CHALMERS | @8))) UNIVERSITY OF GOTHENBURG

Dependable Real-Time Systems

Lecture #8

Risat Pathan

Department of Computer Science and Engineering
Chalmers University of Technology



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks assigned to processors?

1 Static assignment

— The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)

— Approaches: partitioned scheduling, guided search,
non-guided search, ...

1 Dynamic assignment

— The processor(s) used for executing a task are determined
during system operation “on-line”

— Approach: global scheduling



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks allowed to migrate?

1 Partitioned scheduling (no migration!)
— Each instance of a task must execute on the same processor
— Equivalent to multiple uniprocessor systems!

1 Guided search & non-guided techniques

— Depending on migration constraints, a task may or may not
execute on more than one processor

1 Global scheduling (full migration!)

— Atask is allowed to execute on an arbitrary processor
(sometimes even after being preempted)



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling

Complexity of schedulability analysis for partitioned
scheduling: (Leung & Whitehead, 1982)

The proble
as

Consequence:
There cannot be any pseudo-polynomial time algorithm for
finding an optimal partition of a set of tasks unless P = NP.



CHALMERS | {8%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling

For any task-to-processor assignment algorithm, the following steps are generally
followed:

1. Specify an order for the tasks are to be considered for assignment.
2. Specify an order of the processors to attempt to allocate the task.

3. Atask is successfully allocated upon a processor if it fits on the processor.
Uniprocessor schedulability test is applied: a task fits on a processor if the task’s with all the
tasks previously allocated to the processor passes the test.

4. The algorithm declares success if all tasks are successfully allocated;
otherwise, it declares failure.



UNIVERSITY OF GOTHENBURG

TR
CHALMERS | (@8})
UNIVERSITY OF TECHNOLOGY NS5

We now consider partitioned
scheduling of tasks where D=T for
each task and there are m identical

processors



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling

Bin-packing algorithms:

Rate-Monotonic-First-Fit (RMFF):

— Let the processors be indexed as uq, u,, us, ...

— Assign the tasks in the order of increasing periods
(that is, RM order).

— For each task 7;, choose the lowest previously-used j such
that 7, together with all tasks that have already been
assigned to processor HM;, can be feasibly scheduled
according to the utilization-based RM-feasibility test.

— Processors are added if needed for RM-schedulability.



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Partitioned scheduling: Fixed Priority
(Test 1)

Guarantee bound for RMFF (Oh & Baker, 1998):

The utilization guarantee bound U ___for a system with
m processors using the RMFF schecruling policy is

Thus: task sets whose utilization do not exceed = 41% of the
total processor capacity is always RMFF-schedulable.




CHALMERS | @8))) UNIVERSITY OF GOTHENBURG

Implication of the following

m(21/2 -1

Any system of tasks with total utilization U < m(v2-1) is
schedulable by RMFF.

For any m = 2 there is a task system with U = (m+1)/1+21(m*1))
that cannot be scheduled upon m processors using RMFF
scheduling.



{8%)) UNIVERSITY OF GOTHENBURG

Partltloned scheduling: Fixed Priority
(Test 2 and Test 3)

Guarantee bound for RMFF

Test 2: The utilization guarantee bound of RMFF for a system with m
processors and n tasks with total utilization U is :

US(m—l)(\/f—l)+(n—m+1)(2ﬁ—1)

Test 3: The utilization guarantee bound of RMFF for a system with
m processors and n tasks with total utilization U where each
task’s utilization is at most « is given as follows:

U< (m- 1)(2ﬁ —Df+(n—p(m - 1))(2("‘135"‘1)) -1

1
log, (a+1)

where f = |

J



CHALMERS | ¢

Partitioned scheduling: Fixed Priority

5 UNIVERSITY OF GOTHENBURG

Summary of guarantee bound tests for RMFF :

Test1: U< m(vV2—-1)

Test2:US(m—l)(ﬁ—1)+(n—m+1)(2ﬁ—1)

Test3: U< (m— 1)(2(3—11) - D+ n—-p(m— 1))(2("-3(1"1-1)) — 1)
1
J

log, (a+1)

where f = |



CHALMERS | @8))) UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority

Lopez et al. (2004) considered different combination of tasks
order and processors order

Factor 1 (Tasks order). In what order are the tasks considered
for assignment?

* Decreasing Utilization (DU): the tasks are considered in non-
increasing order of their utilizations

* Increasing Utilization (lIU): the tasks are considered in non-
decreasing order of their utilizations

 Random (R): the tasks are considered in arbitrary order.



CHALMERS | @8))) UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority

Lopez et al. (2004) considered different combination of tasks
order and processors order

Factor 2 (Processors order). When a task is considered for
assignment, to which processor does it get assigned?

 First-fit (FF): the task is assigned to the first processor on
which it fits.

* Worst-fit (WF): the task is assigned to the processor with the
maximum remaining capacity.

« Best-fit (BF): The task is assigned to the processor with the
minimum remaining capacity



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority

Lopez et al. (2004) considered nine different combination of
tasks order and processors order

FFDU, FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

Given a selection of Factor 1 and Factor 2, the Liu and Layland’s
utilization bound test for preemptive EDF uniprocessor scheduling
is applied to check if a task fits on the target processor.



