g8 ¥ UNIVERSITY OF GOTHENBURG
T Eey

Course Operating Systems

Lecture 7:
a. Landmarks on Synchronization
b. RA with OS as arbitrator (avoid/recover from deadlocks)

EDAOQ93, DIT 401
Study Period 1

Ack: several figures in the slides are from the books

- Modern Operating Systems by A. Tanenbaum, H. Bos
- The art of multiprogramming, by M. Herlihy, Shavit

- OS Concepts by Silberschatz et-al

- Operating systems by W. Stallings

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator NG e

Roadmap

Understanding Synchronization better: some landmark methods/problems
» Lamport’s Bakery algorithm

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

Understanding synchronization better

Critical Section for n threads

One idea: Before entering its critical section, each thread gets a number. Holder of the
smallest number enters the critical section.

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

http://www.google.se/imgres?imgurl=http://www.lio.se/upload/bildarkiv/Arsredovisning/2002/Verksamheten/Nummerlapp180.jpg&imgrefurl=http://www.lio.se/Planering-och-uppfoljning/Arsredovisning/Arsredovisning-2002/Verksamheten/Halso-och-sjukvard/Halso-och-sjukvarden-utvecklas-och-fornyas/Insatser-for-att-forbattra-tillgangligheten/Vantetider-i-primarvarden/&usg=__4llquq-XDJKNuQQwyfH_g244eSs=&h=180&w=180&sz=13&hl=sv&start=1&zoom=1&itbs=1&tbnid=Er2s4m-UC-jbIM:&tbnh=101&tbnw=101&prev=/images?q=nummerlapp&hl=sv&gbv=2&tbs=isch:1&ei=ncJLTfHqL9KEswbezbCeDw

Lamport’s Bakery Algorithm

__Critical section for n threads using R/W variables

ldea: Implement “nummerlappar” using read/write variables only:

— De-centralized numbering scheme:
* Each thread: read the others’ numbers and choose the max+1 as your “nummerlapp”
* Wait for the smaller numbers and then enter CS

That simple?! Can it work?

Note: the decentralized scheme may generate numbers in non-decreasing order of enumeration;
i.e.,, 1,2,3,3,3,3,4,5

If threads Pi and Pj choose the same number:
if i <j, then Pi goes first; else Pj goes first.
l.e. we need to use thread_id’s to break ties

g2 UNIVERSITY OF GOTHENBURG
e

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ shanmens |

Lamport’s Bakery Algorithm

pseudocode thread i

Why does it satisfy the 3 conditions:

Shared var choosing: array [0..n — 1] of boolean (init fasle); Mutex (no 2 threads A and B in CS
number: array [0..n — 1] of integer (init 0); concurrectly): Consider the time
repeat between A’s decision step and A’s
choosingli] := true; entry to CS; A decided to move
Q@ numberl(i] := max(number[0], number|[1], ..., number [n — 1])+1; because:
. choosingli] := false; * B had higher number: when B checks,
! ' . it will wait for A since A has smaller
forj:=0ton—-1do begin Cumber
while choosinglj] do [nothing]; //spin _ _ * or B was not interested; when B gets
while numberf(j] # 0 and (number(j],j) < (numberli], i) do [nothing]; //spin interested, it will choose a number >
end; A’s number, hence it will wait
critical section Progress: the thread with the smaller
9 number(i] := 0; number can proceed

Fairness: If A waits for B and B exits
and wants to enter CS again, if A still
waits, B will choose a number > A’s,
number, hence B cannot bypass A

remainder section
until false;

This is a more decentralized method than e.g. Peterson’s:
no variable is “writ-able” by all threads

e
d#%5 UNIVERSITY OF GOTHENBURG 5

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ SRNEMERS

To elaborate/think: homework

* Explain why Bakery algorithm satisfies the 3 conditions for critical section problem,
following the diagrams and the description as we did for Peterson’s algo

* Bakery algorithm idea not tied with atomic R/W variables, can work with weaker primitives:
— Read/watch Lamport’s Turing award talk (links @ reading instructions)

* Bakery algo + concurrent readers/writers gave rise to the research for lock-free synchronization

Practice further on synchronization constructs, e.g write algorithms for implementing:
— counting semaphores from binary ones

— semaphores using mutual exclusion solutions e.g. Peterson’s, Lamport’s methods, the TAS
or CAS methods

— a ticket-based (a la Bakery) method using TAS, CAS, ...

