
Lecture 12: I/O Systems
Operating Systems – EDA093/DIT401

Vincenzo Gulisano
vincenzo.gulisano@chalmers.se

Reading instructions

• Chapter 5.1 to 5.3

(extra facultative reading: 13.1-13.7 from Silberschatz Operating System Concepts)

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 2

Agenda

• Introduction
• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 3

Agenda

• Introduction
• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 4

Introduction

• Main jobs of a computer: I/O & processing.
• Role of OS: manage & control I/O operations & I/O devices.

OBJECTIVES:
• Explore structure of an OS’s I/O subsystem
• Principles & complexities of I/O hardware
• Explain the performance aspects of I/O hardware & software.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 5

Introduction

I/O challenge: control as good as possible the devices of a given architecture
Why is it a challenge?
1. Variability of I/O devices (in their function & speed)

Varied methods are needed to control them.
2. Increasing standardization of software & hardware vs Increasing types of

devices
3. Different details & oddities of devices
How does the OS address the challenge?
• dedicated I/O subsystem in the kernel
• device drivers that provide a device access interface to the I/O subsystem

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 6

Agenda

• Introduction
• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 7

I/O Hardware

We have different types of hardware usually available
in a computer:
• Storage devices (disks)
• Transmission devices (network cards)
• Human-interface devices (screen, keyboard, mouse)
All of them exchange information by sending signals
(via cable or air)

How do they communicate with the CPU, then?

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 8

I/O Hardware

Common concepts:
• Port: the connection point (e.g., serial port)
• Bus: a set of wires & a protocol that specifies a set of messages that can

be sent on the wires.
• Messages conveyed by patterns of electrical voltages with different timings.
• Buses vary in signaling methods, speed, throughput & connection methods.

• When device A plugs to device B and device B plugs to device C... We
say A,B,C,… form a daisy chain
• A daisy chain also operates as a bus

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 9

Typical PC bus structure

Important concepts:
• PCI bus: connects the processor-memory subsystem to the fast devices.
• Expansion bus: connects relatively slow devices.
• Controller: a collection of electronics that can operate a port, a bus or a

device.
Example 1: Serial-port controller
• A single chip (on the host) that controls the signals on the wires of a serial port.
Example 2: SCSI controller
• Contains a processor, a microcode, private memory to process the SCSI protocol

messages (e.g., disk drive a circuit board).

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 10

A typical PC Bus Structure

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 11

I/O Hardware
• How can the processor give commands & data to a controller to accomplish a I/O transfer?

1st Way of Communication
• Processor reads & writes bit patterns in the controllers’ registers.

• Use of special I/O instructions that specify the transfer of a byte or word to an I/O port address.
• I/O instruction triggers bus lines to select the proper device & move bits into or out of a device register.

2nd Way of Communication: Memory mapped I/O
• Device-control registers are mapped into the address space of the processor.
• CPU executes I/O requests using the standard data transfer instructions to read and write the device-

control registers.

à Some systems use both ways of communication.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 12

Processor reads & writes bit patterns in the controllers’ registers

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 13

CPU

SCSI Controller SCSI Disk

RAM

I have dedicated channels
and dedicated instructions
depending on whether I want
to write a byte in memory or
in a certain controller

Memory mapped I/O

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 14

CPU

SCSI Controller SCSI Disk

RAM

When I want to write a byte to a register
of a certain controller I use a given address, but
I do not really know (or care) how to differentiate
a write to memory from a write to a controller

motherboard

Example of Memory mapped I/O: graphics controller

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 15

CPU

Graphics controller: has large memory-mapped region to hold screen contents.
Process sends output to the screen by writing data into the memory-mapped region.
Controller generates screen image based on the contents of the memory.

motherboard Graphics controller

Device I/O Port Locations on PCs
Usual I/O port addresses for PCs

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 16

I/O Hardware
I/O port typically consists of:
• Data-in register: is read by the host to get input (e.g. 1 to 4 bytes in size)
• Data-out register: is written by the host to send output
• Status register: contains bits that can be read by the host. Indicates states such as:

• whether the current command has completed
• whether a byte is available to be read
• whether a device error has occurred

• Control register: to start a command or to change the mode of a device.

Example 1: a certain bit in the control register of a serial port chooses between full-duplex &
half-duplex communication.
Example 2: another bit sets the word length to 7 or 8 bits, Other bits select one of the speeds
supported by the serial port

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 17

Interaction between host and controller

• Complete interaction protocol between the host & a controller can be
intricate.

• busy-waiting / polling: the host is continuously trying to get access to the
device via the controller

• interrupt: the controller alerts the host when the device is available

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 18

Polling – Handshaking procedure

• 2 bits are used to coordinate the producer-consumer relationship between the
controller & the host.
• Controller indicates its state through the busy bit in the status register.
• Host signals its wishes via the command-ready bit in the command register.

