5 UNIVERSITY OF GOTHENBURG

CHALMERS | {

Dependable
<. Real-Time Systems
Lecture #9

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Multiprocessor scheduling

How are tasks assigned to processors?

e Static assignment

— The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)

— Approaches: partitioned scheduling, guided search,
non-guided search, ...

e Dynamic assignment

— The processor(s) used for executing a task are determined
during system operation “on-line”

— Approach: global scheduling

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Multiprocessor scheduling

How are tasks allowed to migrate?

e Partitioned scheduling (no migration!)
— Each instance of a task must execute on the same processor
— Equivalent to multiple uniprocessor systems!

e Guided search & non-guided techniques
— Depending on migration constraints, a task may or may not
execute on more than one processor
e Global scheduling (full migration!)

— Atask is allowed to execute on an arbitrary processor
(sometimes even after being preempted)

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Global scheduling

Implementation approaches:

e Greedy scheduling
— As used by the traditional (RM, DM, EDF) priority scheduler.

e Fair scheduling
— As used by the p-fair (proportionate fairness) scheduler.

Performance issues:

o \Weak theoretical framework
— Key properties from uniprocessor scheduling no longer valid

o Suffers from several scheduling anomalies
— Counter-intuitive sensitivity to change in system parameters

(&%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Global scheduling

A fundamental limit: (Andersson, Baruah & Jonsson, 2001)

e One (older) approach to circumvent this limit is to use p-fair
(priorities + time quanta) scheduling and dynamic task priorities.

e Another (newer) approach to circumvent this limit is to split some
of the tasks into two or more subtasks, and then run each subtask
of a split task on a separate processor. The remaining tasks use
partitioned scheduling.

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Global scheduling

Complexity of schedulability analysis for global
scheduling: (Leung & Whitehead, 1982)

A

Consequence:

There can only exist a pseudo-polynomial time algorithm for
(i) finding an optimal static priority assignment, or
(ii) exact feasibility testing

But not both at the same time!

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Weak theoretical framework

Underlying causes:

e Dhall’s effect:

— With greedy scheduling, a low-utilization task set may be
unschedulable regardless of how many processors are used.

e Hard-to-find critical instant:
— A critical instant does not always occur when a task arrives

at the same time as all its higher-priority tasks.
e Dependence on relative priority ordering:

— Changing the relative priority ordering among higher-priority
tasks may affect schedulability for a lower-priority task.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Dhall’s effect: (Dhall & Liu, 1978)

RM scheduling

T 7, misses its deadline
4

Uy

%)

HEE

e
[\
)

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Dhall’'s effect:

e Applies for (greedy) RM, DM and EDF scheduling

o | east utilization of unschedulable task sets can be arbitrarily
close to 1 no matter how many processors are used.

Conclusion in year 2000: new priority-assignment policies are
needed for effective resource utilization of multiprocessors!

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Hard-to-find critical instant:

RM scheduling

T I I I I I I I
T I I I I I
73 1 T T T T
response time of 7, is maximized for second instance
a izl P14 - Tis - Ti6
) (55! 123 T4
!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Hard-to-find critical instant: (Andersson & Jonsson, 2000)

e A critical instant does not always occur when a task
arrives at the same time as all its higher-priority tasks.

e Recall that an easy-to-find critical instant enabled the
design of many efficient uniprocessor feasibility tests.

e A hard-to-find critical instant makes it challenging to
design efficient multiprocessor feasibility tests, as it will

* incur a high time complexity (to find critical instant), or
* suffer from pessimism (due to interference uncertainty)

Conclusion in year 2000: new insights are needed for designing
efficient feasibility tests for multiprocessors!

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Impact of relative priority ordering:

RM scheduling

(priority order follows task index)

T I ! I !
7, | I I I I
T3] I I I I
Ty I I !

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Impact of relative priority ordering:

RM scheduling

(priorities of 7, and 7, swapped)

T I ! I !
7, | I I I I
T3] I I I
T4 I I !

first and second instances of 7, miss their deadlines

Ml Ty Tip|Tp |T13(T2g [F14|%24

T T
33 ?:,4 : s

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Weak theoretical framework

Impact of relative priority ordering: (Andersson & Jonsson, 2000)

e The response time of a task may depend on the relative
priority ordering of the higher-priority tasks.

e This property does not exist for a uniprocessor system.

e This means that the OPA algorithm, which can be used on
a uniprocessor for finding an optimal priority assignment,
may not have that capability on a multiprocessor system.