.
GGGGGGGG | @98 UNIVERSITY OF GOTHENBURG 6

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ ---------------- -

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
 Lamport’s Bakery algorithm
* Readers-Writers problem

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

Readers-writers problem

Readers read;
Writers write: .)
ters te; must wait if some writer
must wait if some writer or reader

is accessing the shared data object
is accessing the shared data object

(ie multiple readers are allowed to read at a time

(ie only one writer is allowed to write at a time) but not concurrently with any writer)

Shared data object, e.g a file

_ Y _

Solve this synch problem using semaphores; we require
1. the safety properties mentioned here; 2. progress

g2 UNIVERSITY OF GOTHENBURG
e

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ shanmens |

Readers-writers problem

Shared data object, e.g a file

[~

Writers write; Readers read;

must wait if some writer or must wait if some writer

Reader

Writer f 1 am first in a batch of
readers to check

wait until no fA wait until no one accesses the

/ lobi
reader is accessing the shared data object one accessesk / IObJeCt
is accessing the shared data the object 5, \ / I(eIse others read, hence go on)
Dbject (ie multiple readers are allowed to I\ /
read at a time | \(I
(ie only one writer is allowed but not when some writer writes) // WRITE i p 1// READ
to write at a time) I / \ I
\ . :
no longer / no/ \ :lnform: no longer accessing the
one accessing \ Iobject
the object \ f[(. +if lam last in a batch of
‘eaders who read, A
tell that no one accesses the
object ...)
[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ cnawvens | @) vvversity oF GorrENBURG 9

A solution for readers-writers

shared var:

noone_accesses, protect_check: binary semaphore; // initially 1
rc: int ; //active readers counter, init O

Writer

Repeat
wait(noone_accesses);

//WRITE

signal(noone_accesses)
forever

Reader

repeat

wait(protect check); // CS to change and check rc variable

if rc++ == 1 then wait(noone_accesses) fi
// “first” reader: block writers or wait if some of them writes

signal(protect _check);

// READ

wait(protect check); // CS to change and check rc

if rc-- == 0 then signal(noone_accesses) fi
// “last” reader: signals

signal(protect check)
forever

Reader

Writer f I am firstin a batch of

readers to check A_

,‘ A'wait until no one accesses the

wait until no

one accesseX ¢ pbject
the object 4 / [else others read, hence go on)
I\ |
1o/ I
// WRITE I l({/ READ
1 \\ |
no longer / no/ \ Inform: no longer accessing the
one accessing \ bbject
the object \ (... +iflam lastin a batch of
readers who read,
tell that no one accesses the
object...)
Homework:

1. argue about correctness wrt
requirements (safety, progress);
2. What about fairness?
Show that the solution
enforces that readers have
“priority”...

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

10

The Readers/Writers Problem ...

.. paved the way to research on lock/wait-free synchronization -- concurrent
reading while writing (see also ptrs in Reading Instructions)

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

11

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
 Lamport’s Bakery algorithm
* Readers-Writers problem

A touch of lock-free synchronization

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

12

Shared counter problem

Increment

must increase the value of
the counter by one

\

Shared counter

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator 13

Shared counter problem: lock—based method (Critical Section)

Standard CS-based method

shared var: mutex: binary semaphore //
Increment init 1

must increase the value of A: int // holds counter’s value, init eg O

the counter by one
Increment(A)

@ wait(mutex)

tmp:=A
tmp++
A:=tmp

\ @ signal(mutex)

Shared counter

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ cnawvens | @D vriversiy or corrENBURG

Shared counter problem — can we do without locking?

