
Lecture #9

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

Multiprocessor scheduling

How are tasks assigned to processors?
•  Static assignment

–  The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)

–  Approaches: partitioned scheduling, guided search,
non-guided search, ...

•  Dynamic assignment
–  The processor(s) used for executing a task are determined

during system operation “on-line”
–  Approach: global scheduling

Multiprocessor scheduling

How are tasks allowed to migrate?
•  Partitioned scheduling (no migration!)

–  Each instance of a task must execute on the same processor
–  Equivalent to multiple uniprocessor systems!

•  Guided search & non-guided techniques
–  Depending on migration constraints, a task may or may not

execute on more than one processor

•  Global scheduling (full migration!)
–  A task is allowed to execute on an arbitrary processor

(sometimes even after being preempted)

Global scheduling

Implementation approaches:
•  Greedy scheduling

–  As used by the traditional (RM, DM, EDF) priority scheduler.

•  Fair scheduling
–  As used by the p-fair (proportionate fairness) scheduler.

Performance issues:
•  Weak theoretical framework

–  Key properties from uniprocessor scheduling no longer valid

•  Suffers from several scheduling anomalies
–  Counter-intuitive sensitivity to change in system parameters

A fundamental limit: (Andersson, Baruah & Jonsson, 2001)

Global scheduling

•  One (older) approach to circumvent this limit is to use p-fair
(priorities + time quanta) scheduling and dynamic task priorities.

•  Another (newer) approach to circumvent this limit is to split some
of the tasks into two or more subtasks, and then run each subtask
of a split task on a separate processor. The remaining tasks use
partitioned scheduling.

The utilization guarantee bound for multiprocessor
scheduling (strictly partitioned or strictly global),

using task priorities only, cannot be higher
than 50% of the processing capacity.

Global scheduling

Complexity of schedulability analysis for global
scheduling: (Leung & Whitehead, 1982)

The problem of deciding whether a task set (synchronous or
asynchronous) is schedulable on m processors with respect

to global scheduling is NP-complete in the strong sense.

Consequence:
There can only exist a pseudo-polynomial time algorithm for

 (i) finding an optimal static priority assignment, or
 (ii) exact feasibility testing

 But not both at the same time!

Underlying causes:
•  Dhall’s effect:

–  With greedy scheduling, a low-utilization task set may be
unschedulable regardless of how many processors are used.

•  Hard-to-find critical instant:
–  A critical instant does not always occur when a task arrives

at the same time as all its higher-priority tasks.

•  Dependence on relative priority ordering:
–  Changing the relative priority ordering among higher-priority

tasks may affect schedulability for a lower-priority task.

Weak theoretical framework

Weak theoretical framework

Dhall’s effect: (Dhall & Liu, 1978)

 τ 4

 τ1 τ1

 τ 2 τ 2

 τ3 τ3

1 ε+2ε 1

 µ1

 µ2

 µ3

0

 τ 4 misses its deadline

 τ1 = C1 = 2ε ,T1 = 1{ }
 τ 2 = C2 = 2ε ,T2 = 1{ }
 τ 3 = C3 = 2ε ,T3 = 1{ }
 τ 4 = C4 = 1,T4 = 1+ ε{ }RM scheduling

Weak theoretical framework

Dhall’s effect:
•  Applies for (greedy) RM, DM and EDF scheduling
•  Least utilization of unschedulable task sets can be arbitrarily

close to 1 no matter how many processors are used.

2 1 1
1 1globalU m ε

ε
= + →

+
0ε →when

Conclusion in year 2000: new priority-assignment policies are
needed for effective resource utilization of multiprocessors!

