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What to read (main textbook)

* Chapter2.4,8.1.1,8.1.2,8.1.4,10.3.4,11.4.1

(extra facultative reading: 5.1-5.7, 1.10 from Silberschatz
Operating System Concepts)



Objectives

* Get deeper into processes, threads and their
scheduling / execution

* Discuss different types of systems
(batch/interactive/real-time)

* Discuss challenges of multi-processor/multi-
core architectures



Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling
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Introduction
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* 2 types of processes:

a) CPU-bound (or compute-bound)
b) 1/0 bound

. :\/Igtice”: |/O does not mean 1I/0O takes a lot, it means few CPU cycles in-between
calls
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When can the OS take scheduling decisions?

* Process creation

* Process termination ,
- Non-preemptive

* /0 request - preemptive

* |/O interrupt

* Elapsed time



Agenda

* Introduction
e Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling
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Scheduling algorithms — Categories and goals

THROUGHPUT
e Batch

"business-world” applications, data
analysis. Appropriate for non-
preemptive

* Interactive
Many users that need
responsiveness, requiring
preemptive scheduling

RESPONSE TIME
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* Real-time
for short-lived, short-cycle processes
with hard/soft deadlines

POLICY ENFORCEMENT
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... Let’s discuss some scheduling algorithms for some of
these categories [read others in book]...




Batch systems — scheduling

First-Come/First-Serve (non-preemptive) Easy, fair Possibly inefficient (esp. for I/O bound processes)
Shortest Job First (non-preemptive) Optimal for turnaround Starvation + need to know runtime
Shortest Remaining Time Next (preemptive) New short jobs get Starvation + need to know runtime

good service
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Example of inefficient first-come/first-serve scheduling

* Process 0 (CPU-bound): 1 1/0 every 1 sec of computations, 1000 sec
to finish

* Processes 1...1000 (/0 bound): need to perform 1000 I/Os

* FCFS: Processes 1...1000 get to perform 1 1/0 every second. Hence,
they end in 1000 seconds (>16 minutes)

* Preempting Process O every 10 ms, they could complete in 10
seconds...



Interactive Systems - scheduling

* Round-robin =
* Priority scheduling ¢
* Multiple queues

* Shortest process next

* Guaranteed scheduling
* Lottery scheduling <=
* Fair-share scheduling
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Round-Robin

* Quantum: time-interval during which the process can run

* Process still running at the end of the quantum? Preempt!
e Simple to implement (keep a list...)

* Challenge: what’s the right quantum length?
* Too short = high overhead

* Too long = responsiveness (e.g., 50t" process of a batch scheduled in round-
robin with quantum 100ms waits 5 secs to start... what if it was the shortest
|/O-bound of the 50 processes???)



Priority scheduling

* Not all processes are equally Queue  Runnable processes
important, processes with higher Priority 4 (Highest priority)
priority should be prioritized Priority 3

Priority 2
* Priorities: ey (Lowset pricry)
e Static (by OS or user) Figure 2-43. A scheduling algorithm with four priority classes.

* Dynamic (by OS or user)

.. . _ ...In the previous example (FCFS batch) I/0
¢ Prlorlty can be combined with could have higher priority than CPU-bound...

round-robin = priority classes



Lottery scheduling

* Alternative to priority scheduling that still gives more resources to
some processes rather than others

* Processes get “lottery tickets”.
* Next process to run is the one holding the next randomly chose ticket.

 Easier to map portions of resources to give to a process (i.e., portion
of tickets to give) than with priority scheduling



Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling
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User-level vs. Kernel-level threads

Order in which

threads run

2. Run-time
system

thread

2 ) (834

Process A Process B

AN

L1 . Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

@

Process A Process B

1 Kernel picks a thread E

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

(b)

Figure 2-44. (a) Possible scheduling of user-level threads with a 50-msec proc-
ess quantum and threads that run 5 msec per CPU burst. (b) Possible scheduling
of kernel-level threads with the same characteristics as (a).
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- Inter-quantum thread switch
is extremely fast (no real
context switch)

- Can employ application
specific scheduler

A thread blocking on I/O means
the entire process does

Operating Systems - Lecture 4 — Process Scheduling

Process can keep
running even if some
of its thread perform
I/O

Thread switch costs
more (but OS knows
inter-process thread
switch might cost
more than intra-
process one)
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Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling
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Multiprocessor hardware— Why complicated?

Caches

Shared memory

CPU CPU

M

Bus

(@)

Private memory —

Shared
memory

‘CPU

{

,PU M

CPU

CPU M

\ 4

Suppose a thread has some data
here and issues an I/O request.
When later rescheduled, it might
perform better on this CPU than on
this one... ——

Cache

(b)

()

Figure 8-2. Three bus-based multiprocessors. (a) Without caching. (b) With
caching. (c) With caching and private memories.
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... but for that we need to keep
track of more such information and
make it part of the scheduling
process.
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Multiprocessor hardware— Why complicated?