Increment

must increase the value of
the counter by one

®
L

)

(&)

Standard CS-based method

shared var: mutex: binary semaphore
// init 1

A: int // holds counter value, init eg O

Lock-free (no CS-based) method
shared var:
A: int // holds counter’s value

Shared counter

Increment(A)
Increment(A) repeat
wait(mutex) tmp := A
tmp :=A until CAS(&A, tmp, tmp+1)
tmp++
si?gr;altrr:Etex) ALl _
CompareAndSwap (aka CAS) Instruction
Definition:
int CompareAndSwap (int *V, int exp v, int
e new_v) {
boolean effect := false ;
if (*V == exp_v) then
*V := new_v; effect := true; fi
return effect} // Executed atomically in HW

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

@ CHALMERS |
---------------- ar

ST,
3_‘-):5 UNIVERSITY OF GOTHENBURG 15
Rt

Lock-free synchronization

Goal:
- allow more parallelization AND

- achieve the same consistency as if CS of different threads are not overlapping in time
- Possible through fine-grain synchronization, allowing a fail-retry-loop, indicated here using this symbol : ¢

Another example:

Non-blocking stack [Treiber '86]

proc push(new)
do
old = top
new.next = old
while not CAS(top, old, new)
end

proc pop
do
old = top
return null if old == null
new = old.next
while not CAS(top, old, new)
return old
end

b4

value

‘.f
i
‘
'
]
i
i
]
Y
5
=
14
Y

old

u
k" value|+—svalua|+—={valua

Fig based on related figure from
The Art of Multiprocessor Programming,
by Herlihny & Shavit

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

g29.% UNIVERSITY OF GOTHENBURG
tah

https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming
https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming

Whys and hows?

* Why lock-free synchronization?
— Efficiency, free from: convoy effects, deadlocks, priority inversion

— Better utilization of parallel HW
» cf TBB, Boost libraries

How to argue about correctness?

e Safety condition: Linearizability [Herlihy&Wing 81]

* Progress: no livelock

* Fairness: starvation possible; tougher here to argue about fairness; ongoing research

— Work by our group shows that lock-free methods balance throughput/fairness trade-offs

[A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D.
Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas,
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html]

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator NG e 17

http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

To elaborate/think:

Bakery algorithm idea not tied with atomic R/W variables, can work with even weaker primitives:
— Read/watch Lamport’s Turing award talk
« Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951

* Bakery algo + concurrent readers/writers and related work gave rise to the research for lock-
free synchronization

Remember "helping” from dining philosophers "prevent the hold&wait” method?
— "Helping” is used a lot in lock-free methods

Large variety of synch methods: how to think/decide? Cf also eg:

M. Herlihy&Shavit, The Art of Multiprocessor Programming (ebook),

- Lectures: http://cs.brown.edu/courses/cs176/lectures.shtml
— TBB, Boost libraries

— A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman et-al., 27th
IEEE International Parallel & Distributed Processing Symposium,

http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ shanmens |

€298 UNIVERSITY OF GOTHENBURG
Rt

18

http://dx.doi.org/10.1145/2771951
https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming
http://cs.brown.edu/courses/cs176/lectures.shtml
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
 Lamport’s Bakery algorithm

* Readers-Writers problem

* A touch of lock-free synchronization

Encore about resource allocation and deadlocks:

(last lecture we discussed deadlock prevention, i.e. methods for how threads
request&acquire resources so that deadlock cannot occur)

Now: using the OS as arbitrator ... Deadlock avoidance: Dijkstra’s Banker algo

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

19

Deadlock avoidance using the OS as arbitrator

Resource request & allocation is managed by the OS

Deadlock avoidance:
» deadlock might possible if resources are granted arbitrarily,

e but OS uses extra info to grant requests and schedule processes
s.t. it avoids deadlock

* Banker’s algorithm|[Dijkstra]

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

20

Graphs are useful tools: System Model V L “)

* ResourcetypesR, R, ..., R
— e.g. CPU, memory space, /0 devices, files

— each resource type R, has W, instances.

Resource-Allocation Bipartite Graph G(V,E)
* nodes:

— P={P, P,, ..., P} the set of processes

— R={R, R,, ..., R} the set of resources types
* edges:

— request edge: P,— R;

— assignment edge: R; —> P,

oA

\

@ []
[

R2 ®
R4

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

21

Resource Allocation with Deadlock Avoidance

Resource request & allocation is managed by the OS
Requires a priori information available.

* e.g.:each process declares maximum number of resources of each type that it may need (e.g memory/disk pages).

