g8 ¥ UNIVERSITY OF GOTHENBURG
T Eey

Course Operating Systems

Lecture 6:
Classic Synchronization Problems and Resource Allocation
with emphasis on Deadlock Prevention

EDAOQ93, DIT 401
Study Period 1

Ack: several figures in the slides are from the books

- Modern Operating Systems by A. Tanenbaum, H. Bos
- The art of multiprogramming, by M. Herlihy, Shavit

- OS Concepts by Silberschatz et-al

- Operating systems by W. Stallings

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention N e

Classic Problems of Synchronization

 Bounded-Buffer (producer-consumer) today

* Dining-Philosophers (Resource allocation: we will use it as running example problem,
to study deadlock prevention): today

e Narrow Bridge (in Synchronization Exercise session: will be needed for your upcoming
labs; synchronization&scheduling problem): today, with Hannah

* Readers and Writers (paved the way to lock-free/wait-free synch) next lecture
* Sleeping barber, and more such fun ©

practice these: it is useful and fun!

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reflect: this is what we are doing ...

Construct: objects / solve specific synchronization problems
e 2 thread CS, n-thread-CS

 Semaphores, mutex-locks, ...

* Producer-consumer (bounded buffer)

* Dining philosophers

e Transactions

Using: primitives |

* R/W variables
RMW variables
Transactions

Semaphores, etc

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

The bounded buffer producer-consumer problem

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: requirements

Buffer with space for N items;

accessing common entries is a critical section
Producer inserts items;

must wait if buffer full
Consumer removes items;

must wait if buffer empty

12 N

Solve this synch problem using semaphores

. . . . CHALMERS S50
[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snamen S | §g2) UNIVERSITY OF GOTHENBURG

Bounded producer-consumer buffer: what synch do we need?

producer consumer
- Producer inserts items; must wait if buffer full Wait unti Wait until buffer
ait until buffer has items;

has space;

- Consumer removes items; must wait if buffer empty

- Accessing the buffer is a critical section Iuc}c\t{ S e e
\
b
N
N
| ;
|| Retrieve
unloe k/t};'ﬁ'er unlock buffer
®
= o
F
I buffer buffer
,_-.,,_ has items; , has space;

fig C.K. Shene
http://www.cs.mtu.edu/~shene/NSF-3/e-Book/

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: a solution

Synchronization variables:

* Binary semaphore mutex_sem initialized to 1
* General semaphore buffer-has-items initialized to 0
* General semaphore buffer-has-space initialized to N

producer
do {
// produce item

wait (buffer-has-space);
wait (mutex_sem);

// add item to buffer

signal (mutex_sem);
signal (buffer-has-items);
} while (TRUE);

consumer
do {
wait (buffer-has-items)
wait (mutex_sem);

// remove item from buffer

signal (mutex_sem);
signal (buffer-has-space);

// use the item
} while (TRUE);

producer consumer
| :

- Wait until buffer

Wait until buffer R
has items;
has space;
\
lockwbuffer lock buffer
vo \\
SN
N
N~
Deposit © Retrieve
2] AN
’ 7
unleck :'J'-ti'iz:i' unlock buffer
N,
‘/
| buffer buffer
| has items; has space;

Homework: write arguments
about correctness, i.e.to
show that the solution meets

the requirements

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

@

CHALMERS

UmvERITY B8 TREHNBLOGT el

e
| @#%5 UNIVERSITY OF GOTHENBURG
S

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

What is resource allocation?

Processes/threads need resources (eg memory pages, printer, access
to parts of shared data structure, etc)

Process/thread P structure
- Our focus: reusable resources:

do
Eg. a human analogy: process = go fishing; needed resources: boat, request resources (i.e. entry section)
fishing-rod // use them
release resources (i.e. exit section)

// remainder section
forever

To solve the problem: provide the method for each process to
acquire all its needed resources and release them, and
guarantee (as in the Critical Section problem):

1. Mutual exclusion: each resource is used by only one process at a
time

\

2. Progress: no deadlock

3. Fairness: FCFS, or no starvation, or other fairness formulation

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ SROENMERS

e
d#%5 UNIVERSITY OF GOTHENBURG 9

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

10

What is a deadlock?

A set of processes/threads blocking each-other s.t. none of them can proceed:
How can it occur?

cccccccc | @#1§ UNIVERSITY OF GOTHENBURG
T

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ ---------------- -

11

4 necessary conditions for Deadlock [Coffman et al 1971]

Theorem: all 4 conditions hold simultaneously when a deadlock occurs:

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding some resource can request
additional resources and wait for them if they are held by other
processes.

