoting
precedence constraints. The longest chain is of length len(Gi) = 6; by summing
all the WCET’s, we can see that vol(Gi) = 9. Also dens1 = 6/16 = 0.375 and
u1 = 9/20 = 0.45.

21.1.1 Parallelism in the DAG

The sporadic DAG task model generalizes sequential recurrent task models such as
the Liu and Layland model [139] or the three-parameter model [149] in the sense
that each task may generate work that can be simultaneously executed upon more
than one processor. We now seek to characterize the parallelism of a DAG task. Let
us suppose that we had an unbounded number of unit-speed processors available to
us, and let us consider the schedule of a dag-job of τi upon these processors. Let
λi,0 = 0, λi,1, . . . , λi,ki

= leni denote the instants at which the number of processors
used changes—this reflects a change in the degree of parallelism of the dag-job.
It is evident that ki is no larger than the number of vertices |Vi | in the DAG. For
0 ≤ j < ki , let νi,j denote the number of processors used (and hence, the degree of
parallelism) over the duration [λi,j , λi,j+1]. For notational convenience, let νi,ki

= 0.

Example 21.2 Fig. 21.2 illustrates the parallelism within each dag-job of the
example sporadic DAG task τ1 of Fig. 21.1.

The DAG has two source nodes (i.e., nodes with no predecessors); these may
both execute immediately the dag-job is released. Therefore, ν1,0 = 2. One of these
completes upon having executed for one unit (thus, λ1,1 = 1); however, its successor
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Fig. 21.2 The parallelism within each dag-job of the task τ1 of Fig. 21.1

node can only begin executing when both source nodes have completed execution.
When this happens, this single job executes for a further two units of execution.
We therefore have λ1,2 = 4 and ν1,1 = 1. Upon the completion of this job, its three
successor jobs may each begin execution. Two of these successor jobs complete upon
having executed for one unit; the remaining job executes for an additional unit. This
is reflected by having λ1,3 = 5 with ν1,2 = 3, and λ1,4 = 6 with ν1,3 = 1.

21.1.2 Intractability of Feasibility Analysis

Determining whether a system of sporadic DAG tasks is feasible upon a multipro-
cessor platform under global scheduling is highly intractable. Indeed, even for a
system consisting of just a single DAG task for which the relative deadline is ≤
period, determining feasibility is easily seen to be equivalent to the makespan mini-
mization problem for preemptive scheduling of a set of precedence constrained jobs
on identical processors, or P |prec, pmtn|Cmax in the standard three-field scheduling
notation [99]. Therefore, the problem of determining global feasibility for a system
of sporadic DAG tasks is nondeterministic polynomial time (NP)-hard in the strong
sense; in fact, it has been shown [127] to remain so even for schedulers given access
to processors that are faster by a factor (4/3 − ε) for any ε > 0. This result contrasts
with the state of our knowledge concerning three-parameter sporadic task systems,
where the problem is only known to be (co)NP-hard in the ordinary sense [81] (even
on a single processor).

21.2 Implicit-Deadline DAGs

In an implicit-deadline sporadic task system τ , each sporadic DAG task τi =
(Gi , Di , Ti) in τ is required to have its relative deadline parameter Di be equal
to its period Ti : Di = Ti ∀τi ∈ τ . The observation in Sect. 21.1.2 also means that
feasibility analysis for such task systems is NP-hard in the strong sense; here we will
seek efficient approximate scheduling algorithms and schedulability tests.
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Capacity augmentation bounds [137] are similar to utilization bounds (Defini-
tion 5.1):

Definition 21.1 (implicit-deadline DAGs [137]) A scheduling algorithm for spo-
radic DAG task systems is said to have a capacity augmentation bound of b if it can
schedule upon m unit-speed processors all task systems τ satisfying the following
two conditions

1. Usum(τ ) ≤ m/b, and
2. densmax(τ ) ≤ 1/b

In contrast to speedup bounds, which do not necessarily directly yield schedulability
tests, a capacity augmentation bound can be used as an efficient schedulability test,
since both the total utilization Usum(τ ) and the maximum density densmax(τ ) of a
task system τ can be computed very efficiently in time linear in the representation
of the task system.

The following results are derived in [138] concerning the global scheduling of
implicit-deadline sporadic DAG task systems:

• The capacity augmentation bound of global EDF is ≤ (3 + √
5)/2, which is

≈ 2.618. For large m, this matches the lower bound established in [137].
• The capacity augmentation bound of global RM scheduling is ≤ (2+√

3), which
is ≈ 3.732.

Additionally, a federated scheduling algorithm is proposed and analyzed in [138].
Federated scheduling can be thought of as a generalization of partitioned scheduling
to systems of DAG tasks; it dedicates a cluster of processors to each task τi with
utilization ui greater than one, and schedules the remaining tasks—those with utiliza-
tion ≤ 1—upon a shared cluster of processors using a global scheduling algorithm.
Specifically, each task τi with utilization ≥ 1 is assigned a cluster of

mi ←
⌈

voli − leni

Di − leni

⌉

processors for its exclusive use. Let m′ denote the number of processors remaining
after all tasks with utilization > 1 have been assigned processors as above; the task
system admits the task system if m′ is ≥ twice the sum of the utilizations of the
remaining tasks (those with utilization ≤ 1).

During run-time, the tasks on dedicated processors are scheduled using any greedy
work-conserving scheduler; the tasks upon the m′ shared processors are each consid-
ered as sequential tasks (i.e., their internal parallelism is not exploited) and scheduled
using any of the strategies discussed in Chaps. 5–9.

It was proved in [138] that this federated scheduling algorithm has a capacity
augmentation bound of 2, meaning that any sporadic DAG task system τ satisfying
Usum(τ ) ≤ m/2, and densmax(τ ) ≤ 1/2 can be scheduled upon a multiprocessor
platform with m unit-speed processors.
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In addition to having such an efficient sufficient schedulability test, federated
scheduling offers the run-time advantage that tasks with utilization > 1 get dedi-
cated processors upon which to execute. By also adopting a partitioning approach
the shared processors (recall, from Sect. 6.3, that such partitioning can be done in
polynomial time by a PTAS to any desired degree of accuracy), one obtains an elegant
generalization to partitioned scheduling for systems of implicit-deadline sporadic
tasks, with the properties that (i) each task that executes on more than one processor
does not share a processor with any other task, and (ii) tasks that share a processor
with other tasks execute upon only one processor.

