Lecture 4: Process scheduling
Operating Systems — EDA093/DIT401

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

UNIVERSITY OF
GOTHENBURG

What to read (main textbook)

* Chapter2.4,8.1.1,8.1.2,8.1.4,10.3.4,11.4.1

(extra facultative reading: 5.1-5.7, 1.10 from Silberschatz
Operating System Concepts)

Objectives

* Get deeper into processes, threads and their
scheduling / execution

* Discuss different types of systems
(batch/interactive/real-time)

* Discuss challenges of multi-processor/multi-
core architectures

Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling

Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

Introduction

(a) | —— — ——] |

/'

Long CPU burst

Waiting for I/O

Short CPU burst \
/]
L

) [[I {1 (—1 {1 []

M
U

3

Time

* 2 types of processes:

a) CPU-bound (or compute-bound)
b) 1/0 bound

. :\/Igtice”: |/O does not mean 1I/0O takes a lot, it means few CPU cycles in-between
calls

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

When can the OS take scheduling decisions?

* Process creation

* Process termination ,
- Non-preemptive

* /0 request - preemptive

* |/O interrupt

* Elapsed time

Agenda

* Introduction
e Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

Scheduling algorithms — Categories and goals

THROUGHPUT
e Batch

"business-world” applications, data
analysis. Appropriate for non-
preemptive

* Interactive
Many users that need
responsiveness, requiring
preemptive scheduling

RESPONSE TIME

n
N
L
P
oc
T

* Real-time
for short-lived, short-cycle processes
with hard/soft deadlines

POLICY ENFORCEMENT

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

... Let’s discuss some scheduling algorithms for some of
these categories [read others in book]...

Batch systems — scheduling

First-Come/First-Serve (non-preemptive) Easy, fair Possibly inefficient (esp. for I/O bound processes)
Shortest Job First (non-preemptive) Optimal for turnaround Starvation + need to know runtime
Shortest Remaining Time Next (preemptive) New short jobs get Starvation + need to know runtime

good service

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling 11

Example of inefficient first-come/first-serve scheduling

* Process 0 (CPU-bound): 1 1/0 every 1 sec of computations, 1000 sec
to finish

* Processes 1...1000 (/0 bound): need to perform 1000 I/Os

* FCFS: Processes 1...1000 get to perform 1 1/0 every second. Hence,
they end in 1000 seconds (>16 minutes)

* Preempting Process O every 10 ms, they could complete in 10
seconds...

Interactive Systems - scheduling

* Round-robin =
* Priority scheduling ¢
* Multiple queues

* Shortest process next

* Guaranteed scheduling
* Lottery scheduling <=
* Fair-share scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

13

Round-Robin

* Quantum: time-interval during which the process can run

* Process still running at the end of the quantum? Preempt!
e Simple to implement (keep a list...)

* Challenge: what’s the right quantum length?
* Too short = high overhead

* Too long = responsiveness (e.g., 50t" process of a batch scheduled in round-
robin with quantum 100ms waits 5 secs to start... what if it was the shortest
|/O-bound of the 50 processes???)

Priority scheduling

* Not all processes are equally Queue Runnable processes
important, processes with higher Priority 4 (Highest priority)
priority should be prioritized Priority 3

Priority 2
* Priorities: ey (Lowset pricry)
e Static (by OS or user) Figure 2-43. A scheduling algorithm with four priority classes.

* Dynamic (by OS or user)

.. . _ ...In the previous example (FCFS batch) I/0
¢ Prlorlty can be combined with could have higher priority than CPU-bound...

round-robin = priority classes

Lottery scheduling

* Alternative to priority scheduling that still gives more resources to
some processes rather than others

* Processes get “lottery tickets”.
* Next process to run is the one holding the next randomly chose ticket.

 Easier to map portions of resources to give to a process (i.e., portion
of tickets to give) than with priority scheduling

Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

17

User-level vs. Kernel-level threads

Order in which

threads run

2. Run-time
system

thread

2) (834

Process A Process B

AN

L1 . Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

@

Process A Process B

1 Kernel picks a thread E

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

(b)

Figure 2-44. (a) Possible scheduling of user-level threads with a 50-msec proc-
ess quantum and threads that run 5 msec per CPU burst. (b) Possible scheduling
of kernel-level threads with the same characteristics as (a).

Vincenzo Gulisano

- Inter-quantum thread switch
is extremely fast (no real
context switch)

- Can employ application
specific scheduler

A thread blocking on I/O means
the entire process does

Operating Systems - Lecture 4 — Process Scheduling

Process can keep
running even if some
of its thread perform
I/O

Thread switch costs
more (but OS knows
inter-process thread
switch might cost
more than intra-
process one)

18

Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

19

Multiprocessor hardware— Why complicated?

Caches

Shared memory

CPU CPU

M

Bus

(@)

Private memory —

Shared
memory

‘CPU

{

,PU M

CPU

CPU M

\ 4

Suppose a thread has some data
here and issues an I/O request.
When later rescheduled, it might
perform better on this CPU than on
this one... ——

Cache

(b)

()

Figure 8-2. Three bus-based multiprocessors. (a) Without caching. (b) With
caching. (c) With caching and private memories.

Vincenzo Gulisano

Operating Systems - Lecture 4 — Process Scheduling

... but for that we need to keep
track of more such information and
make it part of the scheduling
process.

20

Multiprocessor hardware— Why complicated?

