Lecture 3: Multithreaded Programming

Operating Systems — EDA093/DIT401

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

UNIVERSITY OF
GOTHENBURG

What to read (main textbook)

» Chapter 2.2, 10.3.3*
*Some concepts will be covered later on (e.g., Copy-on-Write)

(extra facultative reading: 4.1-4.3, 4.4.1, 4.5-4.6 from Silberschatz
Operating System Concepts)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

Objectives

e To introduce the notion of a thread—a fundamental unit of
CPU utilization that forms the basis of multithreaded
computer systems

* To discuss the APIs for the Pthreads

* To explore several strategies that provide implicit threading

* To examine issues related to multithreaded programming

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

AGENDA

* Threads (Introduction)
* Multithreading models
* Implicit threading

* Threading issues

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

AGENDA

* Threads (Introduction)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

1. We run several programs at
the same time

2. One CPU can only run one
program at the time

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 6

Concurrent vs Parallel execution

1. We veral s at 1. We feel several programs run
the me at the same time

(Previous lecture)

2. One CP run one 2. Each CPU core can only run
Tam at the time one program at the time

(This lecture)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 7

The basic CPU cycle

Fetch Cycle Execute Cycle

Fetch Next
Instruction

START X >

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

Fetch Cycle Execute Cycle Fetch Cycle Execute Cycle

Fetch Next Execute Fetch Next Execute
START 1 " 7 " HALT START P I " et Thom HALT

tpemory Controller

Core | Core

[
=
=
c
~
o
=
o
2
=

MRG0 and'qPl

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

Discussion: parallel/concurrent execution of processes

= I= ft Word =)
“ Home Insert Page Layout References Mailings o @
BN Calibri (Body) ~ 11 A A A & 2 9| assbeede | AaBbCcDC AaBbC: AaBbCc A’db . “%& ?3:::“&
Pajﬂ F Format Painter B 7 U ~abe x, X* by« A 25| fiNormal |7 NoSpaci.. Headingl Heading 2 Title = ggalzsgj :tsaeav
Clipboard Font Paragrapk Styles Editing
Navigation v X :_j
ch Document =
EREENS

* Process keyboard input...
« Spell checker...
* Printing a document...

Page:1of1 | Words:0 | Swedish (Sweden) |

o)

Important: only 1 process
can be running on any
processor at any instant.

Vincenzo Gulisano

Operating Systems - Lecture 3 - Threads

10

Threads

* One process =2 multiple threads of execution

* Consider having multiple program counters per process
* Multiple locations can execute at once
* Multiple threads of control -> threads

* Must then have storage for thread details, multiple program
counters in PCB

Single and Multithreaded Processes

Vincenzo Gulisano

code

data

files

registers

stack

thread — ;

single-threaded process

Operating Systems - Lecture 3 -

code data files
registers ||| registers ||| registers
stack stack stack
(—

— thread

multithreaded process

Threads

12

Motivation

* Most modern applications are multithreaded
* Threads run within application

* Multiple tasks with the application can be implemented by
separate threads
* Update display
* Fetch data
* Spell checking

* Answer a network request

* Process creation is heavy-weight while thread creation is light-

weight

* Can simplify code, increase efficiency

* Kernels are generally multithreaded

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

13

Multithreaded Server Architecture

(2) create new
(1) request thread to service

the request
server > thread

Y

client

(3) resume listening
for additional
client requests

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

Benefits

* Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

* Resource Sharing — threads share resources of process, easier
than shared memory or message passing

* Economy — cheaper than process creation, thread switching
lower overhead than context switching

* Scalability — process can take advantage of multiprocessor
architectures

Multicore Programming

* Multicore or multiprocessor systems putting pressure on
programmers, challenges include:
* Dividing activities
* Balance
* Data splitting
* Data dependency
* Testing and debugging

* Parallelistm implies a system can perform more than one task
simultaneously

* Concurrency supports more than one task making progress

* Single processor / core, scheduler providing concurrency

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

16

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

single core T4 To T3 Ty T4 To Ts Ty T4
time .
core 1 T4 T3 T4 Ts T4
core 2 Ts Ty To Ty To

Vincenzo Gulisano

Operating Systems - Lecture 3 - Threads

A 4

Multicore Programming (Cont.)

