
Lecture #8

Risat Pathan

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable Real-Time Systems

Multiprocessor scheduling

How are tasks assigned to processors?

 Static assignment

– The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)

– Approaches: partitioned scheduling, guided search,
non-guided search, ...

 Dynamic assignment

– The processor(s) used for executing a task are determined
during system operation “on-line”

– Approach: global scheduling

Multiprocessor scheduling

How are tasks allowed to migrate?

 Partitioned scheduling (no migration!)

– Each instance of a task must execute on the same processor

– Equivalent to multiple uniprocessor systems!

 Guided search & non-guided techniques

– Depending on migration constraints, a task may or may not
execute on more than one processor

 Global scheduling (full migration!)

– A task is allowed to execute on an arbitrary processor
(sometimes even after being preempted)

Partitioned scheduling

Complexity of schedulability analysis for partitioned
scheduling: (Leung & Whitehead, 1982)

Consequence:
There cannot be any pseudo-polynomial time algorithm for

finding an optimal partition of a set of tasks unless P = NP.

The problem of deciding whether a task set (synchronous or
asynchronous) is schedulable on m processors with respect
to partitioned scheduling is NP-complete in the strong sense.

Partitioned scheduling

For any task-to-processor assignment algorithm, the following steps are generally
followed:

1. Specify an order for the tasks are to be considered for assignment.

2. Specify an order of the processors to attempt to allocate the task.

3. A task is successfully allocated upon a processor if it fits on the processor.
Uniprocessor schedulability test is applied: a task fits on a processor if the task’s with all the

tasks previously allocated to the processor passes the test.

4. The algorithm declares success if all tasks are successfully allocated;
otherwise, it declares failure.

We now consider partitioned
scheduling of tasks where D=T for
each task and there are m identical

processors

Partitioned scheduling

Bin-packing algorithms:

Rate-Monotonic-First-Fit (RMFF): (Dhall and Liu, 1978)

– Let the processors be indexed as ଵ ଶ ଷ

– Assign the tasks in the order of increasing periods
(that is, RM order).

– For each task , choose the lowest previously-used j such
that , together with all tasks that have already been
assigned to processor , can be feasibly scheduled
according to the utilization-based RM-feasibility test.

– Processors are added if needed for RM-schedulability.

i
i

m

j

Partitioned scheduling: Fixed Priority
(Test 1)

The utilization guarantee bound for a system with
processors using the RMFF scheduling policy is

m 21/ 2 -1() £U

RMFF
£ m+1() / 1+ 21/ m+1()()

21/ 2 -1() » 0.41Note:

Thus: task sets whose utilization do not exceed ≈ 41% of the
total processor capacity is always RMFF-schedulable.

m URMFF

Guarantee bound for RMFF (Oh & Baker, 1998):

Any system of tasks with total utilization U ≤ m(√2−1) is
schedulable by RMFF.

For any m ≥ 2 there is a task system with U = (m+1)/(1+21/(m+1))
that cannot be scheduled upon m processors using RMFF
scheduling.

m 21/ 2 -1() £U

RMFF
£ m+1() / 1+ 21/ m+1()()

Implication of the following

Partitioned scheduling: Fixed Priority
(Test 2 and Test 3)

Guarantee bound for RMFF (Lopez et al 2003):

Test 2: The utilization guarantee bound of RMFF for a system with m
processors and n tasks with total utilization U is :

ଵ
௡ି௠ାଵ

Test 3: The utilization guarantee bound of RMFF for a system with
m processors and n tasks with total utilization U where each
task’s utilization is at most is given as follows:

ଵ
(ఉାଵ)

ଵ
(௡ିఉ(௠ିଵ))

where
ଵ

୪୭୥మ(ఈାଵ)

Partitioned scheduling: Fixed Priority

Summary of guarantee bound tests for RMFF :

Test 1:

Test 2:
భ

೙ష೘శభ

Test 3:
భ

(ഁశభ)

భ

(೙షഁ(೘షభ))

where
ଵ

୪୭୥మ(ఈାଵ)

Partitioned Scheduling: EDF Priority
Lopez et al. (2004) considered different combination of tasks

order and processors order

Factor 1 (Tasks order). In what order are the tasks considered
for assignment?

• Decreasing Utilization (DU): the tasks are considered in non-
increasing order of their utilizations

• Increasing Utilization (IU): the tasks are considered in non-
decreasing order of their utilizations

• Random (R): the tasks are considered in arbitrary order.

Partitioned Scheduling: EDF Priority

Factor 2 (Processors order). When a task is considered for
assignment, to which processor does it get assigned?

• First-fit (FF): the task is assigned to the first processor on
which it fits.

• Worst-fit (WF): the task is assigned to the processor with the
maximum remaining capacity.