Rod ok; i
need the boat:

3. No preemption: aresource can only be released by the process
holding it, after that process has completed its task.

4. Circular wait: there exists a circular chain of 2 or more blocked
processes, each waiting for a resource held by the next proc. in
the chain

\

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 12

let’s think together: (ie as in m o

Q: What does the theorem imply wrt deadlock prevention?

A: see next slide ©

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

13

Resource Allocation with Deadlock Prevention

How can a solution to RA be RESPONSIBLE AND PREVENT?

Restrain the ways requests can be made; eliminate at least one of the 4 conditions, so that deadlocks are impossible to

happen. How?

Boat ok, i

Rod ok; i
need the boat:

Eliminate Mutual Exclusion — (cannot do much here ...)

Eliminate Circular Wait — how? E.g. impose that resources are acquired
in a certain order

* e.g always first the boat, then the rod

Eliminate No-Preemption — how? a process holding some resources &
requesting another that is occupied, it releases the held resources and
has to request them again.

* Egbe polite: B releases the boat for A to proceed (after which A
releases both and B can proceed)

Eliminate Hold and Wait — how? E.g. process requests and gets all its
resources at once

* Eg book both the boat and the rod through the same “agent”

[MP] OS 06 Classic Synch. F :esource allocation with deadlock prevention

ST,
d#%5 UNIVERSITY OF GOTHENBURG

14

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

15

Consider the dining philosophers problem [Dijkstra65]

n philosophers (processes); each philosopher P_ji,
when hungry, needs : both left & right fork, in
order to eat

Process P_i structure
do

get resources (i.e. entry section)

// eat

leave resources (i.e. exit section)

// think
forever

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

UBIVERSITY 08 TRCHMDLO!

16

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

17

Trying to solving the dining philosophers problem:

pick-left-pick-right-fork

Does it solve the problem?

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1
P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork
// Eat
Signal f[i]; // leave left fork
Signal f[(i+1) mod n]; leave right fork
// Think
forever

Recall the requirements:

1. Mutual exclusion: each resource is used by only one process at a time
2. Progress: no deadlock

3. Fairness: FCFS, or no starvation, or other fairness formulation

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

18

Does the "pick-left-then-pick-right-fork” method satisfy
the mutual exclusion property?

 Canitviolateit? l.e. Can it happen that there is a point in time s.t. some
proceses A and B concurrently access the same resource (i.e concurrently
eat)?

 Assume it can and w.l.o0.g. consider the decision step by A to eat; Can B
(which must be A’s neighbour) decide to eat after A’s decision step and
before A finishes?

Homework: fill in the details that lead to contradiction, in the figure and in

text, using ”->” as we did when studying Peterson’s 2-CS algo

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1
P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork
// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork
// Think
forever

Time
>

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

UBIVERSITY 08 TRCHMDLO!

19

Does the “pick-left-pick-right-fork” method satisfy the progress property?

Can it deadlock?

fo

f1

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1
P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork
// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork
// Think
forever

Yes, example deadlock with 2 philosophers and 2 forks

Think of:

. Mutual exclusion
. Hold&wait

. No preemption

. Cyclical wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

ST,
3_‘-):5 UNIVERSITY OF GOTHENBURG 20
Rt

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them

Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

21

P;: (i #zn-1)
do
Wait(f[i]);
Wait(f[(i+1)mod n]);
// Eat

Signal(f[(i+1)mod n])
Signal(f[i])
// Think
forever

Shared var f[0..n-1]: bin-semaphore //init all 1

Pn-l
do
Wait(f[(i+1)mod n]) //ie wait(f[0])
Wait(f[i]) //ie wait(f[n-1])
// Eat
Signal(f[i])
Signal(f[(i+1)mod n])
// Think
forever

ldea:
* use ordering of resources

’ C =
* Proc’s request their needed
resources in increasing order

Does it fight the circular
wait?

Key idea: Follow the waiting chains
(directed paths in the RA graph): always
the requested resource with max-id is the
end of it, thus preventing circle

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

22

Correctness argument:

How is circular wait prevented with the “request-in-resource-order” algo?

Start simple, consider 2 processes (PO, P1)
Assume, towards a contradicton that deadlock can happen,
i.e. there exists a circle...

f[0]

f[1]

Without loss of generality (wlog), consider PO:

Case 1: if PO waits for f[0]:
- P1 must have it, hence it can get f[1] (i.e.

max-id resource) and eat; i.e. no circle (i.e.

contradiction of the assumption that the
wrong thing can happen, in case 1)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

€298 UNIVERSITY OF GOTHENBURG
Rt

23

Correctness argument:

How is circular wait prevented with the “request-in-resource-order” algo? (cont)

f[0]

f[1]

Case2: if PO waits for f[1]:

- PO must have f[0], hence f[1]

(i.e. max-id resource) is available and PO can
eat; i.e. again no circle (i.e. contradiction of the

case 2)

assumption that the wrong thing can happen, in

- If we have more processes and resources, follow the
waiting chain: always the max-id resource is the end of
the waiting chain, thus preventing the circle, QED

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

€298 UNIVERSITY OF GOTHENBURG
Rt

24

Fairness property of the “request-in-resource-order” algo?