* Types of parallelism

* Data parallelism — distributes subsets of the same data across multiple
cores, same operation on each

* Task parallelism — distributing threads across cores, each thread
performing unique operation
* As # of threads grows, so does architectural support for
threading
* CPUs have cores as well as hardware threads

* Consider Oracle SPARC T4 with 8 cores, and 8 hardware threads per
core

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 18

Question

* We have a program:

]

How many times (X) faster?

1<X=10
Serial portion S 10<X=30
(25% of the program) 30)<X<60
60<X=100

1 core =2 100 cores

Vincenzo Gulisano

Operating Systems - Lecture 3 - Threads

19

Amdahl’s Law

* Identifies performance gains from adding additional cores to an
application that has both serial and parallel components

* S 1s serial portion

* N processing cores

speedup <

* That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

* As N approaches infinity, speedup approaches 1 / .§

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

AGENDA

* Multithreading models

Vincenzo Gulisano

Operating Systems - Lecture 3 - Threads

21

User Threads and Kernel Threads

* User threads - management done by user-level threads library

* Three primary thread libraries:
e POSIX Pthreads
* Windows threads

* Java threads
* Kernel threads - Supported by the Kernel

* Examples — virtually all general purpose operating systems, including:
* Windows
* Solaris
* Linux
* Tru64 UNIX
* Mac OS X

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

22

Multithreading Models

* Many-to-One
* One-to-One

* Many-to-Many

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

23

Many-to-One

* Many user-level threads mapped to single
kernel thread

* One thread blocking causes all to block

* Multiple threads may not run in parallel

on muticore system because only one g g
.) <«— user thread
may be in kernel at a time

* Few systems currently use this model

* Examples:

e Solaris Green Threads
e GNU Portable Threads

<«— kernel thread

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 24

One-to-One

* Each user-level thread maps to kernel thread
* Creating a user-level thread creates a kernel thread
* More concurrency than many-to-one

* Number of threads per process sometimes
restricted due to overhead

* Examples <«— user thread

* Windows

* [inux
e Solaris 9 and later
<«—kernel thread

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 25

Many-to-Many Model

* Allows many user level threads to be
mapped to many kernel threads

* Allows the operating system to create
a sufficient number of kernel threads

* Solaris prior to version 9

* Windows with the ThreadFiber package ;

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

54— user thread

<«— kernel thread

26

Thread Libraries

* Thread library provides programmer with API for
creating and managing threads

* Two primary ways of implementing
* Library entirely in user space
* Kernel-level library supported by the OS

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

28

Pthreads

* May be provided either as user-level or kernel-level
* A POSIX standard IEEE 1003.1c) API for thread creation and

synchronization
* Specification, not implementation

* API specifies behavior of the thread library, implementation is
up to development of the library

* Common 1n UNIX operating systems (Solarts, Linux, Mac OS
X)

Pthreads Example

Summing 0 ... n

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread t tid; /* the thread identifier */
pthread_attr_t attr; /* set of thread attributes */

if (arge != 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv([1]) < 0) {
fprintf (stderr,")d must be >= 0\n",atoi(argv[1]));
return -1;

}

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

30

Pthreads Example (Cont.)