Deadlock-avoidance algo, run by OS:
* examines the resource-allocation state...
— Available, allocated resources
/A — maximum possible demands of the processes.
e ..toensure there is no potential deadlock:

— unsafe state = deadlock might occur (i.e. later, if all procs request
their maximun and no-one can be granted)

unsafe

deadlock

* Avoidance = ensure that system will not enter an unsafe state, by
suspending processes with risky requests, until enough resources are
freed.

O

ST,
d#%5 UNIVERSITY OF GOTHENBURG

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ SRNEMERS

22

Enhanced Resource-Allocation Graph

For Deadlock Avoidance:
R'I \\/
R 1
E R1
g (e 2
RZ \s
Safe State 4
R2
H2

Example Safe State

Example Unsafe State:
ie granting the P2-R2 request should
not be made until P1 finishes

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

ST
@ CHALMERS | {®9} UNIVERSITY OF GOTHENBURG 23
T

UBIVERSITY 08 TRCHMDLO!

Banker’s Algorithm tor Resource Allocation with
Deadlock Avoidance [Dijkstra]

— 7 e
Allocation[i,j] = k:
Pi holds k instances of Rj

Max [i,j] = k:
P, may request max k instances
of R

Available [j] = k :

k instances of Rj are still available.

Avoidance = ensure that system will not enter an unsafe state.
Idea:

If potentially satisfying a request can result in an unsafe state // i.e. bank will have not enough to let its
customers finish and return their loans in case someone requests its max needs

then the requesting process is suspended // temporarily frozen, not scheduled
until enough resources are free-ed // by processes that will terminate in the meanwhile
How to do the safety check efficiently?

Banker’s algo gives criterion that can be checked in linear time using the Max, Allocation, Available matrices
(check the algo data structures @book and @extra-slides, as homework)

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ cnawvens | @D vriversiy or corrENBURG 24

http://www.google.se/imgres?imgurl=http://www.bmcfs.net/Pics/safe.jpg&imgrefurl=http://www.bmcfs.net/safe.asp&usg=__puaWCFktXkHPCgcUF4Krc8Zy6FY=&h=1160&w=1188&sz=89&hl=sv&start=10&zoom=1&itbs=1&tbnid=Xo_-yz8Q1MRKkM:&tbnh=146&tbnw=150&prev=/images?q%3Dsafe%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=BxttTcaiEsfMtAbKxeG6BQ

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
 Lamport’s Bakery algorithm

* Readers-Writers problem

* A touch of lock-free synchronization

Encore about resource allocation and deadlocks:

(last lecture we discussed deadlock prevention, i.e. methods for how threads
request&acquire resources so that deadlock cannot occur)

Deadlock avoidance: Dijkstra’s Banker algo
Deadlock detection and recovery

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

25

Deadlock detection and recovery

 If OS grants requests without checking safety upon every
request

 Itcan allow a deadlock state and when detected (eg through
detection of cyclical waits), recover

GO BACK

YOU HAVE COME
WRONG WAY

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

26

Recovery from Deadlock

(1) Process Termination: Abort all or some deadlocked processes until deadlock
is eliminated.

(2) Resource Preemption: Select victim and rollback — return to some safe state,
restart process from that state

Must decide on selection criteria (cost, starvation risks, ...)

Recovery is pretty expensive as a method

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator NG e

27

http://www.google.se/imgres?imgurl=http://www.articulate.com/rapid-elearning/wp-content/uploads/2007/07/lost_job.gif&imgrefurl=http://www.jtanddale.com/?p%3D113&usg=__zmJWhSvaaNMxdcU7SHufYfdt_rU=&h=331&w=350&sz=19&hl=sv&start=7&zoom=1&itbs=1&tbnid=9jvHmArkoTCbdM:&tbnh=113&tbnw=120&prev=/images?q%3Dtermination%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=dxZtTdbXH8W1tAaJ5-jCBQ
http://www.google.se/imgres?imgurl=http://www.lazerloan.com/wp-content/uploads/2009/02/irs-tax-loans.jpg&imgrefurl=http://www.lazerloan.com/tax-refund-loans-how-they-work/&usg=__giIGEr7bbW0w68Jr8bAG_t50raA=&h=396&w=318&sz=21&hl=sv&start=9&zoom=1&itbs=1&tbnid=lc4RzbUHOkwKSM:&tbnh=124&tbnw=100&prev=/images?q%3Dreturn%2Bloan%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=3hdtTa7EBMPesgbWhoDABQ