NUMA architectures

Suppose two threads (producer/consumer) are scheduled

NUMA Node 1 NUMA Node 2 at the same time...

Scheduling on the same socket will perform better than...

Scheduling on two different sockets

To complicate a bit further... how would the OS know 2
threads are producer/consumer?

NUMA Node 3 | NUMA Node 4

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling 21

Multiprocessor hardware— Why complicated?

Where to place the OS itself?

Each CPU its own OS

CPU 1 CPU 2
Has Has
private private
0S 0S

CPU3 CPU 4 Memory I/0O
1 2
Has Has Data | Data
private private 3 | 4
0Ss 0Ss Data | Data
OS code

Vincenzo Gulisano

N

Bus
Figure 8-7. Partitioning multiprocessor memory among four CPUs, but sharing a

single copy of the operating system code. The boxes marked Data are the operat-
ing system’s private data for each CPU.

Might still be better than n separate
computers

No sharing makes it simple, but also inefficient
and possibly useless...

- Load can become imbalanced

- Data can become inconsistent (especially
with buffers!)

Operating Systems - Lecture 4 — Process Scheduling 22

Multiprocessor hardware— Why complicated?

Where to place the OS itself?

Master-Slave

CPU 1 CPU 2 CPU3 CPU4 Memory 110
Master Slave Slave Slave User

runs runs user runs user runs user processes

(O1) processes processes processes 0S

Figure 8-8. A master-slave multiprocessor model.

Vincenzo Gulisano

N

Bus

All system calls redirected to the Master CPU

... easy to bottleneck ...

Operating Systems - Lecture 4 — Process Scheduling 23

Multiprocessor hardware— Why complicated?

Where to place the OS itself?

Symmetric multiprocessors

Balances workload / resources

—> CONCURRENT ACCESS TO KERNEL!!!

2 threads could modify the same data structure at

the same time.

CPU 1 CPU 2 CPU 3 CPU 4 Memory I/0
Runs Runs Runs Runs
users and users and users and users and
shared OS| |shared OS| [shared OS| |[shared OS oS O
\
\ Locks
Bus

Figure 8-9. The SMP multiprocessor model.

Vincenzo Gulisano

Operating Systems -

Big lock? = Then it is basically master-slave

Critical regions / fine-grained parallelism? = better!
...but makes it hard to program (e.g., deadlocks...)

Lecture 4 — Process Scheduling 24

Agenda

* Introduction
* Batch / Interactive / Real-time systems scheduling
* Processes vs. Threads scheduling

* Multiprocessor hardware
* Why does it complicate the matter?

* Multiprocessor scheduling
* Time sharing
e Space sharing
* Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

25

Time sharing

 Single system-wide data structure (or combination) for all ready threads

+ Automatic load balancing

[o] [1][2] [5] [o] [1][2] [5] [o] [1][2] [¢] - :
AEEE,® WHEEE e DEEED Contention might bottleneck
[5] Srua " [&] [3] goes ide [5] [5] the system
P 00 Proty Pty — - Still suffers from the “affinity
e e e problem”
3. Tee0 3. Tee0 3. OO0
2l 100 2 +O® 2l TO®
1 1 1
o T+OOO o TOOO o TOOO
(@) (b) ()

Figure 8-12. Using a single data structure for scheduling a multiprocessor.

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling 26

Time sharing — two-level scheduling algorithm

e Each CPU has its collection of threads (assigned at creation time, in
e.g. round-robin or least-loaded)

e |dle CPUs can still take threads from other CPUs if needed

* Benefits:
* Load balancing
e Cache affinity
* Less contention

Space sharing

 When a set of related threads (e.g., from the same process) is created, the OS
tries to schedule all of them at the same time (if enough CPUs are available).

* Thread issuing I/O still holds the CPU (inefficient...).

8-CPU partition TSPy gy P
\ of [1]]2][8]14] [5]][6]i7]« 4CPU partion

(8| [9] [10] [11]i12] [13] [14]i|15];

6-CPU partition —.{| 16| |17 [18]i[19] {20] |21 [22][23]

24| |25 |26]:[27] {28 |29] |30]ii|31];

T ~ 3
Unassigned CPU / 12-CPU partition

Figure 8-13. A set of 32 CPUs split into four partitions, with two CPUs
available.

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

Gang scheduling

* Schedule both in time and space
e Can prevent problems like the one shown below:

Thread A, running

—"—
CPUO Ay By Ay By Ao By
Request 1 . Jequest ;2 I
e . _Reply | _neewE
CPU 1 B, A, B, A B, A
Time 0 100 200 300 400 500 600

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling 29

Gang scheduling

* Groups of related threads are scheduled as a gang (with same
guantum)

* All gang members run at once

* All gang members start / end their qguantum together

Gang scheduling - example

CPU
0 1 2 3 4 5
o A, A, A, A, A, A
1| B, B, B, Co C, C,
ol D, D, D, D, D, E,
Time 3 E, Eg E, E, E. Eq
slot 41 A, A, A, A, A, A
5/ By B, B, C, C, C,
6| D, D, D, D, D, E,
7| E, E, E, E, E, E,

Figure 8-15. Gang scheduling.

Vincenzo Gulisano Operating Systems - Lecture 4 — Process Scheduling

31

Thank you for your attention!
Questions?

Feedback / questions:

https://forms.gle/dNkZZ1RE6WwYqzFk6 r& n
EI?E?

https://forms.gle/dNkZZ1RE6WwYqzFk6

