
CHAPTER 5

Exercises

5.3 One technique for implementing lottery scheduling works by assigning processes lottery tickets, which
are used for allocating CPU time. Whenever a scheduling decision has to be made, a lottery ticket is chosen at
random, and the process holding that ticket gets the CPU. The BTV operating system implements lottery
scheduling by holding a lottery 50 times each second, with each lottery winner getting 20 milliseconds of CPU
time (20 milliseconds × 50 = 1 second). Describe how the BTV scheduler can ensure that higher-priority threads
receive more attention from the CPU than lower-priority threads.
Answer:
By assigning more lottery tickets to higher-priority processes.

5.5 Consider the exponential average formula used to predict the length of the next CPU burst. What are the
implications of assigning the following values to the parameters used by the algorithm?

a. α = 0 and τ0 = 100 milliseconds
b. α = 0.99 and τ 0 = 10 milliseconds

Answer:
When α = 0 and τ0 = 100 milliseconds, the formula always makes a prediction of 100 milliseconds for the next
CPU burst. When α = 0.99 and τ0 = 10 milliseconds, the most recent behavior of the process is given much
higher weight than the past history associated with the process. Consequently, the scheduling algorithm is
almost memoryless, and simply predicts the length of the previous burst for the next quantum of CPU
execution.

5.6 A variation of the round-robin scheduler is the regressive round-robin scheduler. This scheduler assigns
each process a time quantum and a priority. The initial value of a time quantum is 50 milliseconds. However,
every time a process has been allocated the CPU and uses its entire time quantum (does not block for I/O), 10
milliseconds is added to its time quantum, and its priority level is boosted. (The time quantum for a process
can be increased to a maximum of 100 milliseconds.) When a process blocks before using its entire time
quantum, its time quantum is reduced by 5 milliseconds, but its priority remains the same. What type of
process (CPU-bound or I/O-bound) does the regressive round-robin scheduler favor? Explain.
Answer:
This scheduler would favor CPU-bound processes as they are rewarded with a longer time quantum as well as
priority boost whenever they consume an entire time quantum. This scheduler does not penalize I/O-bound
processes as they are likely to block for I/O before consuming their entire time quantum, but their priority
remains the same.

5.7 Consider the following set of processes, with the length of the CPU burst time given in milliseconds:

Process Burst Time Priority

P1 2 2
P2 1 1
P3 8 4
P4 4 2
P5 5 3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling
algorithms: FCFS, SJF, nonpreemptive priority (a smaller priority number implies a higher
priority), and RR (quantum = 1).

b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
c. What is the waiting time of each process for each of these scheduling algorithms?
d. Which of the algorithms results in the minimum average waiting time (over all processes)?

Answer:
a. The four Gantt charts are

1

1

3 4 52

2 3 4 5 1 3 4 5 3 4 5 3 4 5 3 5 3 3 3

2 1 4 5 3

2 1 4 5 3

FCFS

RR

SJF

Priority

b. Turnaround time

 FCFS RR SJF Priority
 P1 2 6 3 3
 P2 3 2 1 1
 P3 11 20 20 20
 P4 15 14 7 7
 P5 20 17 12 12

c. Waiting time (turnaround time minus burst time)
 FCFS RR SJF Priority
 P1 0 4 1 1
 P2 2 1 0 0
 P3 3 12 12 12
 P4 11 10 3 3

 P5 15 12 7 7

d.

Shortest Job First and Priority (since for this example, shortest jobs have highest priority)

5.8 The following processes are being scheduled using a preemptive, round-robin scheduling algorithm. Each
process is assigned a numerical priority, with a higher number indicating a higher relative priority. In
addition to the processes listed below, the system also has an idle task (which consumes no CPU resources
and is identified as Pidle). This task has priority 0 and is scheduled whenever the system has no other
available processes to run. The length of a time quantum is 10 units. If a process is preempted by a higher-
priority process, the preempted process is placed at the end of the queue.

Thread Priority Burst Arrival

P1 40 20 0
P2 30 25 25
P3 30 25 30
P4 35 15 60
P5 5 10 100
P6 10 10 105

a. Show the scheduling order of the processes using a Gantt chart.
b. What is the turnaround time for each process?
c. What is the waiting time for each process?
d. What is the CPU utilization rate?

Answer:

1 1 2 3 2 43 2 3 4 5 6 5

Arrival P1 P2 P3 P4 P5 P6

10 12060Idle Idle0

a. Gantt chart above.
b. p1: 20-0 - 20, p2: 75-25 = 50, p3: 85 - 30 = 55, p4: 90-60 = 30, p5: 120-100 = 20, p6: 115-105 = 10
c. p1: 0, p2: 25, p3: 30, p4: 15, p5: 10, p6: 0
d. 105/120 = 87.5 percent.

5.10 Which of the following scheduling algorithms could result in starvation?

a. First-come, first-served
b. Shortest job first
c. Round robin
d. Priority

Answer:
Shortest job first and priority-based scheduling algorithms could result in starvation.