It depends directly on the fairness guarantees of the underlying semaphore’s implementation.

@home: Show in timelines that:

if the semaphores do not guarantee fairness, then the “request-in-resource-order” algo can be unfair
e.g given 2 threads A and B, A can by-pass B many times while B is not able to go beyond the wait of
their common-fork’s semaphore. You may consider a simple system with just 2 philosophers.

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ cnawvens | @D vriversiy or corrENBURG 25

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait
— Then the no-preempt

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

26

Fight the no-preemption

shared var f[0..n-1]: of type fork_structure {// one for each fork
s: bin-semaphore //init 1
available: boolean //init true

trylock(fork: fork_structure):
wait(fork.s)

if fork.available then { fork.available := false ;
} ret:=true;
_ }
P_i: else ret:= false;
local var holding_both forks: boolean; signal(fork.s)
repeat return(ret)

while (not holdlng both_forks){

lock(fork : fork_structure):
repeat
until (trylock(fork))

if ltrylock
else holding

(i+1)modn]) then release(f[i])
| both_forks :=true }

release(f[i])
release(f[(i+1)modn])
holding_both_forks := false

release(fork : fork_structure):
wait(fork.s)
fork.available := true

// Think signal(fork.s) rﬁmﬁ
forever L
Idea: when the second resource is not Properties?
available, release the first one and retry

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snavess | @D vniversiry or coreNsURG

Fight the no-preemption algo of the prev. slide: properties:

* Mutual exclusion: ok
* Progress: no deadlock ...
e Fairness: a process can starve...

e Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

28

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks
What is the problem with the Dining philosophers...
... and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait
— Then the no-preempt
— Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

29

Fighting the hold and wait

shared var semaphore S[0 .. n-1] // init all O enterCS(i) exitCS(i)

shared var semaphore mutex // init 1 wait(mutex) wait(mutex)

shared var state[0 .. n-1] in {HUNGRY, THINKING,EATING} state(i) := HUNGRY state(i) := THINKING

Pi: help(i) help((i-1) mod n)

do signal(mutex) help((i+1) mod n)
// think Y, wait(S[i]) signal(mutex)
enterCS(i) // ie get both forks /
// eat Idea: “eat” is mutually exclusive (ie CS) among each P_i
exitCS(i) // ie leave bothforks / and its neighbours, hence:

forever apply a CS algo in each neighbourhood, instead of for

/ | each fork (i.e. as if philosopher picks both forks at once)

 help(k)) = lf ,

O

if state[k] ==HUNGRY && state[(k-1) phod n] != EATING && state[(k+1) mod n] != EATING
then {state(k) := EATING ; signal(S[k]) }

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 30

Fight the no-hold-and-wait algo of the prev slide: properties:

* Mutual exclusion: ok
* Progress: no deadlock
* Fairness: a process can starve

e Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

HHHHHH E‘ -F—‘ UNIVERSITY OF GOTHENBURG

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ SROENMER s | @&

31

Link to solutions to the problem with fairness guarantees as well

Eugene Styer and Gary L. Peterson. 1988. Improved algorithms for
distributed resource allocation. In Proceedings of the seventh annual ACM
Symposium on Principles of distributed computing (PODC '88). Association
for Computing Machinery, New York, NY, USA, 105-116. DOI:
https://doi.org/10.1145/62546.62567

(direct link to pdf
https://dl.acm.org/doi/pdf/10.1145/62546.62567?casa token=4u024jxk

WEAAAAAA:jJIAILeISZe5Uu2ERV60-dTg OLbSmRpvObeOZ 3vDi500tRS-
HgB30GoWDib1zVQ9jjrhx4w0)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 32

https://doi.org/10.1145/62546.62567
https://dl.acm.org/doi/pdf/10.1145/62546.62567?casa_token=4uO24jxkwEAAAAAA:jJlAILeISZe5Uu2ERv6O-dTq_0LbSmRpv0beOZ_3vDi50otRS-_HqB30GoWDib1zVQ9jjrhx4w0

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)

Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait
— Then the no-preempt
— Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

33

Summary

* Discussed the concept of building synch-objects from other synch objects
« Common synchronization problems: bounded buffer, dining philosophers
 Resource-allocation&deadlocks

— Deadlock: 4 conditions necessary
— Fighting deadlock: prevent (i.e. attack deadlock’s necessary conditions)

 We saw several synchronization methods and examples
— incl. helping, trylock implementation

e Shortly: narrow bridge & lab

Next lecture: more in-depth n-process mutual-exclusion and tools/methods/ properties
— Lamport’s bakery algo + Turing award topic

— Readers/writers problems and a touch on lock-free synchronization

— One more way to deal with deadlocks (avoid, using with an arbitrator: Bankers algo by &
Dijkstra) .