Conclusion in year 2000: new insights are needed of how to best
use the OPA algorithm for deriving optimal priority assignments
for multiprocessors!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Improved resource utilization

How to avoid Dhall’s effect:
Insight #1: RM, DM and EDF only account for task deadlines!
Actual computation demands are not accounted for.

Insight #2: Dhall’s effect can be avoided in greedy scheduling
by letting tasks with high utilization receive higher priority:

|
Ly w Ty
v o Ta)
w] @ @
>
0 2¢ 1 1+¢

5 UNIVERSITY OF GOTHENBURG

''''''

CHALMERS | §

Improved resource utilization

Scientific breakthrough: (Andersson, Baruah & Jonsson, 2001)
RM-US{m/(3m-2)}

o RM-US{m/(3m-2)} assigns (static) priorities to tasks
according to the following rule:

IfU. >m/(3m—2) then 7, has the highest priority
(ties broken arbitrarily)

If U. <m/(3m—2) then 7, has RM priority

o Clearly, tasks with higher utilization get higher priority.

CHALMERS | ¢

§ UNIVERSITY OF GOTHENBURG

Improved resource utilization

Scientific breakthrough:
Guarantee bound analysis for RM-US{m/(3m-2)}

o A sufficient condition for RM-US{m/(3m-2)} scheduling on
m identical processors is

e Question: does RM-US{m/(3m-2)} avoid Dhall’s effect?

CHALMERS | ¢

§ UNIVERSITY OF GOTHENBURG

Improved resource utilization

Scientific breakthrough:
Guarantee bound analysis for RM-US{m/(3m-2)}

e \We observe that, regardless of the number of processors,
the task set will always meet its deadlines as long as no
more than one third of the processing capacity is used:

U

e RM-US{m/(3m-2)} thus avoids Dhall’s effect since we can
always add more processors if deadlines were missed.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Improved resource utilization

State-of-the-art guarantee bounds for global scheduling:

e Static priorities: (“greedy” global scheduling)
— The SM-US{2/(3++5)} priority-assignment policy has a
guarantee bound of 38.2%. (Andersson, 2008)

e Dynamic priorities: (“greedy” global scheduling)
— The EDF-US{m/(2m-1)} priority-assignment policy has a
guarantee bound of 50%. (Srinivasan & Baruah, 2002)

e Task splitting: (“greedy” global+partitioned scheduling)

— The SPAZ2 task-splitting algorithm has a guarantee bound of
69.3% (c.f. the RM bound for uniprocessors). (Guan, et al., 2010)

e Optimal multiprocessor scheduling: (“fair” global scheduling)

— P-fair scheduling using dynamic priorities has a guarantee
bound of 100%. (Baruah et al., 1996)

CHALMERS | (%)) UNIVERSITY OF GOTHENBURG

Sufficient response-time test

Scientific breakthrough: (Andersson & Jonsson, 2000)
Response-time analysis for global scheduling:

e The response time for task 7, is (as before): ‘

C,: the task WCET
1. : the interference from higher-priority tasks

where /p(i) is the set of tasks with higher priority than

(&%) UNIVERSITY OF GOTHENBURG

Sufficient response-time test

Scientific breakthrough:
Response-time analysis for global scheduling:

e As before, an iterative approach can be used for finding
the worst-case response time:

e The sufficient feasibility test is then:

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Sufficient response-time test

Scientific breakthrough:

Response-time analysis for global scheduling:

e The extra execution-time - -
term introduced in this , _ 1)
analysis is an example
of carry-in interference.

C.+C.
J J
M ichp(i)

S|

e Significant research efforts have been made in recent
years to derive accurate estimates of the worst-case
carry-in interference, and utilize these estimates in
improved feasibility tests for global scheduling.