Command ready bit: if it is set a command is available for the controller
• busy-waiting / polling: it is a loop, reading the status register over and over

until the busy bit becomes clear.
Reasonable: If device controller & device are fast
Inefficient: attempted repeatedly but device is busy.
• In such cases: hardware controller should notify the CPU when the device

becomes ready for service à this hardware mechanism is called interrupt.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 19

Interrupts

Basic mechanism
1. CPU hardware has a wire called interrupt request line
2. CPU senses the interrupt request line after executing every instruction.
3. If yes, CPU performs a save state & jumps to the interrupt handler routine at a

fixed address in memory.
4. Interrupt handler (IH): What was the cause of the interrupt?
5. IH performs the necessary processing, performs state restore
6. … executes a return from interrupt instruction à return CPU to the execution

state prior to the interrupt

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 20

Interrupts

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 21

Interrupts - Dictionary

• The device controller raises an interrupt
•by asserting a signal on the interrupt request line
• CPU catches the interrupt
• CPU dispatches it to the interrupt handler
• Handler clears the interrupt by servicing the device

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 22

Interrupts

Sophisticated Interrupt Handling
In a modern OS: we need sophisticated interrupt handling features
• Ability to defer interrupt handling during critical processing
• Efficient way to locate the proper interrupt handler for a device without asking

all devices to see which one raised the interrupt
• Multi-level interrupts so that the OS can distinguish between high & low level

priority interrupts

In modern OS these provided by CPU & interrupt controller hardware

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 23

Interrupts

Two interrupt request lines:
• Nonmaskable interrupt: reserved for events such as unrecoverable memory

errors.
• Maskable interrupt: can be turned off by CPU before the execution of

critical instruction requests.

Interrupt mechanism accepts an address: a number that selects a specific
interrupt-handling routine from a small set.
àThis address is an offset in a table called interrupt vector
This vector contains the memory addresses of specialized interrupt
handlers.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 24

Interrupts – Intel Pentium processor event-vector table

nonmaskable

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 25

Interrupts

OS & interrupts interaction
• A modern OS interacts with the interrupt mechanism in several ways.
• At boot time, probes the buses to see which devices are present and

installs the corresponding interrupt handler.
• During I/O, device controllers raise interrupts when they are ready for

service. These interrupts may mean:
• output has completed
• input data are available
• or a failure has been detected

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 26

Direct Memory Access
Direct Memory Access
• Devices with large transfer e.g. disk drive.

Not a good idea to use an expensive general-purpose processor to watch status bits &
feed data into a controller register à programmed I/O process.

• Use instead DMA controller
• Bypasses CPU to transfer data directly between I/O device & memory

DMA transfer
• To initiate a DMA transfer, host writes a DMA command block into memory.
• Block contains:

• a pointer to the source of the transfer
• a pointer to the destination of the transfer
• a count of the number of bytes to be transferred.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 27

Direct Memory Access

Handshaking between DMA controller & device controller
• Performed via a pair of wires: DMA request & DMA-acknowledge.
• A word of data available for transfer à device controller places a signal

on the DMA-request wire
• DMA controller:
• places the desired memory address on the memory-address wires.
• places a signal on the DMA-acknowledge wire.

• Device controller receives the DMA-acknowledge signal & transfers
the word of data to memory & removes the DMA-request signal.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 28

Six Step Process to Perform DMA Transfer

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 29

Agenda

• Introduction
• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 30

Application I/O Interface

• Goals:
• Abstract away the detailed differences in I/O devices by identifying a few

general kinds.
• Encapsulate device behaviors in general

• Device-driver layer hides differences among I/O controllers from
kernel.
• Make I/O subsystem independent of the hardware:
• Simplifies the job of the OS.
• Benefits the hardware manufacturers
• Attach peripherals without waiting for new support code
• BUT: each type of OS has its own standards for the device-driver interface.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 31

Application I/O Interface

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 32

Application I/O Interface

Devices vary in many dimensions:
• Character-stream or block: bytes one by one or

blocks of bytes
• Sequential or random access: fixed order or

random
• Synchronous or asynchronous: data transfers

with predictable response times or not
• Sharable or dedicated: used concurrently by

several processes or not
• Speed of operation: speeds range form a few

bytes to gigabytes per sec
• Read-write, read only or write only: some both

directions, others not

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 33

Block and Character Devices

Block devices include disk drives
Block-device interface all necessary aspects for accessing disk drives & other
block-oriented devices
• Commands include read(), write(), seek()
• Memory-mapped file access possible