Summary

 Landmarks on synchronization problems: Bakery algo, Readers-writers, a glimpse on lock-
free synchronization

e Resource-allocation&deadlocks
— Avoiding or recovering from deadlock with OS as arbitrator
* We saw a lot of synchronization methods and examples
— and a lot of homework tips
e Lab 2-3: holistic training on scheduling & synchronization together

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

28

Reading instructions (on all the synchronization topics we discuss)

Modern OS by Tanenbaum-Bos:
- careful study of sections 2.3.1-2.3.6, 2.5.2

- Complement (Bakery alg.) through
http://web.cs.iastate.edu/~chaudhur/cs611/Sp09/notes/lec03.pdf

- Quicker reading, for awareness, of sections 2.3.7-2.3.10
Alt. from OS Concepts: Silberschatz-et-al: Sections 6.1-6.7, 6.9

-Matching review questions at e.g.
http://codex.cs.yale.edu/avi/os-book/0S9/review-dir/index.html

Optional reading, other sources:
1. Leslie Lamport (recipient of ACM Turing award 2013). Turing lecture: The computer science of concurrency (with special mention to the
Bakery algo)
Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951
2. Large variety of synch methods: how to think/decide? Cf also eg:

A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman, B. Chatterjee, N.
Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas, 27th IEEE International Parallel & Distributed Processing Symposium, IPDPS
2013 http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

3.M. Herlihy&Shavit, The Art of Multiprocessor Programming,
— ”The art of Multiprogramming, By Herlihy & Shavit) (http://cs.brown.edu/courses/cs176/lectures.shtml)

4. P. Fatourou: Graduate course lecture: Spin Locks and Contention https://www.csd.uoc.gr/~hy586/material/lectures/cs586-Section3.pdf

@ UNIVERSITY OF GOTHENBURG
e

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ SRNEMERS

http://web.cs.iastate.edu/%7Echaudhur/cs611/Sp09/notes/lec03.pdf
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html
http://dx.doi.org/10.1145/2771951
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html
https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming
http://cs.brown.edu/courses/cs176/lectures.shtml
https://www.csd.uoc.gr/%7Ehy586/material/lectures/cs586-Section3.pdf

Reading instructions (include all deadlock-related parts of our discussions):

- From Modern OS by Tanenbaum et-al:
Careful study 2.5.1, 6.1-6.2, 6.5-6.6, 6.7.3-6.7.4; quick reading 6.2-6.3

- Alt. from OS Concepts by Silberschatz et-al:
Careful study 7.1-7.5, 7.8; quick reading 7.6-7.7

- In addition to the above:

- Practice on the dining philosopher solutions described in the notes;
understand why they work, try to argue about correctness as we did for
Peterson’s algo

- Practice on homework hintsin the notes and on the exercises that will be
discussed in class (several of them have been basis for exam questions)

-Matching review questions at
http://codex.cs.yale.edu/avi/os-book/0S9/review-dir/index.html

[MP] OS 07 - a. Landmarks on synchronization; b. RA with OS as arbitrator @ cnawvens | @D vriversiy or corrENBURG

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

EXTRA SLIDES/NOTES

 Part 1: Complement: Banker’s algo for deadlock avoidance: data
structures and safety check

e Part 2: Use of Banker’s algo idea to do deadlock detection

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator NG e

F GOTHE

NB

URG

31

Enhanced Resource-Allocation Graph =

For Deadlock Avoidance: ! N J

* Claim (dashed) edge P, — R
R;: P; may request R, L

 Claim edge converts to
request edge when the

process requests the
resource. 9 e
. ’

* When the resource is . R
released by the process, e, o
assignment edge '\ s
reconverts to a claim
edge.

RZ

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ SHALMERS | (Gl UNIVERSITY OF GOTHENBURG 32

Example Resource-Allocation Graph For Deadlock Avoidance:

Q: What if P2 makes
that request and the
system allocates it?