21.3 Normal Collections of Jobs

We now return our attention to arbitrary-deadline sporadic DAG task systems. The
notion of normal collection of jobs was introduced in [64], as a generalization of the
kinds of workloads that are generated by sporadic DAG tasks. Informally speaking,
the distinguishing characteristic of normal collections of jobs is that all jobs with
precedence constraints amongst them share a common release time and deadline;
this idea is formalized in the following definition.

Definition 21.2 (normal collection of jobs [64]) A collection of jobs J is defined
to be a sequence of jobs that are revealed online over time, i.e., a job j ∈ J becomes
known upon the release date of j . Each job j ∈ J is characterized by a release date
rj ∈ N0, an absolute deadline dj ∈ N, an unknown execution time ej ∈ N, and a
set of previous jobs Jj which are exactly the jobs which have to be finished before
j can become available (the predecessor jobs of j ). The actual execution time ej of
a job is discovered by the scheduler only when the job signals completion.

A collection of jobs J is said to be a normal collection of jobs if it satisfies the
additional property that for every predecessor job j of each job k, rj = rk and
dj = dk .

Since in any collection of jobs generated by a sporadic DAG task system all jobs
that constitute a particular dag-job have identical release date and deadline, and
precedence constraints only exist within jobs on individual dag-jobs, it is evident
that every collection of jobs generated by a sporadic DAG task system is normal,

Let us now consider the scheduling of collections of jobs. Suppose that an un-
bounded number of unit-speed processors were available, upon which to schedule a
given collection of jobs J . Let A∞ denote the scheduling algorithm that allocates a
processor to each job as soon as it becomes available, and let S∞ denote the resulting
schedule. It is easy to see that the following claims hold:

• S∞ starts and ends processing jobs always at integral time points (observe that all
release dates rj and all execution times ej are assumed to be integers).

• At any point in time and for any job, S∞ has executed at least as much of that job
as any feasible schedule of J upon a platform of m unit speed processors.
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21.4 A Speedup Bound for EDF

The following lemma from [64] characterizes global EDF schedules for normal
collections of jobs.

Lemma 21.1 Consider a normal collection J of jobs and let α denote any constant
that is ≥ 1. At least one of the following statements is true:

1. All jobs in J meet their deadlines under EDF on m speed-α processors.
2. J is not schedulable by A∞ (recall that A∞ is defined upon unit-speed processors).
3. There is some interval I such that any feasible schedule for J must complete more

than (αm − m + 1) · |I | units of work within I .

Proof Suppose that both 1 and 2 above do not hold; that is, (i) some job j fails
to complete by its deadline dj under EDF on m speed-α processors, and (ii) J is
feasible upon infinitely many unit speed processors.

Without loss of generality, we can assume that there is no job j ′ in the instance
with dj ′ > dj (otherwise, since J is normal j ′ can be removed without affecting
either EDF or A∞). Let t∗ denote the latest point in time such that at any time
t ∈ [0, t∗] EDF with α speedup has executed at least as much of every job as A∞ at
time t . Such a time exists, since t∗ = 0 satisfies this property. As 1 and 2 are false,
we also have t∗ < dj .

We claim that within the interval I = [t∗, dj ], EDF completes more than (αm −
m + 1) · |I | units of work. This claim would yield the lemma due to the following
reasoning. If EDF completes more than (αm − m + 1) · |I | units of work, then
the nonfailing algorithm A∞ completes at least the same amount of work during I

(by construction of I ). Hence every feasible schedule has to complete more than
(αm − m + 1) · |I | units of work during I , since it could not do more work than A∞
(and thereby more than EDF) before I .

We now prove the claim above regarding the amount of work done by EDF within
interval I . Denote by X the total length of the intervals within I where in the EDF
schedule all m processors are busy, and let Y = |I | − X. We distinguish two cases.
First assume that α · Y ≥ |I |. Denote by Y1, . . ., Yk ⊆ I all subintervals of I where
not all processors are busy. We define t ′ such that α · |[t∗, t ′] ∩ ⋃

i Yi | = �t∗� − t∗.
During all points in time within [t∗, t ′] ∩⋃

i Yi all jobs are available for EDF which
are scheduled by A∞ during [t∗, �t∗� ]. Since during all these points in time EDF
does not use all processors and runs the processors with speed α, by time t ′ it has
processed at least as much of every job as A∞ by time �t∗�.

Next, define timepoints ti , i = 0, . . ., dj − �t∗� such that α · |[t∗, ti] ∩ ⋃
i Yi | =

�t∗� − t∗ + i for each i. We prove by induction that up to time ti EDF has processed
as much of every job as A∞ by time �t∗� + i. The case i = 0 was proven above.
Now suppose that the claim is true for some value i. Then at each timepoint during
[ti , ti+1) ∩ ⋃

i Yi all jobs are available for EDF that A∞ works on during [ �t∗� +
i, �t∗� + i + 1). Since during all these timepoints EDF does not use all processors
and runs the processors with speed α, by time ti+1 it has processed at least as much of
every job as A∞ by time �t∗�+i+1. By induction the claim is true for i∗ = dj −�t∗�
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and hence at time �t∗� + i∗ = dj EDF has finished as much of every job as A∞.
This yields a contradiction since we assumed that A∞ constructs a feasible schedule
and EDF does not.

Now assume that α · Y < |I |. Hence, in the interval I EDF finishes at least

αm · X + α · Y = αm · (|I | − Y ) + α · Y

= αm · |I | − αmY + α · Y

> αm · |I | − m · |I | + |I |
= (αm − m + 1) · |I |

units of work, and by construction of I , any feasible schedule has to finish during
the interval I all work that EDF finishes during I . �

Setting α ← (2 − 1/m) yields the following speedup bound for the EDF-
scheduling of normal collections of jobs.