• Best-fit (BF): The task is assigned to the processor with the
minimum remaining capacity

Lopez et al. (2004) considered different combination of tasks
order and processors order

Partitioned Scheduling: EDF Priority

FFDU, FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

Given a selection of Factor 1 and Factor 2, the Liu and Layland’s
utilization bound test for preemptive EDF uniprocessor scheduling
is applied to check if a task fits on the target processor.

Lopez et al. (2004) considered nine different combination of
tasks order and processors order

Approach 1: Successful tasks-to-processors assignment implies
schedulability

Observation: Schedulability can be determined by actually doing the
task-to-processors assignment.

Approach 2: There is a utilization-bound test that imply that a
successful task-to-processors assignment must exist.

Observation: Schedulability can be determine WITHOUT actually
doing the task-to-processors assignment.

Partitioned Scheduling: EDF Priority
(Schedulability Test)

Partitioned Scheduling: EDF Priority
(Utilization Bound Based Test)

FFDU,FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

A lower bound: Given that the utilization of each task is no more
than , the utilization bound of each of the nine algorithms is
NOT smaller than where m is the number of
processors.
Proof (Page 41, BBB): If a task with utilization cannot be
assigned to any processor, it must be the case that each
processor already has been allocated tasks with total utilization
strictly greater than . The total utilization of all the tasks
(including) is no smaller than

FFDU,FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

An upper bound: Given that the utilization of each task is no
more than , the utilization bound of each of the nine algorithms

is NOT larger than where where m is the number of

processors.

Proof (Page 41-42 in BBB)

Partitioned Scheduling: EDF Priority
(Utilization Bound Based Test)

BBB (in Canvas): S. Baruah, M. Bertogna and G. Buttazzo, Multiprocessor Scheduling for Real-Time Systems, Springer, 2015, ISBN 978-3-319-08695-8.

FFDU,FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

WFIU and WFR: If , then all the tasks are
successfully assigned to m processors.

Note that if is allowed to be 1, the utilization bound is 1
regardless of how many processors are used.

FFDU, FFIU, FFR, WFDU, BFDU, BFIU, BFR: If

where , then all the tasks are successfully assigned to m

processors.

Note that if is allowed to be 1, the utilization bound is .

Partitioned Scheduling: EDF Priority
(Utilization Bound Based Test)

Task Splitting

Task Splitting

Dependable Real-Time Systems Group

Background

• Global and partitioned method cannot guarantee
system utilization more than 50% for all task sets

―Partitioned scheduling has task assignment
step.

―Task assignment to processors is generally
done with a bin-packing algorithm.

Task Splitting

Dependable Real-Time Systems Group

Background (cont.)

• A variation of partitioned scheduling using task-
splitting approach can achieve more than 50%
system utilization for all task sets.

• History: task-splitting for static-priority were first
proposed in July 2009 at CMU

Traditional Partitioned Scheduling

Dependable Real-Time Systems Group

Task 2

Processor A Processor B
Task 1

Task 3

We assume Task 2, Task 1 and Task 3 be the ordering of the tasks to
assign to the processors A and B.

Size of each task is proportional to the utilization of the task.

Traditional Partitioned Scheduling

Dependable Real-Time Systems Group

Task 2

Processor A Processor B

Task 1
Task 3

Task 3 cannot be assigned to any processor
because size of Task 3 is too large

Task-Splitting Partitioned Scheduling

Dependable Real-Time Systems Group

Task 2

Processor A Processor B
Task 1

Task 3

Task-Splitting Partitioned Scheduling

Dependable Real-Time Systems Group

Task 2

Processor A Processor B

Task 1
Task 3

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Dependable Real-Time Systems Group

Task 2

Processor A Processor B

Task 1

SplitTask
3a

SplitTask
3b

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Dependable Real-Time Systems Group

Task 2

Processor A Processor B

Task 1

SplitTask
3a

SplitTask
3b

Challenges in Task-Splitting

 How to design the task assignment algorithm?
– How many splits of each task?

– How many tasks to split?

– How to ensure that subtasks of a split task do not execute in
parallel?

 How to find the guarantee bound for given task
assignment algorithm?

Some Results on Task Splitting

 ECRTS 2009, CMU: Utilization bound 65%
– Unsorted version: 60%

– Number of split tasks is (m-1)

– A task can be splitted in (m-1) parts

 IPDPS 2009, CHALMERS (Our Work):
– Utilization bound 55.2%

– Number of split tasks is m/2

– A task can be splitted in at most 2 parts

 RTAS 2010, UPPSALA
– (Sorting) Utilization bound 69.3%

– Number of split tasks is (m-1)

– A task can be splitted in (m-1)parts

End of lecture #8