5.11 Consider a variant of the RR scheduling algorithm where the entries in the ready queue are pointers to
the PCBs.

a. What would be the effect of putting two pointers to the same process in the ready queue?
b. What would be two major advantages and disadvantages of this scheme?
c. How would you modify the basic RR algorithm to achieve the same effect without the duplicate

pointers?
Answer:

a. In effect, that process will have increased its priority since by getting time more often it is receiving
preferential treatment.

b. The advantage is that more important jobs could be given more time, in other words, higher priority
in treatment. The consequence, of course, is that shorter jobs will suffer.

c. Allot a longer amount of time to processes deserving higher priority. In other words, have two or
more quantums possible in the Round-Robin scheme.

5.12 Consider a system running ten I/O-bound tasks and one CPU-bound task. Assume that the I/O-bound
tasks issue an I/O operation once for every millisecond of CPU computing and that each I/O operation takes

10 milliseconds to complete. Also assume that the context-switching overhead is 0.1 millisecond and that all
processes are long-running tasks. Describe is the CPU utilization for a round-robin scheduler when:

a. The time quantum is 1 millisecond
b. The time quantum is 10 milliseconds

Answer:
a. The time quantum is 1millisecond: Irrespective of which process is scheduled, the scheduler incurs a 0.1
millisecond context-switching cost for every context-switch. This results in a CPU utilization of 1/1.1 * 100 =
91%.
b. The time quantum is 10 milliseconds: The I/O-bound tasks incur a context switch after using up only 1
millisecond of the time quantum. The time required to cycle through all the processes is therefore 10*1.1 +
10.1 (as each I/O-bound task executes for 1 millisecond and then incur the context switch task, whereas the
CPU-bound task executes for 10 milliseconds before incurring a context switch). The CPU utilization is
therefore 20/21.1 * 100 = 94%.

5.13 Consider a system implementing multilevel queue scheduling. What strategy can a computer user
employ to maximize the amount of CPU time allocated to the user’s process?
Answer:
The program could maximize the CPU time allocated to it by not fully utilizing its time quantums. It could use
a large fraction of its assigned quantum, but relinquish the CPU before the end of the quantum, thereby
increasing the priority associated with the process.

5.14 Consider a preemptive priority scheduling algorithm based on dynamically changing priorities. Larger
priority numbers imply higher priority. When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate α; when it is running, its priority changes at a rate β. All processes are
given a priority of 0 when they enter the ready queue. The parameters α and β can be set to give many
different scheduling algorithms.

a. What is the algorithm that results from β > α > 0?
b. What is the algorithm that results from α < β < 0?

Answer:
a. FCFS
b. LIFO

5.15 Explain the differences in how much the following scheduling algorithms discriminate in favor of short
processes:

a. FCFS
b. RR
c. Multilevel feedback queues

Answer:
a. FCFS—discriminates against short jobs since any short jobs arriving after long jobs will have a longer

waiting time.
b. RR—treats all jobs equally (giving them equal bursts of CPU time) so short jobs will be able to leave

the system faster since they will finish first.
c. Multilevel feedback queues work similar to the RR algorithm—they discriminate favorably toward

short jobs.

5.18 Consider the scheduling algorithm in the Solaris operating system for time-sharing threads:

a. What is the time quantum (in milliseconds) for a thread with priority 10? With priority 55?
b. Assume a thread with priority 35 has used its entire time quantum without blocking. What new

priority will the scheduler assign this thread?
c. Assume a thread with priority 35 blocks for I/O before its time quantum has expired. What new

priority will the scheduler assign this thread?
Answer:

a. 160 and 40
b. 35
c. 54

5.19 Assume that two tasks A and B are running on a Linux system. The nice values of A and B are−5 and+5,
respectively. Using the CFS scheduler as a guide, describe how the respective values of vruntime vary
between the two processes given each of the following scenarios:

• Both A and B are CPU-bound.
• A is I/O-bound, and B is CPU-bound.
• A is CPU-bound, and B is I/O-bound.

Answer:
• Since A has a higher priority than B, vruntime will move more slowly for A than B. If both A and B

are CPU-bound (that is they both use the CPU for as long as it is allocated to them), vruntime will
generally be smaller for A than B, and hence A will have a greater priority to run over B.

• In this situation, vruntime will be much smaller for A than B as (1) vruntime will move more
slowly for A than B due to priority differences, and (2) Awill require less CPU-time as it is I/O-bound.

• This situation is not as clear, and it is possible that B may end up running in favor of A as it will be
using the processor less than A and in fact its value of vruntime may in fact be less than the value
of vruntime for B.

5.22 Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75, and t2 = 30.

a. Can these two processes be scheduled using rate-monotonic scheduling? Illustrate your answer using
a Gantt chart such as the ones in Figure 5.16–Figure 5.19.

b. Illustrate the scheduling of these two processes using earliest-deadline-first (EDF) scheduling.
Answer:

a. Rate monotonic: Consider when P1 is assigned a higher priority than P2 with the rate monotonic scheduler. P1 is
scheduled at t= 0, P2 is scheduled at t = 25, P1 is scheduled at t = 50, and P2 is scheduled at t = 75. P2 is not
scheduled early
enough to meet its deadline. When P1 is assigned a lower priority than P2, then P1 does not meet its deadline
since it will not be scheduled in time.

b. EDF: It would be possible to schedule the given periodic processes using EDF as shown in the gantt chart
below:

1

Arrival P1
P2

P2

2 1 2 1 1 2 1 2 1
25 55 80 110

Idle

150

P1 P1 P1
P2

P2P1 P1