A: Resulting is unsafe
(not deadlocked; it will
be deadlocked if P1 also
makes the other request)
To avoid deadlock, better
postpone that allocation

A,

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

2
Example UNsafe State

UBIVERSITY 08 TRCHMDLO!

33

Banker’s Algorithm for Resource Allocation with

]
Allocation[i,j] = k:
P. may request max k instance3 Pi holds k instances of R]
o
O ;
O () Available [j] = k
Need [i,j] = ° O k instances of

Max(i,j] — Allocation[i,j]:
potential max requestky Pi
for Rj Qoo

o . Rj areavailable.
) i

RECALL: (1) Avoidance = ensure that system will not enter an unsafe state.)
(2) Idea:
If satisfying a request result in an unsafe state,
then the requesting process is suspended
until enough resources are free-ed by processes that will terminate in the meanwhile.

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

http://www.google.se/imgres?imgurl=http://www.bmcfs.net/Pics/safe.jpg&imgrefurl=http://www.bmcfs.net/safe.asp&usg=__puaWCFktXkHPCgcUF4Krc8Zy6FY=&h=1160&w=1188&sz=89&hl=sv&start=10&zoom=1&itbs=1&tbnid=Xo_-yz8Q1MRKkM:&tbnh=146&tbnw=150&prev=/images?q%3Dsafe%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=BxttTcaiEsfMtAbKxeG6BQ
http://www.google.se/imgres?imgurl=http://images.mylot.com/userImages/images/postphotos/2258044.jpg&imgrefurl=http://www.mylot.com/w/photokeywords/lending.aspx&usg=__7lg9H7X1OTH4kdaSUWoUnp53d14=&h=333&w=500&sz=16&hl=sv&start=7&zoom=1&itbs=1&tbnid=3RoezBQMGc_PFM:&tbnh=87&tbnw=130&prev=/images?q%3Dmoney%2Bborrowed%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=kxttTajOJI-Wswbu17i4BQ

Safety checking: More about Safe State

safe state = there exists a safe sequence <P,, P,, ..., P,> of terminating all processes:

for each P, the max requests that it can still make can be granted by available
resources + those held by P,, P,, ..., P; ;

i.e. the system (OS, imaginary banker) could safely
allocate as follows:

— if P, ‘s resource needs are not immediately
available, then it can

* wait until all P, P,, ..., P.; have finished

* obtain needed resources, execute, release
resources, terminate.

— then the next process can obtain its needed
resources, and so on.

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ cnawvens | @D vriversiy or corrENBURG

35

Banker’s algorithm: Resource Allocation

For each new Request, do Request;[j] = k:

// State S: tentative
changes, to check if sa
i.e what might happen

// P; wants k instances of R;
Check consequence
if request would be granted /

old resource-allocation state :=curr@t resource-allocation state;
Available :=
Allocation; :=
Need.; :=
Iflsafety-check (S) {DK = the resources are allocated to P;.

vailable - ﬁ%quest,-;

llocation; + Request;;

ed;— Request,;.

Else (unsafe) =
P. must wait (be blocked/suspended) and
old resource-allocation state is restored;

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator NG e

36

Banker’s Algorithm: safety check

Work and Finish: auxiliary vectors of length m and
respectively.

* |nit: Work := Available
Finish [i] = false fori=1,2, ..., n.

//“work” has
enough for proc i
to get the max

it might need///

(a) Finish [i] = false
(b) Need. < Wor

* While there exists i such that both
Work := Work + Allocation,
Finishl[i] := true o O O

7/ “simulate” Pi’s
execution &
termination //

* |If Finish [i] = true for all i, then the state S in question (cf prev
slide) is a safe one; else state is unsafe

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

37

Very simple example execution of Bankers Algo (snapshot 1)

Allocation
R1 R2
P, 10
P, 00

Max

Available

R1 R2
11
11

* The system is in a safe state since the sequence < P,, P,> satisfies safety criteria.

R,

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

T
€298 UNIVERSITY OF GOTHENBURG
Rt

38

Very simple example execution of Bankers Algo (snapshot 2)

Allocation Max Need Available
R1R2 R1R2 R1R2 R1 R2

P, 10 11 01
P, 01 11 10

* Allocating B to P, leaves the system in an unsafe state since there is no sequence that
satisfies safety criteria (no need can be satisfied, since Available vector is 0).

