
Lecture 9: Virtual Memory
Operating Systems – EDA093/DIT401

Vincenzo Gulisano
vincenzo.gulisano@chalmers.se

Reading instructions

• Chapter 3.3 to 3.6

(extra facultative reading: 9.1-9.4.5, 9.5 to 9.7.1 from Silberschatz
Operating System Concepts)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 2

Objectives

• To describe the benefits of a virtual memory system

• To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

• To discuss the principle of the working-set model

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 3

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing
• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 4

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing
• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 5

… we discussed paging!

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 6

• Split logical memory in pages
• Split physical memory in frames
• Keep a program (disk)

organized in pages

Page size = Frame size!
Logical and physical
memory more and

more separated

Less fragmentation (better
memory utilization)

Protection Faster loading
/ swapping

The intuition behind Virtual Memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 7

What would happen if the OS does
not load page 3 in frame 7?
(does not load at all, not in a different frame)

The intuition behind Virtual Memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 8

What would happen if the OS does
not load page 3 in frame 7?
(does not load at all, not in a different frame)

When would that be a problem?

The intuition behind Virtual Memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 9

What would happen if the OS does
not load page 3 in frame 7?
(does not load at all, not in a different frame)

When would that be a problem?

Let’s wait until the process tries
to access page 3… If it does,
then we will load it into frame 7!

Virtual Memory in a Nutshell (i)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 10

• Code needs to be in memory to execute,
but entire program rarely used
• Entire program code not needed at same

time
• If we manage to execute partially-loaded

programs:
• Program no longer constrained by limits of

physical memory
• Each program takes less memory while

running -> more programs run at the same
time
• Less I/O needed to load or swap programs

into memory -> each user program runs
faster

Error code

Unusual routines

Virtual Memory in a Nutshell (ii)

• What are the costs / trade-offs / complications when executing partially-
loaded programs:

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 11

• Need a mechanism to check if a page is
actually in the frame or not
• Because of this mechanism, sometimes

accessing a page might require more time
than expected
• … and more …

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing

• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 12

Demand Paging

• Could bring entire process into memory at load time
• Or bring a page into memory only when it is needed
• Less I/O needed
• Less memory needed
• More users

• Page is needed Þ reference to it
• not-in-memory Þ bring to memory

• Lazy swapper / pager – never swaps a page into memory unless page
will be needed

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 13

Basic Concepts

• Pager brings in only those pages into memory
•Need new MMU functionality to implement demand paging
• If pages needed are already memory resident
• No difference from non demand-paging

• If page needed and not memory resident
• Need to detect and load the page into memory from storage
• Without changing program behavior
• Without programmer needing to change code

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 14

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is

associated
(v Þ in-memory – memory resident, i Þ not-in-
memory)
• Initially valid–invalid bit is set to i on all entries
• Example of a page table snapshot:

• During MMU address translation, if valid–invalid bit in
page table entry is i Þ page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 15

Page Table When Some Pages Are Not in Main Memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 16

Page Fault

• If there is a reference to a page, first reference to that page will
trap to operating system:

page fault
1.Operating system looks at another table to decide:

• Invalid reference Þ abort
• Just not in memory

2.Find free frame
3.Swap page into frame via scheduled disk operation
4.Reset tables to indicate page now in memory

Set validation bit = v
5.Restart the instruction that caused the page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 17

Steps in Handling a Page Fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 18

Aspects of Demand Paging

• Pure demand paging – start process with no pages in memory
• OS sets instruction pointer to first instruction of process, non-memory-resident ->

page fault
• And for every other process pages on first access

• Hardware support needed for demand paging
• Page table with valid / invalid bit
• Secondary memory (swap device with swap space)
• Instruction restart

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 19

Performance of Demand Paging

• Stages in Demand Paging (worse case)
1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:
1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10.Correct the page table and other tables to show page is now in memory

11.Wait for the CPU to be allocated to this process again

12.Restore the user registers, process state, and new page table, and then resume the interrupted instruction

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 20

Performance of Demand Paging (Cont.)

• Three major activities
• Service the interrupt – careful coding means just several hundred instructions needed
• Read the page – lots of time
• Restart the process – again just a small amount of time

• Page Fault Rate 0 £ p £ 1
• if p = 0 no page faults
• if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 21

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing

• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 22

Copy-on-Write

• Example of optimization enabled by separation of Logical from Physical
memory and by demand paging

• Copy-on-Write (COW) allows both parent and child processes to initially share the
same pages in memory
• If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages are copied

• vfork() variation on fork() system call has parent suspend and child using copy-
on-write address space of parent
• Designed to have child call exec()
• Very efficient