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reading instructions (on all the synchronization topics we discuss)

Modern OS by Tanenbaum-Bos:
- careful study of sections 2.3.1-2.3.6, 2.5.2

- Complement (Bakery alg.) through
http://web.cs.iastate.edu/~chaudhur/cs611/Sp09/notes/lec03.pdf

- Quicker reading, for awareness, of sections 2.3.7-2.3.10
Alt. from OS Concepts: Silberschatz-et-al: Sections 6.1-6.7, 6.9

-Matching review questions at e.g.
http://codex.cs.yale.edu/avi/os-book/0S9/review-dir/index.html|

Optional reading, other sources:

1. Leslie Lamport (recipient of ACM Turing award 2013). Turing lecture: The computer science of concurrency (with special
mention to the Bakery algo)

Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951
2. Large variety of synch methods: how to think/decide? Cf also eg:

A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman, B.
Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas, 27th IEEE International Parallel & Distributed
Processing Symposium, IPDPS 2013 http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

3.M. Herlihy&Shavit,”The art of Multiprogramming, By Herlihy & Shavit) (http://cs.brown.edu/courses/cs176/lectures.shtml)
4. P. Fatourou: Spin Locks and Contention https://www.csd.uoc.gr/~hy586/material/lectures/cs586-Section3.pdf

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snavess | @D vniversiry or coreNsURG

http://web.cs.iastate.edu/%7Echaudhur/cs611/Sp09/notes/lec03.pdf
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html
http://dx.doi.org/10.1145/2771951
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html
http://cs.brown.edu/courses/cs176/lectures.shtml
https://www.csd.uoc.gr/%7Ehy586/material/lectures/cs586-Section3.pdf

Reading instructions (include all deadlock-related parts of our discussions):

- From Modern OS by Tanenbaum et-al:
Careful study 2.5.1, 6.1-6.2, 6.5-6.6, 6.7.3-6.7.4; quick reading 6.2-6.3

- Alt. from OS Concepts by Silberschatz et-al:
Careful study 7.1-7.5, 7.8; quick reading 7.6-7.7

- In addition to the above:

- Practice on the dining philosopher solutions described in the notes;
understand why they work, try to argue about correctness as we did for
Peterson’s algo

- Practice on homework hintsin the notes and on the exercises that will be
discussed in class (several of them have been basis for exam questions)

-Matching review questions at
http://codex.cs.yale.edu/avi/os-book/0S9/review-dir/index.html

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snavess | @D vniversiry or coreNsURG

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

	Course Operating Systems��Lecture 6: �Classic Synchronization Problems and Resource Allocation with emphasis on Deadlock Prevention
	Classic Problems of Synchronization
	Reflect: this is what we are doing …
	Roadmap
	Bounded producer-consumer buffer: requirements
	Bounded producer-consumer buffer: what synch do we need?
	Bounded producer-consumer buffer: a solution
	Roadmap
	What is resource allocation?
	Roadmap
	What is a deadlock?
	4 necessary conditions for Deadlock [Coffman et al 1971]
	Slide Number 13
	Resource Allocation with Deadlock Prevention
	Roadmap
	Consider the dining philosophers problem [Dijkstra65]
	Roadmap
	Trying to solving the dining philosophers problem: �pick-left-pick-right-fork
	Does the ”pick-left-then-pick-right-fork” method satisfy �the mutual exclusion property?
	Does the “pick-left-pick-right-fork” method satisfy the progress property?
	Roadmap
	Pick one fork at a time, & fight the circular wait:
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo?
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo? (cont)
	Slide Number 25
	Roadmap
	Fight the no-preemption
	Fight the no-preemption algo of the prev. slide: properties:
	Roadmap
	Fighting the hold and wait
	Fight the no-hold-and-wait algo of the prev slide: properties:
	Link to solutions to the problem with fairness guarantees as well
	Roadmap
	Summary
	Reading instructions (on all the synchronization topics we discuss)
	Reading instructions (include all deadlock-related parts of our discussions):