Theorem 21.1 Any normal collection of jobs that is feasible on m unit-speed
processors is EDF-schedulable on m processors each of speed (2 − 1/m).

Proof Since the instance is assumed feasible, it is clearly so upon a sufficiently high
number of processors of unit speed. Also, the instance admits a valid schedule which
finishes in any interval I at most m · |I | units of work. Note that if α = 2 −1/m then
(αm − m + 1) · |I | = (2m − 1 − m + 1) · |I | = m|I |. Hence, Lemma 21.1 implies
that EDF finishes all jobs by their respective deadline. �

Since every collection of jobs generated by a DAG task system is normal, we
obtain the following corollary.

Corollary 21.1 Any DAG task system that is feasible on m processors of unit speed
is EDF-schedulable on m processors of speed (2 − 1/m).

The above bound is tight: examples are known, even without precedence con-
straints, of feasible collections of jobs that are not EDF-schedulable unless the
speedup is at least (2 − 1/m) [155].

21.5 A Speedup Bound for Deadline Monotonic (DM)

In scheduling collections of jobs, a DM scheduler would schedule, at each instant,
the available jobs with with minimum relative deadline (breaking ties arbitrarily),
where the relative deadline of a job j is the difference (dj − rj ) between its deadline
and release date. By applying techniques similar to the ones used in the proof of
Lemma 21.1, an analogous result is obtained:

Lemma 21.2 Consider a normal collection J of jobs and let α denote any constant
that is ≥ 1. At least one of the following holds:

1. All jobs in J are completed within their deadline under DM on m processors of
speed α each, or

2. J is not schedulable by A∞ (with unit speed), or
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3. There is an interval I such that any feasible schedule for J must finish more than
(αm − m + 1) · |I |/2 units of work within I .

Proof Suppose that both (i) and (ii) do not hold, that is, under DM on m speed-
α processors some job j fails its deadline dj , and J is feasible if we are given a
sufficiently large number of processors. We again will consider the idealized greedy
algorithm A∞. Without loss of generality, we can assume that there is no job j ′ in
the instance with dj ′ > 2dj − rj where rj is the release date of job j . In fact assume
that in J there is a job j ′ that has deadline later than 2dj − rj . If the relative deadline
of job j ′ is at most dj − rj then the job is released after dj and we can ignore it;
if the relative deadline of job j ′ is greater than dj − rj then the execution of job j

is not interrupted by job j ′ and hence by removing j ′ from J we obtain a smaller
collection J ′ that violates the claim.

Let t∗ denote the latest point in time such that at any time t ∈ [0, t∗], DM has
processed at least as much of every job as A∞ at time t . Such a time exists, since
t∗ = 0 satisfies this property. Also, it must hold that t∗ < dj .

Let t̂ = min(t∗, rj ), I = [t̂ , 2dj − rj ] and Î = [t̂ , dj ]. Observe that the definition
of DM implies that during Î DM executes only jobs that have their deadline in I .

We claim that, within Î , DM finishes more than (αm − m + 1) · |Î | units of work,
hence A∞ finishes at least the same amount of work during I (by construction of I

and Î ) and, hence, every feasible schedule has to finish more than (αm−m+ 1) · |Î |
units of work during I .

Analogous to the case of EDF, we can show by contradiction that, within Î , DM
finishes more than (αm − m + 1) · |Î | units of work. Again, we denote by X the
total length of the intervals within Î where in the DM schedule all m processors are
busy. Define Y = |Î | − X. As in the proof of EDF we distinguish two cases. First,
if α · Y ≥ |Î |, by the same argument as in the proof for EDF it is possible to show
that DM has finished as much of every job as A∞. This yields a contradiction since
we assumed that A∞ is feasible and DM is not.

If α ·Y < |Î |, as in the proof of EDF it follows that during Î DM finishes at least

αm · X + α · Y > (αm − m + 1) · |Î |
units of work, and by construction of I , any feasible schedule has to finish during
the interval I all work that DM finishes during Î . Since |Î | ≥ |I |/2, the lemma
follows. �

Choosing α ← (3 − 1/m) yields the following speedup bound for the DM
scheduling of normal collections of jobs.

Theorem 21.2 Any normal collection of jobs that is feasible on m processors of
unit speed is DM-schedulable on m processors of speed (3 − 1/m).

Proof Since we assumed the instance to be feasible, it is in particular feasible on
a sufficiently high number of processors of unit speed. Also, the instance admits a
valid schedule which finishes in any interval I at most m · |I | units of work. Note that
if α = 3−1/m then (αm−m+1) · |I |/2 = (3m−1−m+1) · |I |/2 = m|I |. Hence,
Lemma 21.2 implies that DM finishes all jobs by their respective deadline. �
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Fig. 21.3 The processors that are needed by S∞(J , 0.5), if J consists of two releases of the sporadic
DAG task τ1 of Fig. 21.1, at time-instants 0 and 20, respectively

Corollary 21.2 Any DAG task system that is feasible on m processors of unit speed
is DM-schedulable on m processors of speed (3 − 1/m).

21.6 The Work Function

Bonifaci et al. [64] introduced the notion of a work function to characterize the
amount of work that could be generated by a sporadic DAG task. We now describe
this work function in terms somewhat more general than was used in [64].

Let s denote any positive real number. Let us generalize the ideas of A∞ and S∞
from Sect. 21.3 to speed-s processors: suppose that we had an infinite number of
speed-s processors available upon which to execute a given sporadic DAG task system
τ . Consider some collection of dag-jobs J generated by τ ; let S∞(J , s) denote the
schedule obtained by allocating a speed-s processor to each job the instant it is ready
to execute, and executing this job upon the allocated processor until it completes
execution.

Example 21.3 Figure 21.3 depicts the number of processors used in S∞(J , 0.5),
when J consists of two releases of the sporadic DAG task of Fig. 21.1 at time-instants
0 and 20, respectively.