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 23

Before Process 1 Modifies Page C

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 24

After Process 1 Modifies Page C

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 25

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 26

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing

• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 27

Suppose we end up in a situation like the following one

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 28

•What to do now?
•Can we replace an existing page?
•Should it be from process 1 or can it
also be from process 2?
• Is there any page that is faster to
swap out than others?
• Is there any page that has lower
probability of being needed later on?
•Could have we prevented this
situation?
•How many page should we have
allocate to the OS and to processes 1
and 2 to prevent this?
•…Process 1 needs a free frame (but 0 available!)

process 1 process 1

process 2 Process 2

Page and Frame Replacement Algorithms

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 29

•What to do now?
•Can we replace an existing page?
•Should it be from process 1 or can it
also be from process 2?
• Is there any page that is faster to
swap out than others?
• Is there any page that has lower
probability of being needed later on?
•Could have we prevented this
situation?
•How many page should we have
allocate to the OS and to processes 1
and 2 to prevent this?
•…

Frame-allocation algorithm
determines how many frames to give each
process

Page-replacement algorithm
Which page to replace? Want lowest
page-fault rate on both first access
and re-access

Page Replacement

• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement
• Use modify (dirty) bit to reduce overhead of page transfers –

only modified pages are written to disk
• Page replacement completes separation between logical memory

and physical memory – large virtual memory can be provided on a
smaller physical memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 30

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to

select a victim frame
-Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the
page and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transfers for page fault – increasing EAT

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 31

Page replacement algorithms

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 32

• We are going to take into account:

• FIFO (First-In-First-Out)
• Optimal algorithm
• Least Recently Used (LRU)
• Approximated LRU

Page Replacement

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 33

How to evaluate a page replacement algorithm?

• Run it on a particular string of memory references
(reference string) and computing the number of page faults
on that string
• String is just page numbers, not full addresses
• Repeated access to the same page does not cause a page fault
• Results depend on number of frames available

• In all our examples, the reference string of referenced page
numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 34

What do we expect?
(Graph of Page Faults Versus The Number of Frames)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 35

First-In-First-Out (FIFO) Algorithm

• If all frames are used, free the one containing the page loaded more time ago
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 36

Page needed: 7

Status of frames:

Is it there? NO

Do we have a free frame? YES

If YES, load the page

+1 page fault

Page faults: 0

First-In-First-Out (FIFO) Algorithm

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 37

Page needed: 0

Status of frames:

Is it there? NO

Do we have a free frame? YES

If YES, load the page

+1 page fault

7

• If all frames are used, free the one containing the page loaded more time ago
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

Page faults: 1

First-In-First-Out (FIFO) Algorithm

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 38

Page needed: 1

Status of frames:

Is it there? NO

Do we have a free frame? YES

If YES, load the page

+1 page fault

7 0

• If all frames are used, free the one containing the page loaded more time ago
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

Page faults: 2

• If all frames are used, free the one containing the page loaded more time ago
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

First-In-First-Out (FIFO) Algorithm

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 39

Page needed: 2

Status of frames:

Is it there? NO

Do we have a free frame? NO

If NO, substitute the page loaded more time ago (7)

+1 page fault

7 0 1

Page faults: 3

• If all frames are used, free the one containing the page loaded more time ago
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

First-In-First-Out (FIFO) Algorithm

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 40

Page needed: 0

Status of frames:

Is it there? YES

2 0 1

Page faults: 4

First-In-First-Out (FIFO) Algorithm

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
• Adding more frames can cause more page faults!
• Belady’s Anomaly

• How to track ages of pages?
• Just use a FIFO queue

15 page faults

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 41

FIFO Illustrating Belady’s Anomaly

n
u
m

b
e
r

o
f
p
a
g
e
 f
a
u
lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 42

Optimal Algorithm

• Replace page that will not be used for longest period of time
• 9 is optimal for the example

• How do you know this?
• Can’t read the future

• Used for measuring how well your algorithm performs

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 43

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used
• But how to implement?

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 44

LRU Algorithm (Cont.)
• Counter implementation
• Every page entry has a counter; every time page is referenced through

this entry, copy the clock into the counter
• When a page needs to be changed, look at the counters to find

smallest value
• Search through table needed

• Stack implementation
• Keep a stack of page numbers in a double link form:
• Page referenced à move it to the top
• Each update more expensive
• No search for replacement (page to replace at the bottom of the stack)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 45

Use Of A Stack to Record Most Recent Page References

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 46

LRU Approximation Algorithms

• LRU needs special hardware and still slow
• Reference bit
• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

• set reference bit 0, leave page in memory
• replace next page, subject to same rules

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 47

Second-Chance (clock) Page-Replacement Algorithm

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 48

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing

• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 49

Page and Frame Replacement Algorithms

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 50

•What to do now?
•Can we replace an existing page?
•Should it be from process 1 or can it
also be from process 2?
• Is there any page that is faster to
swap out than others?
• Is there any page that has lower
probability of being needed later on?
•Could have we prevented this
situation?
•How many page should we have
allocate to the OS and to processes 1
and 2 to prevent this?
•…