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |
Optimal priority assignment

Scientific breakthrough:
Conditions for OPA compatibility: (Davis & Burns, 2009)

Condition 1: The schedulability of a task T may, according to test S, depend
on any independent properties of tasks with priorities higher than z, but
not on any properties of those tasks that depend on their relative priority

ordering.

Condition 2: The schedulability of a task may, according to test S, depend
on any independent properties of tasks with priorities lower than z, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become
unschedulable according to test S, if it was previously schedulable at
the lower priority.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Optimal priority assignment

Scientific breakthrough:
Conditions for OPA compatibility:

e Task properties are referred to as independent if they have no
dependency on the priority assigned to the task.
(e.g. WCET, period, deadline)

e Task properties are referred to as dependent if they have a
dependency on the priority assigned to the task.
(e.g. worst-case response time)

o Feasibility tests which satisfy these conditions can be used
together with the OPA algorithm to derive an optimal priority
assignment for global static-priority scheduling.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Optimal priority assignment

Scientific breakthrough:
State-of-the-art in OPA compatibility:

e Any exact test for global static-priority preemptive scheduling of
strictly periodic task systems is incompatible with OPA.
(Davis and Burns, 2011)

e Any exact test for global static-priority preemptive scheduling of
sporadic task systems is incompatible with OPA.
(Davis and Burns, 2016)

For these exact tests, the only currently-known optimal priority
assignment policy is to check all n! possible priority orderings.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Optimal priority assignment

Scientific breakthrough:
State-of-the-art in OPA compatibility:
e The sufficient response-time analysis presented in this lecture

is OPA-compatible for global static-priority scheduling.

o Afew other feasibility tests are known to be OPA-compatible
for global static-priority scheduling. Common for these tests is
that they use a novel strategy for calculating interference.

Highligh

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

P-fair scheduling: an overview

Underlying principles:

e Proportionate progress:

— The guiding rule for a p-fair scheduler is to execute tasks
based on the concept of proportionate progress.

— ldeally: a task with utilization C, / T, would be scheduled to
execute a fraction C, /T’ of a time unit per time unit.

e Quantum based:

— Any scheduler implementation manages the execution of tasks
In atomic time units, meaning that a task must execute during
a whole time unit or not execute during that time unit at all.

— Challenge: how to approximate ideal proportionate progress
if a task switch can only take place at time unit boundaries?

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

P-fair scheduling: an overview

Approximated proportionate progress:

e The concept of lag:

— For each time unit £ compare how much a task 7. should have
(ideally) executed during [0,¢) with how much the task actually
have executed during [0,7) :

lag(t.,t) = ¢t-(C,/T) — allocated(7 ,?)

e Consequences:
— If 7, executes, then lag(7) decreases by 1-C /T,
— If 7, does not execute, then lag(7,,¢) increases by C,/ T,

— Note: It is not always possible to have lag(7,,7)=0

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

P-fair scheduling: an overview

P-fair scheduling:
e Definition:
— A schedule is p-fair if, and only if:
Vit —1<lag(t 1) <1

e Consequences:
— If a schedule is p-fair then it is also a feasible solution to
the periodic task scheduling problem!

— Note: In a p-fair schedule the periodic execution of tasks will
have low jitter (= small deviations from expected periodicity)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

P-fair scheduling: an overview

P-fair scheduling:

e Existence of a p-fair schedule:
— For a system with 7 periodic tasks and m identical processors:

AN

Z;Ci/ T <m = ap-fair schedule exists

e Assumptions:
— Fully preemptive scheduling (no preemption cost)
— Full task migration (no migration cost)
— Synchronous task set
— Independent tasks
— Periodic tasks, where D, = T for all tasks

(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

P-fair scheduling: an overview

Algorithm PF: (Baruah et al., 1996)

e Properties:
— Generates a p-fair schedule, by using task priorities that take
into account the lag of a task.

— Task priorities are fully dynamic, in the sense that the priority
order of the tasks may change from one time unit to the next

e Scheduling approach:

For each time unit:
— ldentify the urgent and non-urgent tasks

— Execute all urgent tasks (n, tasks)
— Do not execute any of the non-urgent tasks

— For all other tasks: execute the m — n, highest-priority ones