This is obtained by (i) scaling the figure depicting the parallelism of each dag-job
(Fig. 21.2) by a factor of 0.5, thereby depicting the execution that is needed for the
first dag-job, and (ii) replicating this scaled figure at t = 20 to depict the execution
that is needed for the second dag-job.

Let τi denote a sporadic DAG task, and s any positive real number ≤ 1. Let J

denote any collection of jobs legally generated by the task τi .

• For an interval I , let work(J , I , s) denote the amount of execution occurring
within the interval I in the schedule S∞(J , s), of jobs with deadlines that fall
within I .
Observe that since schedule S∞(J , s) executes each job as soon as it becomes
available, thereby leaving as little work to be done later as possible, every sched-
ule for J on speed-s processors meeting all deadlines has to complete at least
work(J , I , s) units of execution over the interval I .

• For any positive integer t , let work(J , t , s) denote the maximum value
work(J , I , s) can take, over any interval I of duration equal to t .
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• Finally, let work(τi , t , s) denote the maximum value of work(J , t , s), over all job
sequences J that may be generated by the sporadic DAG task τi .

Let us further extend the definition of the work function from individual tasks to task
systems in an obvious manner: for any DAG task system τ , let work(τ , t , s) denote
the sum

∑
τi∈τ work(τi , t , s). Claim 21.1 immediately follows from the definitions

of maximum density and the work function:

Claim 21.1 Far a sporadic DAG task system τ to be feasible (always schedulable to
meet all deadlines by an optimal, clairvoyant scheduler) upon m speed-s processors,
it is necessary that

1. densmax(τ ) ≤ s, and
2. ∀t : t ≥ 0 : work(τ , t , s) ≤ ms.

21.6.1 Computing the Work Function

Above we have defined work(τi , t , s) to be the maximum value of work(J , t , s), over
all job sequences J that may be generated by the sporadic DAG task τi . It is evident
that this maximum is achieved when the deadline of some dag-job of τi coincides
with the rightmost endpoint of an interval of duration t , and the other dag-jobs of τi

are released as closely as possible. This is illustrated in Example 21.4.

Example 21.4 We now show the manner in which work(τi , t , s) is computed, by
computing work(τ1, t , 0.5) for some example values of t (here τ1 is the example
sporadic DAG task depicted in Fig. 21.1).
t = 10. Consider the schedule depicted in Fig. 21.3. As stated above,
work(τ1, 10, 0.5) is maximized when the right end of the interval of duration 10
coincides with the deadline of some dag-job of τ1. Consider, therefore, the interval
[6, 16]; over this interval, one processor executes for the duration [6, 12] of six time
units, with a further two processors executing for a duration of two time units. The
cumulative execution is therefore (6+2+2)× 1

2 , or 5. Hence, work(τ1, 10, 0.5) = 5.
t = 25. Consider the interval of duration 25 ending at the deadline at time-instant
36: [11, 36].

• One entire dag-job of τ1, released at time-instant 20, executes within this
interval—this dag-job contributes an amount equal to the sum of the WCETs
of all the nodes in τ1, i.e., 9.

• Since this dag-job has a deadline at time 36, the previous dag-job’s deadline was
at time-instant 36 − 20, or 16.

• The dag-job with deadline 16 executes on one processor for the duration [11, 12];
this yields an additional (1) × 1

2 , or 0.5.

Finally, work(τ1, 25, 0.5) is obtained as the sum of these two quantities:
work(τ1, 25, 0.5) = 9 + 0.5 = 9.5.

In Fig. 21.4, work(τ1, t , 0.5) is plotted as a function of t for values of t ∈ [0, 34].
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Fig. 21.4 Illustrating the work function: work(τi , t , 0.5) for the sporadic DAG task of Fig. 21.1

It follows from its definition that work(τi , t , s) is a piecewise linear function. If
Di ≤ Ti , then it is visually evident from the example in Fig. 21.4 that the number
of linear “pieces” within any interval of duration Ti bounded from above by the
number of vertices in the graph of τi , and work(τi , t , s) can be efficiently determined
in polynomial time.

It is not clear how one would compute work(τi , t , s) exactly in polynomial time
if Di > Ti ; for such tasks, [64] instead presents a polynomial-time technique for
approximating work(τi , t , s), rather than computing it exactly.

21.7 Pseudo-Polynomial EDF-Schedulability Testing

We had obtained speedup bounds of (2 − 1/m) and (3 − 1/m) respectively for
EDF and RM respectively in Sects. 21.4 and 21.5. However, speedup bounds do
not in themselves necessarily let us determine whether a particular task system is
schedulable or not.

In this section we will describe how the speedup bound results for EDF schedul-
ing from Sect. 21.4 can be used to formulate an EDF-schedulability test (a similar
exercise may be performed for DM scheduling; we do not provide the details here).

Let us reformulate Lemma 21.1 using the work function. Lemma 21.1 implies
that, in order to assert that EDF feasibly schedules any job sequence J of jobs
generated by τ upon m speed-α processors, it suffices to ensure that for any such job
sequence J ,

Condition 1: J is feasible under A∞, and
Condition 2: there is no interval I during which any feasible schedule for J must
finish more than (αm − m + 1) · |I | units of work.
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Furthermore if either of the two conditions fail (with α ≥ 2 − 1/m) then the system
is infeasible on m unit-speed processors.

Note that these conditions are both monotonic with respect to the execution times
of the individual jobs: if they are satisfied by a collection of jobs with certain ex-
ecution times, they are also satisfied by a same collection of jobs with reduced
execution times. It therefore suffices to validate these conditions using only the
specified WCETs.

The first condition is satisfied if densmax(τ ) ≤ 1. For the second to hold, it is
sufficient that work(τ , |I |, 1) ≤ (αm − (m − 1)) × |I | for all intervals I .

Lemma 21.1 may therefore be restated as follows.