/* get the default attributes */
pthread attr init (&attr);

/* create the thread */
pthread_create(&tid,&attr,runner,argv(1]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1;

pthread exit (0);

Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

AGENDA

* Implicit threading

Vincenzo Gulisano

Operating Systems - Lecture 3 - Threads

33

Implicit Threading

* Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

* Creation and management of threads done by compilers and
run-time libraries rather than programmers

* Two methods explored
* Thread Pools
* OpenMP

Thread Pools

* Create a number of threads in a pool where they await work

* Advantages:

* Usually slightly faster to service a request with an existing thread than
create a new thread

* Allows the number of threads in the application(s) to be bound to the
size of the pool

* Separating task to be performed from mechanics of creating task
allows ditferent strategies for running task

* i.e.Tasks could be scheduled to run periodically

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 35

OpenMP

* Set of compiler directives and an API

for C, C++, FORTRAN

* Provides support for parallel #include <omp.h>
programming in shared-memory #include <stdio.h>
environments

* Identifies parallel regions — blocks of int main(int argc, char *argv(])

code that can run in parallel {

/* sequential code */
#pragma omp parallel

Create as many threads as there are cores #pragma omp parallel
#pragma omp parallel for
for (i=0;i<N;i++) { printf ("I am a parallel region.");
c[i] = a[i] + b[i]; J
} /* sequential code */

Run for loop in parallel
return 0;

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 36

AGENDA

* Threading Issues

Vincenzo Gulisano

Operating Systems - Lecture 3 - Threads

37

Threading Issues

* Semantics of fork() and exec() system calls

* Signal handling

* Synchronous and asynchronous

* Thread cancellation of target thread

* Asynchronous or deferred

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

38

C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h> —
#include <unistd.h> > watlt

int main() @
{ .
pid-t pid; e @ @

/* fork a child process */
pid = fork();

resumes

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 39

Semantics of fork() and exec()

* Does fork () duplicate only the calling thread or all
threads?

* Some UNIXes have two versions of fork

* exec () usually works as normal — replace the running
process including all threads

Signal Handling

* Signals are used in UNIX systems to notify a process that a particular
event has occurred.

* A signal handler is used to process signals
* Signal 1s generated by particular event
* Signal 1s delivered to a process
* Signal 1s handled by one of two signal handlers:
* default
* user-defined
* BEvery signal has default handler that kernel runs when handling signal
* User-defined signal handler can override default
* Tor single-threaded, signal delivered to process

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

41

Signal Handling (Cont.)

* Where should a signal be delivered for multi-threaded?
* Deliver the signal to the thread to which the signal applies
* Deliver the signal to every thread in the process
* Deliver the signal to certain threads in the process

* Assign a specific thread to receive all signals for the process

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

42

Thread Cancellation

* Terminating a thread before it has finished
* Thread to be canceled 1s target thread

* Two general approaches:

* Asynchronous cancellation terminates the target thread immediately

* Deferred cancellation allows the target thread to periodically check if it
should be cancelled

e Pthread code to create and cancel a thread:

pthread t tid;

/+* create the thread */
pthread create (&tid, 0, worker, NULL) ;

/* cancel the thread x/
pthread_cancel (tid) ;

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

Thread Cancellation (Cont.)

* Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

Mode State Type
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

* If thread has cancellation disabled, cancellation remains pending

until thread enables it
* Default type is deferred
* Cancellation only occurs when thread reaches cancellation point

* Le.pthread testcancel()
* Then cleanup handler is invoked

* On Linux systems, thread cancellation is handled through signals

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads

44

Thank you for your attention!
(Questions?

Feedback / questions:

https://forms.gle/NHtma3it4QMT2thf6

https://forms.gle/NHtma3it4QMT2thf6

Kahoot questions - tigures

Question 1

P1

P2

P3

P4

P5

012 3456 78 910

Operating Systems - Lecture 3 - Threads

46

Kahoot questions - tigures

QQuestion 2

Vincenzo Gulisano

int sum;

int main() {
[...]
pthread_create(&tid,&ttr, runner,argv([1]);
pthread_join(tid,NULL);
ptrintf("sum = %d\n",sum);
[...]
}

void *runner(void *param) {
int i, upper = atoi(param);
sum=0;
(i =1; i <= upper; i++)
sum += 1i;
pthread_exit(0);

Operating Systems - Lecture 3 - Threads

47