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority
(Schedulability Test)

Approach 1: Successful tasks-to-processors assignment implies
schedulability

Observation: Schedulability can be determined by actually doing the
task-to-processors assignment.

Approach 2: There is a utilization-bound test that imply that a
successful task-to-processors assignment must exist.

Observation: Schedulability can be determine WITHOUT actually
doing the task-to-processors assignment.



CHALMERS | ¢

5 UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority
(Utilization Bound Based Test)

FFDU,FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

A lower bound: Given that the utilization of each task is no more
than a, the utilization bound of each of the nine algorithms is

NOT smaller than m — (m — 1)a where m is the number of
Processors.

Proof (Page 41, BBB): If a task t; with utilization u; cannot be
assigned to any processor, it must be the case that each
processor already has been allocated tasks with total utilization
strictly greater than (1 — u;). The total utilization of all the tasks
(including ;) is no smallerthan m(1 — u;)) + y; =2m—-—(m—1a



{8%)) UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority
(Utilization Bound Based Test)

FFDU,FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

CHALMERS |

An upper bound: Given that the utilization of each task is no

more than a, the utilization bound of each of the nine algorithms
iIs NOT larger than % where 8 = [ij where m is the number of

Processors.

Proof (Page 41-42 in BBB)

BBB (in Canvas): S. Baruah, M. Bertogna and G. Buttazzo, Multiprocessor Scheduling for Real-Time Systems, Springer, 2015, ISBN 978-3-319-08695-8.



CHALMERS | (@) UNIVERSITY OF GOTHENBURG

Partitioned Scheduling: EDF Priority
(Utilization Bound Based Test)

FFDU,FFIU, FFR
WFDU, WFIU, WFR
BFDU, BFIU, BFR

WFIU and WFR: If U <m — (m — 1)a, then all the tasks are
successfully assigned to m processors.

Note that if « is allowed to be 1, the utilization bound is 1
regardless of how many processors are used.

FFDU, FFIU, FFR, WFDU, BFDU, BFIU, BFR: If U < ﬁ;:;l

where 8 = E‘ then all the tasks are successfully assigned to m
pProcessors.

Note that if « is allowed to be 1, the utilization bound is mTH



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Task Splitting



UNIVERSITY OF GOTHENBURG

Task Splitting

CHALMERS | (@8})
UNIVERSITY OF TECHNOLOGY %'nn"‘

Background

* Global and partitioned method cannot guarantee
system utilization more than 50% for all task sets

—Partitioned scheduling has task assignment
step.

—Task assignment to processors is generally
done with a bin-packing algorithm.



UNIVERSITY OF GOTHENBURG

Task Splitting

CHALMERS | (@8})
UNIVERSITY OF TECHNOLOGY %'nn"‘

Background (cont.)

* A variation of partitioned scheduling using task-

splitting approach can achieve more than 50%
system utilization for all task sets.

* History: task-splitting for static-priority were first
proposed in July 2009 at CMU



CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Traditional Partitioned Scheduling

Q oD .
S
e e

Processor A Processor B
We assume Task 2, Task 1 and Task 3 be the ordering of the tasks to
assign to the processors A and B.

Size of each task is proportional to the utilization of the task.



CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Traditional Partitioned Scheduling

Processor A Processor B

I CGAILIREIVIT 1T QA .
Task 3 cannot be assigned to any processor

because size of Task 3 is too large



UNIVERSITY OF GOTHENBURG

CHALMERS | (@8})
UNIVERSITY OF TECHNOLOGY Q2 "I"‘

Task-Splitting Partitioned Scheduling

9 oD .
S
e e

Processor A Processor B




CHALMERS | @8))) UNIVERSITY OF GOTHENBURG

Task-Splitting Partitioned Scheduling

Processor A Processor B

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.



CHALMERS | @8))) UNIVERSITY OF GOTHENBURG

Task-Splitting Partitioned Scheduling

Processor A Processor B

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.



UNIVERSITY OF GOTHENBURG

Task-Splitting Partitioned Scheduling

>

Processor A Processor B

Partition Success!



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Challenges in Task-Splitting

| How to design the task assignment algorithm?
— How many splits of each task?
— How many tasks to split?

— How to ensure that subtasks of a split task do not execute in
parallel?

1 How to find the guarantee bound for given task
assignment algorithm?



CHALMERS | (®%) UNIVERSITY OF GOTHENBURG

Some Results on Task Splitting

1 ECRTS 2009, CMU: Utilization bound 65%

— Unsorted version: 60%
— Number of split tasks is (m-1)
— A task can be splitted in (m-1) parts

| IPDPS 2009, CHALMERS (Our Work):
— Utilization bound 55.2%
— Number of split tasks is m/2
— A task can be splitted in at most 2 parts

1 RTAS 2010, UPPSALA
— (Sorting) Utilization bound 69.3%
— Number of split tasks is (m-1)
— Atask can be splitted in (m-1)parts



CHALMERS |

(8%)) UNIVERSITY OF GOTHENBURG

End of lecture #8