Theorem 21.3 ([64]) Let α denote any constant ≥ 1. Sporadic DAG task system τ

is EDF schedulable on m speed-α processors if densmax(τ ) ≤ 1, and

work(τ , t , 1) ≤ (αm − (m − 1)) × t

for all values of t ≥ 0.
In performing schedulability analysis, it is typical to assume that we have unit-

speed processors available to us, and to determine whether a given system is
guaranteed to be scheduled upon a platform comprised of such processors such that
all jobs of all tasks will always complete by their deadlines. While Theorem 21.3 (in
the form Lemma 21.1) enabled us to establish the speedup bound for global EDF in
Sect. 21.4, it is not immediately obvious how it can be used to determine whether a
given sporadic DAG task system is global EDF schedulable or not upon unit-speed
processors. We now restate the result of Theorem 21.3 in a manner that allows us to
answer this question.

Let σ denote any constant < 1. It is straightforward to mimic the derivation of
Lemma 21.1 in [64], with “unit-speed” replaced by σ and α replaced by 1, to get

Theorem 21.4 Let σ denote any constant < 1. Sporadic DAG task system τ is
global-EDF schedulable on m unit-speed processors if densmax(τ ) ≤ σ , and

work(τ , t , σ ) ≤ (m − (m − 1)σ ) × t (21.1)

for all values of t ≥ 0.
Hence, to show that a given τ is EDF-schedulable upon m unit-speed processors it

suffices, according to Theorem 21.4, to produce a value for σ such that Condition 21.1
holds for all t ≥ 0. We refer to such a σ as a witness to the EDF-schedulability of τ .

Definition 21.3 (witness) Any positive real number σ for which Condition 21.1
holds for all t ≥ 0 is a witness to the EDF schedulability of sporadic DAG task
system τ upon m unit-speed processors.
To show that a given sporadic DAG task system is EDF schedulable, we need to pro-
duce a witness to its schedulability—give a value of σ and show that Condition 21.1
holds for all t ≥ 0 for this value of σ . A sufficient schedulability test with speedup
(2 − 1/m) is therefore immediately obtained by checking whether σ ← (2 − 1/m)
causes Condition 21.1 holds for all t ≥ 0, and declaring the task system EDF-
schedulable if and only if the answer is “yes.” Pragmatic improvements to this test
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are possible, of the same kind as those detailed in Sect. 19.4 for the schedulability
analysis of three-parameter sporadic task systems.

21.8 Polynomial-Time Sufficient Schedulability Tests

In addition to the speedup-optimal pseudo-polynomial-time schedulability tests de-
scribed above, simpler EDF and DM schedulability tests with polynomial run-time
were also derived in [64]; we present these tests without proof below. Assume, with-
out loss of generality, that the DAG tasks τi are ordered according to nondecreasing
Di (breaking ties arbitrarily).

Theorem 21.5 Any sporadic DAG task system τ satisfying the following conditions:

i) lenk ≤ Dk/3, k = 1, 2, . . . , n,
ii) for each k, k = 1, 2, . . . , n,

⎛

⎝
∑

i:Ti≤Dk

ui +
∑

i:Ti>Dk

voli
Dk

⎞

⎠ ≤ m + 1/2

3
.

is EDF-schedulable on m unit-speed processors.

Theorem 21.6 Any sporadic DAG task system τ satisfying the following conditions:

i) lenk) ≤ Dk/5, k = 1, 2, . . . , n,
ii) for each k, k = 1, 2, . . . , n,

⎛

⎝
∑

i:Ti≤2Dk

ui +
∑

i:Ti>2Dk

voli
4Dk

⎞

⎠ ≤ m + 1/4

5
.

is DM-schedulable on m unit-speed processors.

Sources

The sporadic DAG tasks model described in this chapter was proposed in [38]. The
speedup bounds and both the pseudo-polynomial and polynomial time schedulabil-
ity tests are from [64]. The discussion of the work function is from [34]; pragmatic
improvements to the EDF schedulability test presented in this chapter are also de-
scribed in [34]. The notion of capacity bounds was introduced in [137]; the analysis
of federated scheduling of implicit-deadline sporadic tasks is from [138].



Chapter 22
Real-time Scheduling upon Heterogeneous
Multiprocessors

As the computational demands made by ever more complex embedded real-time ap-
plications continue to increase, there is a need for enhanced performance capabilities
from these platforms. Initially, the approach adopted for obtaining such enhanced
performance was to increase core counts in multiprocessor CPUs. Soon, however,
chip makers began to distinguish themselves not only by offering more general-
purpose cores but also by providing specialized hardware components that accelerate
particular computations. Examples include multicore CPUs with specialized graph-
ics processing cores, specialized signal-processing cores, specialized floating-point
units, customizable FPGAs, etc. Computing platforms such as these with specialized
components are called unrelated or heterogeneous [145] multiprocessor platforms.

One important consequence of this processor-specialization in heterogeneous
platforms that needs to be taken into account during system implementation is that
the same piece of code may require different amounts of time to execute upon differ-
ent processing units. For example, a process responsible for rendering images may
take far less time to execute upon a graphics coprocessor than on a CPU, while a
number-crunching routine would execute more efficiently upon the CPU.

Although unrelated multiprocessors are becoming increasingly more important
in real-time systems implementation, the scheduling-theoretic study of such systems
is, relatively speaking, still in its infancy. In this chapter, we will survey the current
state of the art in implementing real-time systems upon unrelated multiprocessors.
We start out in Sect. 22.1 describing a model for representing sporadic task systems
that are to be implemented upon an unrelated multiprocessor platform. In Sects. 22.2
and 22.3, we list what is currently known about the global and partitioned schedul-
ing of implicit-deadline sporadic task systems upon unrelated multiprocessors; in
Sect. 22.4, we discuss the partitioned scheduling of three-parameter sporadic task
systems upon unrelated multiprocessors. (We do not consider the scheduling of sys-
tems of sporadic directed acyclic graph (DAG) tasks upon unrelated multiprocessors
in this chapter— although this is a particularly interesting problem since the different
vertices of a sporadic DAG task may execute differently upon different processors,
not much is known about how this problem should be tackled.)
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22.1 Task and Machine Model

A real-time system comprised of n sporadic tasks that is to be scheduled upon a given
m-processor unrelated multiprocessor platform is specified by:

1. The collection of tasks {τ1, τ2, . . . , τn}. Each task τi is characterized, as before,
by the three parameters Ci , Di , and Ti , denoting respectively the worst-case exe-
cution requirement, relative deadline, and period parameters. (In Sects. 22.2 and
22.3 we will be dealing with implicit-deadline sporadic task systems, in which
Di = Ti for all tasks τi .)

