
Lecture 3: Multithreaded Programming
Operating Systems – EDA093/DIT401

Vincenzo Gulisano
vincenzo.gulisano@chalmers.se

What to read (main textbook)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 2

• Chapter 2.2, 10.3.3*

*Some concepts will be covered later on (e.g., Copy-on-Write)

(extra facultative reading: 4.1-4.3, 4.4.1, 4.5-4.6 from Silberschatz
Operating System Concepts)

Objectives
• To introduce the notion of a thread—a fundamental unit of

CPU utilization that forms the basis of multithreaded
computer systems
• To discuss the APIs for the Pthreads
• To explore several strategies that provide implicit threading
• To examine issues related to multithreaded programming

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 3

AGENDA

• Threads (Introduction)
• Multithreading models
• Implicit threading
• Threading issues

Operating Systems - Lecture 3 - Threads 4Vincenzo Gulisano

AGENDA

• Threads (Introduction)
• Multithreading models
• Implicit threading
• Threading issues

Operating Systems - Lecture 3 - Threads 5Vincenzo Gulisano

1. We run several programs at
the same time

2. One CPU can only run one
program at the time

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 6

1. We feel several programs run
at the same time

2. Each CPU core can only run
one program at the time

Concurrent vs Parallel execution

1. We run several programs at
the same time

2. One CPU can only run one
program at the time

(This lecture)

(Previous lecture)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 7

The basic CPU cycle

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 8

...

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 9

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 10

• Process keyboard input…
• Spell checker…
• Printing a document…

Discussion: parallel/concurrent execution of processes

Important: only 1 process
can be running on any
processor at any instant.

Threads

•One process à multiple threads of execution
• Consider having multiple program counters per process
• Multiple locations can execute at once
• Multiple threads of control -> threads

•Must then have storage for thread details, multiple program
counters in PCB

Operating Systems - Lecture 3 - Threads 11Vincenzo Gulisano

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 12

Motivation

• Most modern applications are multithreaded
• Threads run within application
• Multiple tasks with the application can be implemented by

separate threads
• Update display
• Fetch data
• Spell checking
• Answer a network request

• Process creation is heavy-weight while thread creation is light-
weight
• Can simplify code, increase efficiency
• Kernels are generally multithreaded

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 13

Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 14

Benefits

• Responsiveness – may allow continued execution if part of
process is blocked, especially important for user interfaces
• Resource Sharing – threads share resources of process, easier

than shared memory or message passing
• Economy – cheaper than process creation, thread switching

lower overhead than context switching
• Scalability – process can take advantage of multiprocessor

architectures

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 15

Multicore Programming

• Multicore or multiprocessor systems putting pressure on
programmers, challenges include:
• Dividing activities
• Balance
• Data splitting
• Data dependency
• Testing and debugging

• Parallelism implies a system can perform more than one task
simultaneously
• Concurrency supports more than one task making progress
• Single processor / core, scheduler providing concurrency

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 16

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 17

Multicore Programming (Cont.)

• Types of parallelism
• Data parallelism – distributes subsets of the same data across multiple

cores, same operation on each
• Task parallelism – distributing threads across cores, each thread

performing unique operation

• As # of threads grows, so does architectural support for
threading
• CPUs have cores as well as hardware threads
• Consider Oracle SPARC T4 with 8 cores, and 8 hardware threads per

core

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 18

Question

• We have a program:

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 19

Serial portion S
(25% of the program)

1 core à 100 cores

How many times (X) faster?
1<X≤10
10<X≤30
30<X≤60
60<X≤100

Amdahl’s Law

• Identifies performance gains from adding additional cores to an
application that has both serial and parallel components
• S is serial portion
• N processing cores

• That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times
• As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 20

AGENDA

• Threads (Introduction)
• Multithreading models
• Implicit threading
• Threading issues

Operating Systems - Lecture 3 - Threads 21Vincenzo Gulisano

User Threads and Kernel Threads

• User threads - management done by user-level threads library
• Three primary thread libraries:
• POSIX Pthreads
• Windows threads
• Java threads

• Kernel threads - Supported by the Kernel
• Examples – virtually all general purpose operating systems, including:
• Windows
• Solaris
• Linux
• Tru64 UNIX
• Mac OS X