Character devices
• Include keyboards, mouse, serial ports
• Commands include get(), put()
• Libraries layered on top allow line editing

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 34

Network Devices
Network Devices
• Network I/O differs significantly form disks, the interface is not read(), write() and
seek()

• Unix & Windows include socket interface
• System calls in the socket interface enable an application to

• Create a socket
• Connect to a remote socket

Socket Interface
• Connect local socket to a remote address
• Listen remote application to plug into the local socket
• Send & receive packets over the connection
• select()à return which sockets have a packet waiting to be received

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 35

Clocks & Timers

• Give current time.
• Give elapsed time.
• Set a timer to trigger operation X at time T.
• Programmable hardware interval timer: hardware to measure elapsed

time & trigger operations
• Example: wait a certain amount of time & then generate an interrupt

Cancel operations preceding too slowly
• Usual interrupt rate: between 18 & 60 ticks per sec.
• Hardware clock constructed from a high-frequency counter.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 36

Blocking & Nonblocking I/O
Blocking

• Process suspended until I/O completed
• Moved from run queue to wait queue
• Later moved back to run queue & resumes
• Easy to use & understand
• Insufficient for some needs

Nonblocking
• Example: a user interface that receives keyboard & mouse input while processing & displaying data on screen.
• Implemented via multi-threading (a thread does the blocking part, another processes results)
• Returns quickly with a return value indicating how many bytes were transferred.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 37

Blocking & Nonblocking I/O
Asynchronous

• Process runs while I/O executes
• Returns immediately without waiting for I/O to complete
• Difficult to use
• I/O subsystem signals process when I/O completed

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 38

Agenda

• Introduction
• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 39

Kernel I/O subsystem

• Provides many services related to I/O, including:
• I/O scheduling
• Buffering / Caching / Spooling
• Error handling
• I/O protection

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 40

I/O Scheduling

Goal: schedule I/O requests in a good order before executing them
• Improve overall performance
• Share device access fairly among processes
• Reduce the average waiting time for I/O to complete

• Some OS maintain a wait queue of requests for each device
• Some OS try fairness
Example
• Application 1 needs a block near the end of a disk
• Application 2 needs a block near the beginning
• Application 3 needs a block near the middle of the disk
Best Scheduling: 2,3,1

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 41

Device status table

• When a kernel supports asynchronous I/O and might schedule requests
in different orders, it must be able to keep track of many I/O requests

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 42

Buffering

• Another way to improve performance à Use storage space in main
memory or on disk via buffering, caching, spooling

Buffering
• Buffer: memory area that stores data being transferred between two devices or

between a device & an application.
• Example:

• File received via modem for storage on the hard disk.
• Buffer created in main memory to accumulate the bytes received from the modem.
• Buffer full à write data on the disk
• Disk write not instantaneous: two buffers are needed à Double buffering

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 43

Buffering – Differences in device speeds

Enormous differences in
device speeds for typical

hardware!

Sun Enterprise 6000 device-transfer rates (logarithmic)
Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 44

Caching – Spooling
Caching
• Cache: holds a copy on faster storage of an item that resides elsewhere
• Easier access à Key to performance

Spooling
• Hold output for a device
• If device can serve only one request at a time (e.g. printing)

Devices that cannot accept interleaved data streams.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 45

Error Handling

Error Handling
• Devices and I/O transfers can fail in many ways.
• Transient reasons: a network becomes overloaded
• Permanent reasons: a disk controller becomes defective

• OS can recover from disk read, device unavailable, transient write failures
• Most return an error number or code when I/O request fails
• System error logs hold problem reports

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 46

I/O Protection

• Necessary: User access may attempt to disrupt normal operation via
illegal I/O instructions.
• All I/O instructions defined to be privileged à Users cannot issue

them directly
• To do I/O a user program executes a system call
• OS checks if request is valid
• If yes it is executed.
• Memory mapped & I/O port memory locations must be protected

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 47

Agenda

• Introduction
• I/O Hardware
• Application I/O Interface
• Kernel I/O Subsystem
• Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 48

Performance

I/O has major impact in system performance:

Why?
• Places heavy demands on CPU to execute device driver
• Schedule processes fairly & efficiently
• Context switches due to interrupts
• …

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 49

Example of performance: remote login

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 50

How to improve performance?

• Reduce number of context switches
• Reduce number of times data must be copied in memory (between

device & application)
• Reduce frequency of interrupts

Use large transfers, smart controllers
• Use DMA
• Balance CPU, memory, bus and I/O performance for highest throughput

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 51

Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 52

Thank you for your attention!

Please evaluate the lecture!
https://forms.gle/CWGKDpQj9Lpz237K7
Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 53

https://forms.gle/CWGKDpQj9Lpz237K7