2. A rate matrix R[n,m]. This is an (n × m) matrix [ri,j ]; i = 1, 2, . . . , n; j =
1, 2, . . . , m of nonnegative real numbers. The value of ri,j denotes the “rate”
at which the j ’th processor executes task τi—by executing task τi on the j ’th
processor for 1 time unit, ri,j units of work gets done. (If τi cannot be executed
upon the j ’th processor, then ri,j ← 0.)

Most results concerning the scheduling of implicit-deadline sporadic task systems
upon unrelated multiprocessors characterize the tasks according to their utilizations,
rather than their Ci and Ti parameters. In such a characterization, the system may be
represented as an n × m utilization matrix U[n×m] with ui,j , the element in the i’th
row, j ’th column, having the value

ui,j ← Ci

ri,j Ti

and thus denoting the fraction of the computing capacity of the j ’th processor that
is needed to completely execute task τi .

22.2 Global Scheduling of Liu and Layland (LL) Task Systems

The preemptive scheduling of collections of independent jobs to minimize makespan
upon unrelated multiprocessors was considered in [121]. The scheduling problem
was formulated as a linear programming problem, and thereby solved in polynomial
time. It was also shown that no more than O(m2) preemptions are necessary to
schedule n jobs upon m processors.

These results can be adapted to obtain an optimal algorithm for the scheduling
of implicit-deadline sporadic task systems upon unrelated multiprocessors, by ob-
serving that scheduling the implicit-deadline sporadic task system characterized by
the utilization matrix U[n×m] is essentially equivalent to scheduling n jobs upon m

unrelated processors, in which the i’th job has an execution requirement ui,j upon
the j ’th processor, with a makespan no larger than one. To see why this should be
so, observe that a schedule for this collection of jobs with makespan ≤ 1 could have
all its jobs “scaled down” by a factor � for � an arbitrarily small positive constant,
to have makespan � and then replicated infinitely often to yield a schedule for the
implicit-deadline sporadic task system. A schedule so constructed is likely have an
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unacceptably large number of preemptions and interprocessor migrations—as many
as Θ(m2) over each interval of duration �; however, techniques have been ob-
tained [28] for ensuring that the total number of tasks executing upon more than one
processor is strictly less than twice the number of processors. In addition, heuristic
techniques may be applied to reduce the number of preemptions.

22.3 Partitioned Scheduling of LL Task Systems

Partitioning a system of implicit-deadline sporadic tasks upon an unrelated multipro-
cessor is a computationally intractable problem; we have seen earlier (Chap. 6) that
such partitioning is NP-hard in the strong sense even on the simpler identical mul-
tiprocessor platforms. Optimal partitioning strategies are therefore unlikely to have
polynomial-time implementations. Techniques have been developed for represent-
ing this partitioning problem as an integer linear program (ILP). Although solving
an ILP exactly takes exponential time, approximation techniques [111, 128, 172]
can be used to solve these ILPs approximately, in polynomial time. We will briefly
describe the transformation of the scheduling problem to an ILP, and its approxi-
mate solution, in Sect. 22.3.1. These approximation algorithms make the following
processor speedup factor (see Definition 5.2) guarantee: Any task system that can
be partitioned by an optimal algorithm on a given unrelated multiprocessor platform
can be partitioned by these algorithms upon a platform in which each processor is
twice as fast. Furthermore it follows from results in [128] that under the assumption
that P 
= NP, there can be no polynomial-time algorithm for solving this problem
that has a speedup factor smaller than 1.5.

22.3.1 A Linear-Programming Approach to Approximate
Partitioning

Recall that in an ILP, one is given a set of n variables, some or all of which are
restricted to take on integer values only, a collection of “constraints” that are ex-
pressed as linear inequalities over these n variables, and an “objective function,”
also expressed as a linear inequality of these variables. The set of all points in n-
dimensional space over which all the constraints hold is called the feasible region
for the ILP. The goal is to find the extremal (maximum or minimum, as specified)
value of the objective function over the feasible region.

A linear program (LP) is like an ILP, without the constraint that some of the
variables are restricted to take on integer values only. That is, in an LP over a given
set of n variables, one is given a collection of constraints that are expressed as linear
inequalities over these n variables, and an objective function, also expressed as a
linear inequality of these variables. The region in n-dimensional space over which
all the constraints hold is again called the feasible region for the LP, and the goal is
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to find the extremal value of the objective function over the feasible region. A region
is said to be convex if, for any two points p1 and p2 in the region and any scalar
λ, 0 ≤ λ ≤ 1, the point (λ · p1 + (1 − λ) · p2) is also in the region. A vertex of a
convex region is a point p in the region such that there are no distinct points p1 and
p2 in the region, and a scalar λ, 0 < λ < 1, such that [p ≡ λ · p1 + (1 − λ) · p2].

It is known that an LP can be solved in polynomial time by the ellipsoid algo-
rithm [119] or the interior point algorithm [118]. (In addition, the exponential-time
simplex algorithm [73] has been shown to perform extremely well “in practice,” and
is often the algorithm of choice despite its exponential worst-case behavior.)

We now state without proof some basic facts concerning such linear programming
optimization problems.

Fact 22.1 The feasible region for a LP problem is convex, and the objective function
reaches its optimal value at a vertex point of the feasible region.

An optimal solution to a LP problem that is a vertex point of the feasible region
is called a basic solution to the LP problem.