Frame-allocation algorithm
determines how many frames to give each
process

Page-replacement algorithm
Which page to replace? Want lowest
page-fault rate on both first access
and re-access

Allocation of Frames

• Each process needs minimum number of frames

• Maximum of course is total frames in the system
• Two major allocation schemes
• fixed allocation
• priority allocation

• Many variations

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 51

Fixed Allocation

• Equal allocation – For example, if there are 100 frames
(after allocating frames for the OS) and 5 processes, give
each process 20 frames
• Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of
process
• Dynamic as degree of multiprogramming, process sizes change

m
S
spa

m
sS

ps

i
ii

i

ii

´==

=
å=

=

 for allocation

frames of number total

 process of size
m = 64
s1=10
s2 =127

a1 =
10
137

×62 ≈ 4

a2 =
127
137

×62 ≈ 57

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 52

Priority Allocation

• Use a proportional allocation scheme using priorities
rather than size

• If process Pi generates a page fault,
• select for replacement one of its frames
• select for replacement a frame from a process with lower

priority number

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 53

Global vs. Local Allocation

• Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another
• But then process execution time can vary greatly
• But greater throughput so more common

• Local replacement – each process selects from only its
own set of allocated frames
• More consistent per-process performance
• But possibly underutilized memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 54

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing

• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 55

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high
• Page fault to get page
• Replace existing frame
• But quickly need replaced frame back
• This leads to:

• Low CPU utilization
• Operating system thinking that it needs to increase the degree of

multiprogramming
• Another process added to the system

• Thrashing º a process is busy swapping pages in and out

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 56

Thrashing (cont.)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 57

Process needs frames
(global page replacement)

“steals” frames from
other processes

Paging device queue grows
Ready queue decreases

OS increases degree of
multiprogramming

Thrashing (Cont.)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 58

Sometimes the OS needs to reduce degree of
parallelism to increase CPU utilization

Demand Paging and Thrashing

• Why does demand paging work?
Locality model
• Process migrates from one locality to another
• Localities may overlap

• Why does thrashing occur?
S size of locality > total memory size
• Limit effects by using local or priority page replacement

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 59

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

p
a
g
e
 n

u
m

b
e
rs

m
e
m

o
ry

 a
d
d
re

ss

execution time

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 60

How could the OS avoid trashing?

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 61

Working-Set Model

• D º working-set window º a fixed number of page references
Example: 10,000 instructions

• WSSi (Working Set Size of Process i) =
total number of pages referenced in the most recent D (varies in time)
• if D too small will not encompass entire locality
• if D too large will encompass several localities
• if D = ¥Þ will encompass entire program

• D (Total demand for frames) = S WSSi
• Approximation of locality

• if D > available frames m Þ Thrashing
• Policy if D > m, then suspend or swap out one of the processes

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 62

How to keep track of the
Working Set?

Page-Fault Frequency

• More direct approach than WSS
• Establish “acceptable” page-fault frequency (PFF)

rate and use local replacement policy
• If actual rate too low, process loses frame
• If actual rate too high, process gains frame

number of frames

increase number
of frames

upper bound

lower bound
decrease number
of frames

p
a
g
e
-f

a
u
lt

ra
te

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 63

Working Sets and Page Fault Rates

! Direct relationship between working set of a process and its page-fault rate

! Working set changes over time

! Peaks and valleys over time

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 64

By looking at the Page Fault Rate you can observe the
working set variations over time

Agenda

• Recap / Introduction
• Demand Paging
• Copy-on-Write
• Page Replacement
• Allocation of Frames
• Thrashing

• Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 65

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as
routine memory access by mapping a disk block to a page in
memory
• A file is initially read using demand paging

• A page-sized portion of the file is read from the file system into a
physical page

• Subsequent reads/writes to/from the file are treated as ordinary
memory accesses

• Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls
• Also allows several processes to map the same file allowing the

pages in memory to be shared
• But when does written data make it to disk?

• Periodically and / or at file close() time
• For example, when the pager scans for dirty pages

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 66

Memory Mapped Files

process A
virtual memory

1

1

1 2 3 4 5 6

2
3

3

4
5

5

4
2

6
6

1
2
3
4
5
6

process B
virtual memory

physical memory

disk file

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 67

Shared Memory via Memory-Mapped I/O

process1

memory-mapped
file

shared
memory

shared
memory

shared
memory

process2

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 68

Thank you for your attention!

Please evaluate the lecture!
https://forms.gle/EKVCNbxYsCf16eiGA
Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 69

https://forms.gle/EKVCNbxYsCf16eiGA