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 22

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 23

Many-to-One

• Many user-level threads mapped to single
kernel thread
• One thread blocking causes all to block
• Multiple threads may not run in parallel

on muticore system because only one
may be in kernel at a time
• Few systems currently use this model
• Examples:
• Solaris Green Threads
• GNU Portable Threads

user thread

kernel threadk

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 24

One-to-One
• Each user-level thread maps to kernel thread
• Creating a user-level thread creates a kernel thread
• More concurrency than many-to-one
• Number of threads per process sometimes

restricted due to overhead
• Examples
• Windows
• Linux
• Solaris 9 and later

user thread

kernel threadkkkk

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 25

Many-to-Many Model
• Allows many user level threads to be

mapped to many kernel threads
• Allows the operating system to create

a sufficient number of kernel threads
• Solaris prior to version 9
• Windows with the ThreadFiber package user thread

kernel threadkkk

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 26

Thread Libraries

• Thread library provides programmer with API for
creating and managing threads
• Two primary ways of implementing
• Library entirely in user space
• Kernel-level library supported by the OS

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 28

Pthreads

• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization
• Specification, not implementation
• API specifies behavior of the thread library, implementation is

up to development of the library
• Common in UNIX operating systems (Solaris, Linux, Mac OS

X)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 29

Pthreads Example

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 30

Summing 0 … n

Pthreads Example (Cont.)

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 31

Pthreads Code for Joining 10 Threads

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 32

AGENDA

• Threads (Introduction)
• Multithreading models
• Implicit threading
• Threading Issues

Operating Systems - Lecture 3 - Threads 33Vincenzo Gulisano

Implicit Threading

• Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads
• Creation and management of threads done by compilers and

run-time libraries rather than programmers
• Two methods explored
• Thread Pools
• OpenMP

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 34

Thread Pools

• Create a number of threads in a pool where they await work
• Advantages:
• Usually slightly faster to service a request with an existing thread than

create a new thread
• Allows the number of threads in the application(s) to be bound to the

size of the pool
• Separating task to be performed from mechanics of creating task

allows different strategies for running task
• i.e.Tasks could be scheduled to run periodically

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 35

OpenMP

• Set of compiler directives and an API
for C, C++, FORTRAN

• Provides support for parallel
programming in shared-memory
environments

• Identifies parallel regions – blocks of
code that can run in parallel

#pragma omp parallel

Create as many threads as there are cores
#pragma omp parallel for
for(i=0;i<N;i++) {

c[i] = a[i] + b[i];

}

Run for loop in parallel

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 36

AGENDA

• Threads (Introduction)
• Multithreading models
• Implicit threading
• Threading Issues

Operating Systems - Lecture 3 - Threads 37Vincenzo Gulisano

Threading Issues

• Semantics of fork() and exec() system calls
• Signal handling
• Synchronous and asynchronous

• Thread cancellation of target thread
• Asynchronous or deferred

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 38

C Program Forking Separate Process

Operating Systems - Lecture 3 - Threads 39Vincenzo Gulisano

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all
threads?
• Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running
process including all threads

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 40

Signal Handling

• Signals are used in UNIX systems to notify a process that a particular
event has occurred.
• A signal handler is used to process signals
• Signal is generated by particular event
• Signal is delivered to a process
• Signal is handled by one of two signal handlers:

• default
• user-defined

• Every signal has default handler that kernel runs when handling signal
• User-defined signal handler can override default
• For single-threaded, signal delivered to process

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 41

Signal Handling (Cont.)

• Where should a signal be delivered for multi-threaded?
• Deliver the signal to the thread to which the signal applies
• Deliver the signal to every thread in the process
• Deliver the signal to certain threads in the process
• Assign a specific thread to receive all signals for the process

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 42

Thread Cancellation

• Terminating a thread before it has finished
• Thread to be canceled is target thread
• Two general approaches:
• Asynchronous cancellation terminates the target thread immediately
• Deferred cancellation allows the target thread to periodically check if it

should be cancelled

• Pthread code to create and cancel a thread:

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 43

Thread Cancellation (Cont.)

• Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

• If thread has cancellation disabled, cancellation remains pending
until thread enables it
• Default type is deferred
• Cancellation only occurs when thread reaches cancellation point

• I.e. pthread_testcancel()
• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 44

Thank you for your attention!
Questions?

Feedback / questions:

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 45

https://forms.gle/NHtma3it4QMT2thf6

https://forms.gle/NHtma3it4QMT2thf6

Kahoot questions - figures

Question 1

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 46

Kahoot questions - figures

Question 2

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 47