Fact 22.2 Consider a LP on n variables x1, x2, . . . , xn, in which each variable is
subject to the constraint that it be ≥ 0 (these constraints are called nonnegativity
constraints). Suppose that there are a further m linear constraints. If m < n, then at
most m of the variables have nonzero values at each vertex of the feasible region 1

(including the basic solution).
Returning to our scheduling problem of partitioning implicit-deadline sporadic

task systems upon an unrelated multiprocessor platform, let us suppose that we
are given an implicit-deadline sporadic task system characterized by the utilization
matrix U[n×m]. For any mapping of the n tasks on the m processors, let us define
(n×m) indicator variables xi,j , for i = 1, 2, . . . , n; j = 1, 2, . . . , m. Variable xi,j is
set equal to one if the task τi is mapped onto the j th processor, and zero otherwise.
A mapping of the n tasks upon the m processors would have these variables satisfy
the following constraints:

xi,j = 0 or 1, (i = 1, 2, . . . , n; j = 1, 2, . . . , m)
m∑

j=1

xi,j = 1, (i = 1, 2, . . . , n)

where these constraints restrict that each task be assigned to exactly one processor.
We can therefore represent the scheduling problem of partitioning the tasks as the
following integer programming problem, with the variables xi,j restricted to integer
values.

Informally, U represents the maximum fraction of the capacity of any processor
that is used, and is set to be the objective function (i.e., the quantity to be minimized)
of the ILP problem. The first constraint asserts that each task be assigned some

1 The feasible region in n-dimensional space for this linear program (LP) is the region over which
all the n + m constraints (the nonnegativity constraints, plus the m additional ones) hold.
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ILP-Feas(U [n×m]).
Minimize U, subject to the following constraints:

1. ∑mj=1 xi, j =1, (i= 1, 2,. . . ,n)
2. ∑ni=1(xi, j ·ui, j) ≤U, ( j = 1, 2,. . . ,m)
3. xi, j is a non-negative integer, (i= 1, 2,. . . , n; j = 1,2,. . . ,m)

LPR-Feas(U[n×m]).
Minimize U, subject to the following constraints:

1. ∑mj=1 xi, j =1, (i= 1, 2,. . . ,n)
2. ∑ni=1(xi, j ·ui, j) ≤U, ( j = 1, 2,. . . ,m)
3. xi, j is a non-negative real number, (i= 1, 2,. . . , n; j = 1,2,. . . ,m)

processor; the second, that at most U of the j ’th processor’s capacity be used for
each j, and the third, that it is semantically meaningless to assign negative values
to the indicator variables. Let opt(ILP-Feas(U[n×m])) denote the minimum value
of U, obtained by solving ILP-Feas(U[n×m]). If opt(ILP-Feas(U[n×m])) is at most
one, it is not hard to see that an assignment of nonnegative integer values to the
variables satisfying these constraints is equivalent to a partitioning of the n tasks
upon the m processors. Thus, obtaining a solution to ILP-Feas(U[n×m]) is equivalent
to determining whether the heterogeneous multiprocessor task system (U[n×m]) is
feasible. This is formally stated by the following theorem:

Theorem 22.1 The integer linear programming problem ILP-Feas(U[n×m]) has a
solution with U ≤ 1 if and only if the unrelated multiprocessor implicit-deadline
sporadic task system (U[n×m]) is feasible.

The result in Theorem 22.1 allows us to transform the problem of determining
whether an unrelated multiprocessor implicit-deadline sporadic task system is fea-
sible to an ILP problem. At first sight, this may seem to be of limited significance,
since ILP is also known to be intractable (NP-complete in the strong sense [154]).
However, some recently-devised approximation techniques for solving ILP prob-
lems, based upon the idea of LP relaxations to ILP problems, may prove useful in
obtaining approximate partitionings—we explore these approximation techniques
below.

By relaxing the requirement that the xi,j variables in the integer linear pro-
gramming formulation ILP-Feas(U[n×m]) described above be integers only, we
have obtained the linear programming problem, which is referred to as the
LP-relaxation [164] of ILP-Feas(U[n×m]):

Let X denote the n×m variables xi,j . Let XOPT and UOPT denote the values assigned
to the variables in X, and to U, in the basic solution to LPR-Feas(U[n×m]). Recall
that opt(ILP-Feas(U[n×m])) denotes the optimal value of U obtained by solving
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of ILP-Feas(U[n×m]). Since LPR-Feas(U[n×m]) is a less constrained problem than
ILP-Feas(U[n×m]), we have the following result.

Lemma 22.1

UOPT ≤ opt( ILP-Feas(U[n×m])). �

The constraints (3) of LPR-Feas(U[n×m]) above are nonnegativity constraints;
hence, LPR-Feas(U[n×m]) is a LP on the (n · m + 1) variables (the n · m variables
X, and U), with only (n + m) constraints other than nonnegativity constraints. By
Fact 22.2 above, therefore, at most (n + m) of the (nm + 1) variables have nonzero
values at the basic solution; in particular, at most (n + m − 1) of the values in XOPT

are nonzero.
The crucial observation is that each of the n constraints (1) of LPR-Feas(U[n×m])

is on a different set of xi,j variables—the first such constraint has only the variables
x1,1, x1,2, . . . , x1,m, the second has only the variables x2,1, x2,2, . . . , x2,m, and so on.
Since there are at most (n + m − 1) nonzero variables in XOPT, it follows from the
pigeon-hole principle that at most (m−1) of these constraints will have more than one
nonzero value in XOPT. For each of the remaining (at least) (n − m + 1) constraints,
the sole nonzero xi,j variable must equal exactly 1, in order that the constraint be
satisfied. Fact 22.3 follows.

Fact 22.3 For at least (n − m + 1) of the integers i in {1, 2, . . . , n}, exactly one of
the variables {xi,1, xi,2, . . . , xi,m} is equal to 1, and the remaining are equal to zero,
in XOPT. �

As a consequence of Fact 22.3, it follows that the solution to the LP problem
LPR-Feas(U[n×m]) immediately yields a partial mapping of tasks to processors, in
which all but at most (m − 1) tasks get mapped.