Weak theoretical framework

Hard-to-find critical instant:

 µ1

 µ2

0 4 8 12 16

 τ1

 τ 2

 τ3

 response time of τ 3 is maximized for second instance

 τ 2,1 τ 2,2 τ 2,3 τ 2,4 τ 2,5

 τ1,1 τ1,2 τ1,3 τ1,7 τ1,8 τ1,4 τ1,5 τ1,6 τ3,1

 τ3,1 τ3,2 τ3,3 τ3,4

 τ3,4 τ3,2 τ3,3

 τ1 = C1 = 1,T1 = 2{ }
 τ 2 = C2 = 2,T2 = 3{ }
 τ 3 = C3 = 2,T3 = 4{ }

RM scheduling

Weak theoretical framework

Hard-to-find critical instant: (Andersson & Jonsson, 2000)

•  A critical instant does not always occur when a task
arrives at the same time as all its higher-priority tasks.

•  Recall that an easy-to-find critical instant enabled the
design of many efficient uniprocessor feasibility tests.

•  A hard-to-find critical instant makes it challenging to
design efficient multiprocessor feasibility tests, as it will
•  incur a high time complexity (to find critical instant), or
•  suffer from pessimism (due to interference uncertainty)

Conclusion in year 2000: new insights are needed for designing
efficient feasibility tests for multiprocessors!

Weak theoretical framework

Impact of relative priority ordering:

 µ1

 µ2

0 4 8 12 16

RM scheduling
(priority order follows task index) τ 4 = C1 = 2,T1 = 4{ }

 τ 2 = C2 = 1,T2 = 3{ }
 τ 3 = C3 = 2,T3 = 3{ }

 τ1 = C1 = 1,T1 = 3{ }

 τ1

 τ 2

 τ 4
 τ3

 τ3,1 τ3,2 τ3,3 τ3,4 τ1,1

 τ 2,1

 τ1,2

 τ 2,2

 τ1,3

 τ 2,3

 τ1,4

 τ 2,4 τ 4,1 τ 4,2 τ 4,3 τ 4,3

Weak theoretical framework

Impact of relative priority ordering:

 µ1

 µ2

0 4 8 12 16

 τ1

 τ 2

 τ 4
 τ3

 τ1,1

 τ3,1

 τ1,2

 τ3,2

 τ1,3

 τ3,3

 τ1,4

 τ3,4

 τ 2,1 τ 2,2 τ 2,3 τ 2,4

 τ 4,3 τ 4,3 τ 4,1 τ 4,2

RM scheduling
(priorities of and swapped) τ 2 τ 3

 τ 4 = C1 = 2,T1 = 4{ }

 τ 2 = C2 = 1,T2 = 3{ }
 τ 3 = C3 = 2,T3 = 3{ }

 τ1 = C1 = 1,T1 = 3{ }

 first and second instances of τ 4 miss their deadlines

Weak theoretical framework

Impact of relative priority ordering: (Andersson & Jonsson, 2000)

•  The response time of a task may depend on the relative

priority ordering of the higher-priority tasks.
•  This property does not exist for a uniprocessor system.
•  This means that the OPA algorithm, which can be used on

a uniprocessor for finding an optimal priority assignment,
may not have that capability on a multiprocessor system.

Conclusion in year 2000: new insights are needed of how to best
use the OPA algorithm for deriving optimal priority assignments
for multiprocessors!

Improved resource utilization

How to avoid Dhall’s effect:
Insight #1: RM, DM and EDF only account for task deadlines!

Actual computation demands are not accounted for.
Insight #2: Dhall’s effect can be avoided in greedy scheduling

by letting tasks with high utilization receive higher priority:

 τ 2 τ 2 τ1 τ1

 τ3 τ3

1 1 ε+2ε

 µ1

 µ2

 µ3

0

 τ 4 τ 4

Improved resource utilization

RM-US{m/(3m-2)}
•  RM-US{m/(3m-2)} assigns (static) priorities to tasks

according to the following rule:
If then has the highest priority
(ties broken arbitrarily)

/(3 2)iU m m> − iτ

If then has RM priority /(3 2)iU m m≤ − iτ

•  Clearly, tasks with higher utilization get higher priority.

