Lecture 8: Memory Management

Operating Systems — EDA093/DIT401

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

UNIVERSITY OF
GOTHENBURG

What to read (main textbook)

* Chapter 3.1, 3.2, 3.7 (up to 3.7.1 - excluded)

(extra facultative reading: 8.1-8.5 from Silberschatz Operating
System Concepts)

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

Objective

* Discuss how different types of memory are used

* Discuss how information 1s continuously moved between “slow
memory” and “fast memory” (accessed directly by the CPU)

* Discuss how and why user/programmer/program view of
memory and physical memory are kept separated

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

Agenda

* Introduction

* Base and limit registers

* Logical/Virtual vs Physical addresses

* Dynamic loading and linking optimizations [self reading]
* Swapping

* Memory allocation

* Contiguous allocation
* Segmentation

* Paging

Operating Systems - Lecture 8 - Memory
Management

Vincenzo Gulisano

Agenda

e Introduction

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

Background and basic hardware (I)

Goal of the OS: maximize CPU utilization > Run multiple
processes concurrently / in parallel > Share memory!

We first have to . -

move it up herel |] ~ Can be accessed
e e directly by the CPU
Y]
‘ 0|Z—St ec:I[Sk \j

[[v
If some data the CPU ﬂ| _ Cannot be accessed
wants to access is here directly by the CPU

£ 1

Vincenzo Gulisano Operating Systems - Lecture 8 - Memory
Management

Background and basic hardware (II)

user and other system programs
.
% Gul batch | comman d line
user interfaces
system calls
program [l{e] file
ecutio perat systems communjcat llocat ting
rrrrr protaen tion
defection |- oy ity
sssssss
ting system
hardware

S Need for fast CPU access to registers / caches and main memory?
- hardware support without OS interaction

CHALLENGE: how to ensure correctness?

Agenda

* Base and limit registers

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

Base and Limit register (I)

256000

300040

420940

880000

1024000

operating
system
process
300040
base
120900
limit
process

Vincenzo Gulisano

* For each process, the CPU maintains two registers:
* Base register: first address that can be access by the process
* Limit register: number of addresses (starting from the base
register) that can be accessed by the process

* Example: process A can only access addresses from

300040 to 420940

base base + limit

address es es
CPU > y < y >

no no

trap to operating system
monitor—addressing error memory

Operating Systems - Lecture 8 - Memory
Management

Base and Limit register (II)

256000

300040

420940

880000

1024000

operating

system
process
300040
process base
120900
process limit

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory

Base and Limit register loaded by the
OS using privileged instructions!

Management 10

Base and Limit register (11I)

The operating system can access the memory of the processes
without restrictions.

We saw (at least) one example of this in the previous lectures,
when?

parent ,(—\ resumes
wait y >
Replace the memory of the
process with the one of another

process
child exec() exit()

Vincenzo Gulisano Operating Systems - Lecture 8 - Memory 11
Management

Agenda

* Logical/Virtual vs Physical addresses

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

12

Address binding

Once we load it into memory, we know the
| - address
|

As long as the program is not loaded in
memory, we do not know the address

Vincenzo Gulisano Operating Systems - Lecture 8 - Memory 13
Management

Logical/Virtual vs Physical address space (i)

Logical/Virtual address

First address of the program 00000

Address of variable a 346

Physical address (main memory)

First address of the program 14000

Address of variable a 14346

Logical/Virtual vs Physical address space (i)

Address
346 Address
14346

?

Logical/Virtual physical
address address

How to convert between logical/virtual addresses to physical addresses?

Operating Systems - Lecture 8 - Memory

Management 1o

Vincenzo Gulisano

Memory-Management Unit (MMU) —
Relocation Register

CPU

relocation
register
14000
logical physical
address address
346 W 14346

Vincenzo Gulisano

MMU

memory

Operating Systems - Lecture 8 - Memory

Logical/Virtual addresses [0,max]

Physical addresses [R+0,R+max]

16

Management

Agenda

* Dynamic loading and linking optimizations [self reading]

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

17

Optimizations — Dynamic loading

operating
system

256000

process

300040

300040

base

420940

process

120900

880000

1024000

Vincenzo Gulisano

limit

We assumed so far the entire program A is
loaded

If A is large and parts of it are almost
never used - slower to load

With dynamic loading, routines of a
program can be loaded only when needed

Operating Systems - Lecture 8 - Memory

Management 18

Optimizations — Dynamic Linking (1)
Use library from

Program A
Program B > Program D

Program C

Static linking

"
o

=
9

o
s o3
n
o

* Wiaste of disk
* Waste of memory
* Need to re-link if D changes

Operating Systems - Lecture 8 - Memory

Management 19

Vincenzo Gulisano

Optimizations — Dynamic Linking (11)