It remains place the at most (m−1) tasks that remain unmapped. For small values
of m, exhaustive enumeration, with a time complexity of O(mm), can be used to
find an optimal mapping of just these tasks on the capacity remaining upon the m

processors. It is straightforward to show that the following property holds:

If a given task system can be mapped on to a particular unrelated multiprocessor platform
by an optimal algorithm, then the algorithm described above will find a mapping upon an
unrelated multiprocessor platform in which each processor is twice as fast.

The overall complexity of this algorithm is a polynomial in n and m (for solving the
LP) plus an expression that is O(mm). Although this is not a polynomial-time algo-
rithm, it may prove adequate for small values of m. A true polynomial-time algorithm
making the same performance guarantee may be obtained using the more advanced
approximation techniques described in [129]; the interested reader is referred to [30,
129] for details.
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22.3.2 Partitioning upon Limited Unrelated Multiprocessors

There has recently been an increasing recognition (see, e.g., [11]) that it is interesting
to study unrelated multiprocessor platforms in which the number of distinct types
of processors is a small constant. This is motivated by the plethora of currently-
available and soon-to-be-available multicore CPUs with just a few distinct types of
processors—typically one or a few general-purpose processing cores and one or more
specialized graphics processors, or general-purpose processing cores and “synergis-
tic” processors for executing single instruction multiple data (SIMD) instructions.
Such example multicore CPUs provide motivation to consider the problem of parti-
tioning LL task systems upon unrelated multiprocessors in which all the processors
are of a relatively small number of distinct types. Unrelated multiprocessor platforms
of this kind are referred to as limited unrelated multiprocessors [173].

Recall, from Sect. 6.3, that a polynomial-time approximation scheme (PTAS) is
an algorithm for solving certain kinds of optimization problems approximately. A
PTAS for a given optimization problem takes as input a parameter δ > 0 and an
instance of the optimization problem and, in time polynomial in the problem size
(although not necessarily in the value of δ), produces a solution that is within a factor
(1 + δ) of being optimal.

A PTAS was designed in [173] that approximately partitions systems of LL tasks
upon limited unrelated multiprocessors to any desired degree of accuracy.

22.4 Partitioned Scheduling of Three-Parameter Sporadic
Task Systems

In contrast to all the work discussed above in this chapter that deals with implicit-
deadline sporadic task systems, Marchetti-Spaccamela et al. [147] considered the
partitioned scheduling of three-parameter sporadic task systems upon unrelated mul-
tiprocessor platforms. The partitioning problem is expressed as an ILP, which is then
solved approximately to yield a partitioning algorithm with a speedup factor of
(11 + 4

√
3) or ≈ 17.9: If a task system can be partitioned upon a particular platform

by an optimal algorithm, then it can be partitioned by the algorithm in [147] upon a
platform in which each processor is faster by a factor 17.9. Although 17.9 is perhaps
too large a factor for the algorithm in [147] to be considered practically significant, it
does serve to establish the existence of a polynomial-time approximation algorithm
and leaves open the possibility that the speedup factor could be reduced with further
insights.

For the special case when the number of processors is a constant, the approxima-
tion algorithm in [147] reduces to a PTAS.



Chapter 23
Looking Ahead

As stated in the introduction, the sheer volume of excellent research on various aspects
of multiprocessor scheduling theory meant that we could not possibly hope to detail,
or even mention in passing, all the important and interesting results. Instead, we have
selected a self-contained collection of topics from the vast body of research literature
on multiprocessor real-time scheduling theory, and have attempted to provide a
cohesive, relatively deep, and complete coverage of these topics. Our choice of
topics for inclusion was primarily guided by their relevance to the discipline, the
maturity of our knowledge about them, and the requirement that all taken together,
they should comprise a complete narrative for a substantial and important subset of
multiprocessor real-time scheduling theory. In addition, our personal preferences,
biases, and expertise undoubtedly played a role in determining which topics got into
this book, and which stayed out. In any event, there are many important aspects of
multiprocessor real-time scheduling theory that did not see much discussion in this
book; we briefly list some such topics in this chapter.

23.1 Soft and Firm Real-Time Scheduling

Here, we have focused exclusively on hard-real-time scheduling upon multiproces-
sors. There is a cohesive theory of soft-real-time scheduling centered around the
concept of bounded tardiness—jobs are allowed to miss deadlines provided an a
priori upper bound on the degree of such tardiness can be provided [78, 83, 130–
132]. Several dissertations have been written on the subject of bounded-tardiness
scheduling—see, e.g., [82], and the references therein. Time-utility functions
(TUF) [160] represent another somewhat popular approach to soft-real-time schedul-
ing; TUF-centered multiprocessor scheduling algorithms and schedulability analysis
is reported in [69, 70, 95].
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23.2 Multiple Resource Types

The research in this book has focused exclusively upon CPU scheduling. In an actual
real-time system, there may be multiple resources, including memory, communi-
cation bandwidth, energy, etc., that are available in limited quantities and therefore
need to be allocated in an efficient manner. There is a large volume of research on the
concurrent consideration of multiple resources; see, e.g., [33, 43, 85, 94, 151, 152,
170, 174]. There has been some work on implementing resource-sharing protocols
that were originally developed for uniprocessor systems such as the Priority Ceiling
Protocol [166], to multiprocessor platforms (e.g., [158, 159]); and some new and
exciting work on developing entirely new protocols exclusively for multiprocessor
platforms (see, e.g., [65], and the many references therein).

23.3 Interprocessor Communication

The platform model we have adopted in this book assumes that communication
between processors occurs instantaneously and incurs no cost. Although this is a rea-
sonable abstraction to start with (in Sect. 2.3.3 we explained how for priority-driven
scheduling algorithms some such costs—that of interprocessor migrations—could
be accounted for by inflating the WCET parameters of jobs by the maximum cost
of a migration), the abstraction results in excessive pessimism as platforms become
more complex and communication costs become increasingly nonuniform. This is
a significant shortcoming of much of the existing body of research into multipro-
cessor scheduling theory today; this shortcoming is being addressed in extended
platform models that consider, for example, routing issues for networks-on-chip
(see, e.g., [66, 110]).
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