* Hence OS must suspend P2 until P1 has finished and then allocate the resources to P2

A,

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ shanmens |

€298 UNIVERSITY OF GOTHENBURG
Rt

39

EXTRA SLIDES/NOTES

* Part 1: Complement: Banker’s algo for deadlock avoidance: data
structures and safety check

e Part 2: Use of Banker’s algo idea to do deadlock detection

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ S

F GOTHENBURG

40

Another example of a Resource Allocation Graph With A Deadlock

R, R,
® o
\ \

° °
®

F|’2 ®
R4

T
€298 UNIVERSITY OF GOTHENBURG
Rt

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ shanmens |

41

Observe for deadlock detection:

Recall Unsafe State
in the enhanced RA graph (for deadlock avoidance)? R1

In the actual RA graph it is
... deadlocked!!

Detection algorithm:
what we can do for checking safety in enhanced
graph, can serve for checking no-deadlock in the
resource allocation graph

Eg Using Banker’s algo idea Ft’2

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator @ cnawvens | @D vriversiy or corrENBURG

Deadlock Detection

Note:
. similar as detecting unsafe states using Banker’s algo

. Q: if they cost the same, why not use avoidance instead of detection&recovery?
— Hint: think trade-off between checking cost and recovery cost

Data structures:
* Available: vector of length m: number of available resources of each type.

* Allocation: n x m matrix: number of resources of each type currently allocated to
each process.

. Request: n x m matrix: current request of each process. Request [ij] = k: P; is
requesting k more instances of resource type R..

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

43

Detection-Algorithm Usage

« When, and how often, to invoke:
* We don’t want to be too late to detect; think

— How often a deadlock is likely to occur?
— How many processes will need to be rolled back?

* Reason: If algorithm is invoked arbitrarily rarely,

— there may be many cycles in the resource graph =
we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

[MP] OS 07 — a. Landmarks on synchronization; b. RA with OS as arbitrator

44

http://mcs109.bu.edu/site/files/deadlock/citydeadlock.jpg

	Course Operating Systems��Lecture 7: �a. Landmarks on Synchronization �b. RA with OS as arbitrator (avoid/recover from deadlocks)
	Roadmap
	Critical Section for n threads
	Lamport’s Bakery Algorithm �Critical section for n threads using R/W variables
	�Lamport’s Bakery Algorithm �pseudocode thread i�
	To elaborate/think: homework
	Roadmap
	Readers-writers problem
	Readers-writers problem
	A solution for readers-writers
	The Readers/Writers Problem …
	Roadmap
	Shared counter problem
	Shared counter problem: lock—based method (Critical Section)
	Shared counter problem – can we do without locking?
	Lock-free synchronization
	Whys and hows?
	To elaborate/think:
	Roadmap
	Deadlock avoidance using the OS as arbitrator
	Graphs are useful tools: System Model
	Resource Allocation with Deadlock Avoidance
	Enhanced Resource-Allocation Graph �For Deadlock Avoidance:
	Banker’s Algorithm for Resource Allocation with Deadlock Avoidance [Dijkstra]
	Roadmap
	Deadlock detection and recovery
	Recovery from Deadlock �
	Summary
	Reading instructions (on all the synchronization topics we discuss)
	Reading instructions (include all deadlock-related parts of our discussions):
	EXTRA SLIDES/NOTES
	Enhanced Resource-Allocation Graph �For Deadlock Avoidance:
	Example Resource-Allocation Graph For Deadlock Avoidance:
	Banker’s Algorithm for Resource Allocation with Deadlock Avoidance [Dijkstra]
	Safety checking: More about Safe State
	Banker’s algorithm: Resource Allocation
	Banker’s Algorithm: safety check
	Very simple example execution of Bankers Algo (snapshot 1)
	Very simple example execution of Bankers Algo (snapshot 2)
	EXTRA SLIDES/NOTES
	Another example of a Resource Allocation Graph With A Deadlock
	Observe for deadlock detection:
	Deadlock Detection
	Detection-Algorithm Usage