NUMA architectures

Suppose two threads (producer/consumer) are scheduled

NUMA Node 1 NUMA Node 2 at the same time...

Scheduling on the same socket will perform better than...

Scheduling on two different sockets

To complicate a bit further... how would the OS know 2
threads are producer/consumer?

NUMA Node 3 | NUMA Node 4
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Multiprocessor hardware— Why complicated?

Where to place the OS itself?

Each CPU its own OS

CPU 1 CPU 2
Has Has
private private
0S 0S

CPU3 CPU 4 Memory I/0O
1 2
Has Has Data | Data
private private 3 | 4
0Ss 0Ss Data | Data
OS code
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N

Bus
Figure 8-7. Partitioning multiprocessor memory among four CPUs, but sharing a

single copy of the operating system code. The boxes marked Data are the operat-
ing system’s private data for each CPU.

Might still be better than n separate
computers

No sharing makes it simple, but also inefficient
and possibly useless...

-  Load can become imbalanced

- Data can become inconsistent (especially
with buffers!)
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Multiprocessor hardware— Why complicated?

Where to place the OS itself?

Master-Slave

CPU 1 CPU 2 CPU3 CPU4 Memory 110
Master Slave Slave Slave User

runs runs user runs user runs user processes

(O1) processes processes processes 0S

Figure 8-8. A master-slave multiprocessor model.
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Bus

All system calls redirected to the Master CPU

... easy to bottleneck ...
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Multiprocessor hardware— Why complicated?

Where to place the OS itself?

Symmetric multiprocessors

Balances workload / resources

—> CONCURRENT ACCESS TO KERNEL!!!

2 threads could modify the same data structure at

the same time.

CPU 1 CPU 2 CPU 3 CPU 4 Memory I/0
Runs Runs Runs Runs
users and users and users and users and
shared OS| |shared OS| [shared OS| |[shared OS oS O
\
\ Locks
Bus

Figure 8-9. The SMP multiprocessor model.
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Operating Systems -

Big lock? = Then it is basically master-slave

Critical regions / fine-grained parallelism? = better!
...but makes it hard to program (e.g., deadlocks...)
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Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling
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Time sharing

 Single system-wide data structure (or combination) for all ready threads

+ Automatic load balancing

[o] [1][2] [5] [o] [1][2] [5] [o] [1][2] [¢] - :
AEEE,® WHEEE e DEEED Contention might bottleneck
[5] Srua " [&] [3] goes ide [5] [5] the system
P 00 Proty Pty — - Still suffers from the “affinity
e e e problem”
3. Tee0 3. Tee0 3. OO0
2l 100 2 +O® 2l TO®
1 1 1
o T+OOO o TOOO o TOOO
(@) (b) ()

Figure 8-12. Using a single data structure for scheduling a multiprocessor.
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Time sharing — two-level scheduling algorithm

e Each CPU has its collection of threads (assigned at creation time, in
e.g. round-robin or least-loaded)

e |dle CPUs can still take threads from other CPUs if needed

* Benefits:
* Load balancing
e Cache affinity
* Less contention



Space sharing

 When a set of related threads (e.g., from the same process) is created, the OS
tries to schedule all of them at the same time (if enough CPUs are available).

* Thread issuing I/O still holds the CPU (inefficient...).

8-CPU partition TSPy gy P
\ of [1]]2][8]14] [5]][6]i7 ]« 4CPU partion

(8| [ 9] [10] [11]i12] [13] [14]i|15];

6-CPU partition —.{| 16| |17 [18]i[19] {20] |21 [22][23]

24| |25 |26]:[27] {28 |29] |30]ii|31];

T ~ 3
Unassigned CPU / 12-CPU partition

Figure 8-13. A set of 32 CPUs split into four partitions, with two CPUs
available.
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Gang scheduling

* Schedule both in time and space
e Can prevent problems like the one shown below:

Thread A, running

—"—
CPUO Ay By Ay By Ao By
Request 1 . Jequest ;2 I
e . _Reply | _neewE
CPU 1 B, A, B, A B, A
Time 0 100 200 300 400 500 600
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Gang scheduling

* Groups of related threads are scheduled as a gang (with same
guantum)

* All gang members run at once

* All gang members start / end their qguantum together



Gang scheduling - example

CPU
0 1 2 3 4 5
o A, A, A, A, A, A
1| B, B, B, Co C, C,
ol D, D, D, D, D, E,
Time 3 E, Eg E, E, E. Eq
slot 41 A, A, A, A, A, A
5/ By B, B, C, C, C,
6| D, D, D, D, D, E,
7| E, E, E, E, E, E,

Figure 8-15. Gang scheduling.
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Thank you for your attention!
Questions?

Feedback / questions:

https://forms.gle/dNkZZ1RE6WwYqzFk6 r& n
EI?E?



https://forms.gle/dNkZZ1RE6WwYqzFk6