Use library from

Program A
Program B > Program D

Program C

Dynamic linking

Stub for D

"
o

=
9

o
s o3
n
o

Better use of disk
* Better use of memory

* No need to re-link if D changes

|
|
3
Q =

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

20

Agenda

* Introduction

* Base and limit registers

* Logical/Virtual vs Physical addresses

* Dynamic loading and linking optimizations [self reading]
* Swapping

* Memory allocation

* Contiguous allocation
* Segmentation

* Paging

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

21

Swapping (1)

Moving a process from
memory to backing store

Why?

size(all logical addresses) > size(real physical memory)

Vincenzo Gulisano Operating Systems - Lecture 8 - Memory 22
Management

Swapping (11)

e Basic idea:

operating o ——

system

rocess P
@ swap out P !
4

) process P,
@ swap in

C
user

Sheco backing store

main memory

Vincenzo Gulisano

Questions:

 Which processes can we swap?
« How much time does it take?

« When does it make sense to

Operating Systems - Lecture 8 - Memory
Management

use swapping?

23

Swapping - Which processes can we swap?

Depends on the
pending I/0...

Can the I/0 results be
buffered at the 0S?

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header PCB, PCB,
head = > —_
tail registers registers
tail Y
head —+——=
Rl PCB; PCB,, PCBg
/ P P T =
head 4
tail
PCBs
head e
@l
24

Management

Swapping — How much time does it take?
* Process in memory 100 MB

* Disk transfer rate 50 MB/s

- 100 MP / 50 MB/s = 2 seconds

—> Swap out + Swap in = 4 seconds

(Notice: being optimistic! Disk writes/reads might be requested by other
processes, interrupts will occur 1n the meantime, etc...)

It is slow and expensive (because write/read to disks are slower and
more expensive than memory ones)!

Swapping — When does it make sense to use it?

* Not used ‘“as itis”...

* Modified versions are used in UNIX, Linux and Windows

* Swapping 1s activated when free memory goes below a certain threshold

* Swapping is activated when free memory goes above a certain threshold

* Modified swapping (swap out / in only parts of the process) used in
conjuction with Virtual Memory (next lecture...)

Agenda

* Memory allocation

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory
Management

27

Memory allocation

* Memory contains
* The operating system itself

* The users’ processes

Logical and physical

* Challenge: how to allocate memory efficiently? memory more and
more separated

[

* We will see 3 cases

* Contiguous allocation

* Segmentation Protection

Faster loading
/ swapping

* Paging

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

28

Agenda

* Memory allocation

* Contiguous allocation

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory
Management

29

allocation

* Operating system at the bottom

* Processes one after the other

(each process contiguous to the previous)

Contiguous
0
operating
system
256000
process
300040
process
420940
process
880000
1024000

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory
Management

30

Contiguous allocation — memory protection

256000

300040

420940

880000

1024000

operating
system

process

process

CPU

limit
register

logical
address

Vincenzo Gulisano

trap: addressing error

relocation
register

physical
address

memory

Operating Systems - Lecture 8 - Memory

Management

allocation - limitations

* When we terminate (or swap) a process

* We create a hole

* The OS needs to keep track of holes to reuse

them later on for other processes

* External fragmentation

sum(all holes size) > size(a new process)

BUT

Contiguous
0
operating
system
256000
process
300040
process
420940
process
880000
1024000

Vincenzo Gulisano

size(of any hole) < size(a new process)

Operating Systems - Lecture 8 - Memory

Management 32

Contiguous allocation — which hole to assign to a new process?

 First fit = allocate the first hole that is big enough

e Best fit =2 allocate the smallest hole that is big enough

* PROS: produces the smallest leftover hole
* CONS: Search entire list (or keep list of holes sorted)

e Worst fit =2 allocate the largest hole

* PROS: produces the largest leftover hole
* CONS: Search entire list (or keep list of holes sorted)

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

33

Agenda

* Memory allocation

* Segmentation

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory
Management

34

Segmentation (1)

max g
/
8 /
operating
system /
256000 /
process /
/
300040 v
420940 N
\
process \
\
880000
\
1024000 \
\
0N

Vincenzo Gulisano

stack

heap

data

text

Operating Systems - Lecture 8 - Memory
Management

e So far we referred to the
memory of a process as a
single unidimensional space
[0,max]

* Nevertheless, from the
programmer/program
perspective:

* Different parts have different
meaning, and each should be
“protected from others”

* Different parts have different
and variable size

35

Segmentation (11)

e With segmentation a memory position can be accessed not referring to 1ts global
position in [0,max] but rather as a pair <segment, position in the segment>

Segment 3
stack
n3-1
n,-1
heap ‘
Segment 2
nq{-1
| data ‘
Segment 1
No-1
} text l
Segment 0

Vincenzo Gulisano

e Fasier to check if an access to a
certain section is actually reaching a
different section

Read/write

Read/write
* Allows to have different
permissions for the different

] seoments!
Read/write &

* Different parts of the process can
B be at different locations in the
physical memory!