Scientific breakthrough: (Andersson, Baruah & Jonsson, 2001)

Improved resource utilization

Guarantee bound analysis for RM-US{m/(3m-2)}:
•  A sufficient condition for RM-US{m/(3m-2)} scheduling on
m identical processors is

2

1 3 2

n
i

i i

C mU
T m=

= ≤
−∑

•  Question: does RM-US{m/(3m-2)} avoid Dhall’s effect?

Scientific breakthrough:

Improved resource utilization

Guarantee bound analysis for RM-US{m/(3m-2)}:
•  We observe that, regardless of the number of processors,

the task set will always meet its deadlines as long as no
more than one third of the processing capacity is used:

U RM−US m/(3m−2){ } = lim

m→∞

m2

3m− 2
= m

3

•  RM-US{m/(3m-2)} thus avoids Dhall’s effect since we can
always add more processors if deadlines were missed.

Scientific breakthrough:

State-of-the-art guarantee bounds for global scheduling:
•  Static priorities: (“greedy” global scheduling)

–  The SM-US{2/(3+√5)} priority-assignment policy has a
guarantee bound of 38.2%. (Andersson, 2008)

•  Dynamic priorities: (“greedy” global scheduling)
–  The EDF-US{m/(2m-1)} priority-assignment policy has a

guarantee bound of 50%. (Srinivasan & Baruah, 2002)

•  Task splitting: (“greedy” global+partitioned scheduling)
–  The SPA2 task-splitting algorithm has a guarantee bound of

69.3% (c.f. the RM bound for uniprocessors). (Guan, et al., 2010)
•  Optimal multiprocessor scheduling: (“fair” global scheduling)

–  P-fair scheduling using dynamic priorities has a guarantee
bound of 100%. (Baruah et al., 1996)

Improved resource utilization

Sufficient response-time test

Response-time analysis for global scheduling:
•  The response time for task is (as before):

 : the task WCET
 : the interference from higher-priority tasks

iC
iτ

iI

iii ICR +=

Scientific breakthrough: (Andersson & Jonsson, 2000)

()

1 i
i j j

j hp i j

RI C C
m T∀ ∈

⎛ ⎞⎡ ⎤
= ⋅ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑

where is the set of tasks with higher priority than iτ)(ihp

Sufficient response-time test

Response-time analysis for global scheduling:
•  As before, an iterative approach can be used for finding

the worst-case response time:

ii DRi ≤∀ :

•  The sufficient feasibility test is then:

1

()

1 n
n i
i i j j

j hp i j

RR C C C
m T

+

∀ ∈

⎛ ⎞⎡ ⎤
= + ⋅ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑

Scientific breakthrough:

•  The extra execution-time
term introduced in this
analysis is an example
of carry-in interference.

•  Significant research efforts have been made in recent
years to derive accurate estimates of the worst-case
carry-in interference, and utilize these estimates in
improved feasibility tests for global scheduling.

Sufficient response-time test

Response-time analysis for global scheduling:

()

1 i
i j j

j hp i j

RI C C
m T∀ ∈

⎛ ⎞⎡ ⎤
= ⋅ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑

Scientific breakthrough:

Optimal priority assignment

Conditions for OPA compatibility: (Davis & Burns, 2009)

Scientific breakthrough:

Condition 1: The schedulability of a task 𝜏 may, according to test S, depend
on any independent properties of tasks with priorities higher than 𝜏, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 2: The schedulability of a task 𝜏 may, according to test S, depend
on any independent properties of tasks with priorities lower than 𝜏, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become
unschedulable according to test S, if it was previously schedulable at
the lower priority.

Optimal priority assignment

Conditions for OPA compatibility:
Scientific breakthrough:

•  Task properties are referred to as independent if they have no
dependency on the priority assigned to the task.
(e.g. WCET, period, deadline)

•  Task properties are referred to as dependent if they have a
dependency on the priority assigned to the task.
(e.g. worst-case response time)

•  Feasibility tests which satisfy these conditions can be used
together with the OPA algorithm to derive an optimal priority
assignment for global static-priority scheduling.