Operating Systems - Lecture 8 - Memory 36
Management

Segmentation — segment table

— Physical Memory

Subroutine —
Stack Segment table segment 0

— 2400

segment 3 limit | base
1000 | 1400 i
Symbol

segment 0 bl 400 | 6300 segment 3

400 | 4300 | 4500

segment 4 Sl e 4700-

1000 | 4700
Main segment 4
Program 5700 .)
-l Need to maintain extra
segment segment

6700

information to link logical
Logical address space address space / segments to

the physical memory

Operating Systems - Lecture 8 - Memory 37

Vincenzo Gulisano
Management

Segmentation — hardware support

Hardware is able to do this conversion automatically (and check whether the
process 1s trying to access memory outside the segment)

_,S{

— limit |base —

segment
table

o

no

CPU » s | d |

trap: addressing error physical memory

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

Agenda

* Memory allocation

* Paging

Vincenzo Gulisano

Operating Systems - Lecture 8 - Memory
Management

39

Paging

* Mechanism that allows for the physical address space of a process to be
non-contiguous

* Used in most modern OSes (from mainframes to smartphones)

* Requires cooperation between OS and hardware (as common)

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

40

Paging — Basic idea

frame
number
page 0 0 4 * Split logical memory in pages
page O o . . .
vage 1 1| page o o Split physical memory in
page g frames
page
bage 2 2 new process| * Keep a program (disk)
- ed i
page 3 3| page 2 organized 1n pages
Iogical 4 page 1
memory Page size = Frame size!
5
e
: e
How do we keep track of
7 .
i where each page is¢
physical
memory

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

41

Paging — the page table

frame
=~ number * Page 0? Frame 1
’ N
page 0)/ N 0 * Page 1? Frame 4
! O [l \
page 1 I 104 g 1| page 0 * Page 2? Frame 3
| | . 3
page 2 . 2|8 , 5 Page 37 Frame 7
v 3|7 I
page 3 . \\ page table /' 3| page 2
logical ¢ \\ //
~ = 4| page 1
memory ‘/ e
5
6
7| page 3
physical
memory

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

Paging — hardware support

logical physical
address address fO000 ... Q000
r-S
CPU (p f | d >
r 3
4\ _ /

1111 ... 1111

p{

f

physical
memory

page table

How does the CPU
know which page it

should access?

Similarly to Segmentation, we can access
physical memory specifying page + otfset

Operating Systems - Lecture 8 - Memory

Vincenzo Gulisano
Management

43

Paging — from logical address to physical address (1)
* If page/frame size is power of 2 = 2°

* If size of logical space is power of 2 = 2m

Logical address (binary) 101101001110110

m-n n
page offset

Operating Systems - Lecture 8 - Memory
Management

Vincenzo Gulisano

44

Paging — from logical address to physical address (i)

0Tz 0 Page size = 22 bytes (n=2)
C
§ d | Size of logical space = 2* bytes (m=4)
& |
g é ‘1’ l'|<) - logical space = 4 pages
a0 2[1] s -
1o 8 32] 5 " . .
i page tal : Physical address of logical
o LT 2
1| o) address 7 ¢
logical memory "’.‘ B
‘;6“‘ ﬁ
< N111 @ e
5 0111 =
= i, Frame 6 offset 3
g :~“ .'0“
1 {page: offset - 6x4+3=27
w1 3
physical memory o
Vincenzo Gulisano Operating Systems - Lecture 8 - Memory 45

Management

Paging - Fragmentation

* No external fragmentation

* Process needs a pager Can take any free frame

* Internal fragmentation
* Last frame assigned to a process’ page might be not full

* On average, half frame is wasted for each process

* Small pages = less fragmentation / more overhead

(e.g., page table size)

* Large pages = more fragmentation / less overhead

Operating Systems - Lecture 8 - Memory
Management

Vincenzo Gulisano

46

Thank you for your attention!

Please evaluate the lecture!

https://forms.gle/dZ4dtVnXsShZKJ4N6

https://forms.gle/dZ4dfVnXsShZKJ4N6