Optimal priority assignment

State-of-the-art in OPA compatibility:
Scientific breakthrough:

•  Any exact test for global static-priority preemptive scheduling of
strictly periodic task systems is incompatible with OPA.
(Davis and Burns, 2011)

•  Any exact test for global static-priority preemptive scheduling of
sporadic task systems is incompatible with OPA.
(Davis and Burns, 2016)

For these exact tests, the only currently-known optimal priority
assignment policy is to check all n! possible priority orderings.

Optimal priority assignment

State-of-the-art in OPA compatibility:
Scientific breakthrough:

•  The sufficient response-time analysis presented in this lecture
is OPA-compatible for global static-priority scheduling.

•  A few other feasibility tests are known to be OPA-compatible
for global static-priority scheduling. Common for these tests is
that they use a novel strategy for calculating interference.

Highlighted article:
Read the paper by Davis and Burns (RTS Journal, 2011)
Study particularly how the strategy with a ‘problem window’ is

used for deriving a sufficient schedulability test (Section 3)

Underlying principles:

P-fair scheduling: an overview

•  Quantum based:
–  Any scheduler implementation manages the execution of tasks

in atomic time units, meaning that a task must execute during
a whole time unit or not execute during that time unit at all.

–  Challenge: how to approximate ideal proportionate progress
if a task switch can only take place at time unit boundaries?

•  Proportionate progress:
–  The guiding rule for a p-fair scheduler is to execute tasks

based on the concept of proportionate progress.
–  Ideally: a task with utilization would be scheduled to

execute a fraction of a time unit per time unit.
 Ci / Ti

 Ci / Ti

Approximated proportionate progress:

P-fair scheduling: an overview

 lag(τ i ,t) = t ⋅(Ci / Ti) − allocated(τ i ,t)

•  The concept of lag:

–  For each time unit compare how much a task should have
(ideally) executed during with how much the task actually
have executed during :

 t τ i

	 [0,t)
	 [0,t)

•  Consequences:

–  If executes, then decreases by
–  If does not execute, then increases by

–  Note: It is not always possible to have

 lag(τ i ,t) 	 1−Ci / Ti τ i

 τ i lag(τ i ,t) Ci / Ti

	 lag(τ i ,t) = 0

P-fair scheduling:
•  Definition:

–  A schedule is p-fair if, and only if:

P-fair scheduling: an overview

	 ∀i,t : −1 < lag(τ i ,t) <1

•  Consequences:
–  If a schedule is p-fair then it is also a feasible solution to

the periodic task scheduling problem!

–  Note: In a p-fair schedule the periodic execution of tasks will
have low jitter (= small deviations from expected periodicity)

P-fair scheduling:

P-fair scheduling: an overview

	 Ci / Tii=1
n∑ ≤ m ⇒ a p-fair schedule exists

•  Assumptions:

–  Fully preemptive scheduling (no preemption cost)
–  Full task migration (no migration cost)
–  Synchronous task set
–  Independent tasks
–  Periodic tasks, where Di = Ti for all tasks

•  Existence of a p-fair schedule:

–  For a system with periodic tasks and identical processors: n m

Algorithm PF: (Baruah et al., 1996)

•  Properties:
–  Generates a p-fair schedule, by using task priorities that take

into account the lag of a task.
–  Task priorities are fully dynamic, in the sense that the priority

order of the tasks may change from one time unit to the next

P-fair scheduling: an overview

•  Scheduling approach:

For each time unit:
–  Identify the urgent and non-urgent tasks
–  Execute all urgent tasks (nu tasks)
–  Do not execute any of the non-urgent tasks
–  For all other tasks: execute the m – nu highest-priority ones

