Lecture 12: I/O Systems
Operating Systems — EDA093/DIT401

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

UNIVERSITY OF
GOTHENBURG

Reading instructions

* Chapter 5.1 to 5.3

(extra facultative reading: 13.1-13.7 from Silberschatz Operating System Concepts)

Agenda

* Introduction

e [/O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance

Agenda

* Introduction

e [/O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

Introduction

* Main jobs of a computer: I/O & processing.
* Role of OS: manage & control I/O operations & I/O devices.

OBJECTIVES:
* Explore structure of an OS’s I/O subsystem
* Principles & complexities of 1/O hardware

* Explain the performance aspects of 1/O hardware & software.

ve,..'{.' I ...J..i..l o= L
B 1 0 0)

Introduction _:-'u';;‘_"-;"'-"751'7-"'H'r"r'-}}'{"'{[:5,

[

I/O challenge: control as good as possible the devices of a given architecture
Why is it a challenge?
1. Variability of 1/O devices (in their function & speed)

Varied methods are needed to control them.

2. Increasing standardization of software & hardware vs Increasing types of
devices

3. Different details & oddities of devices
How does the OS address the challenge?
* dedicated I/O subsystem in the kernel

* device drivers that provide a device access interface to the I/O subsystem

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems ¢

Agenda

* Introduction

e [/O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

I[/O Hardware

We have different types of hardware usually available
in a computer:

i

-

® 1 . l
Storage devices (disks) . L;[|
- |
|

* Transmission devices (network cards)

* Human-interface devices (screen, keyboard, mouse)

All of them exchange information by sending signals
(via cable or air)

How do they communicate with the CPU, then?

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

I[/O Hardware

Common concepts:
* Port: the connection point (e.g., sertal port)

* Bus: a set of wires & a protocol that specifies a set of messages that can
be sent on the wires.

* Messages conveyed by patterns of electrical voltages with different timings.

* Buses vary 1n signaling methods, speed, throughput & connection methods.
* When device A plugs to device B and device B plugs to device C... We
say A,B,C,... form a daisy chain

* A daisy chain also operates as a bus

Typical PC bus structure

Important concepts:
* PCI bus: connects the processor-memory subsystem to the fast devices.
* Expansion bus: connects relatively slow devices.

* Controller: a collection of electronics that can operate a port, a bus or a
device.

Example 1: Serial-port controller

* A single chip (on the host) that controls the signals on the wires of a serial port.
Example 2: SCSI controller

* Contains a processor, a microcode, private memory to process the SCSI protocol
messages (e.g:, disk drive a circuit board).

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 10

A typical PC Bus Structure

2600

monitor processor
cache
raphics bridge/memo
c?onfroller c%ntroller . Al SCS_I_c_:c_zr:t_r_ql_lg_r__
I :—PCI bus —3
IDE disk controller expansion bus keyboard
.............. interface

@ @ {) expansion bus

@ @ parallel
port

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

serial
port

I[/O Hardware

9

How can the processor give commands & data to a controller to accomplish a I/O transfer?

15t Way of Communication

* Processor reads & writes bit patterns in the controllers’ registers.
* Use of special I/O instructions that specify the transfer of a byte or word to an I/O port address.
* /O instruction triggers bus lines to select the proper device & move bits into or out of a device registet.

204 Way of Communication: Memory mapped 1/0O
* Device-control registers are mapped into the address space of the processor.

* CPU executes 1/O requests using the standard data transfer instructions to read and write the device-
control registers.

—> Some systems use both ways of communication.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 12

Processor reads & writes bit patterns in the controllers’ registers

CPU

I have dedicated channels
and dedicated instructions
depending on whether I want

to write a byte in memory or SCSI Controller SCSI Disk
in a certain controller

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 13

Memory mapped 1/O

oo oy
| ‘ | LT ETYT]

CPU

motherboard

When I want to write a byte to a register
of a certain controller I use a given address, but

I do not really know (or care) how to differentiate
a write to memory from a write to a controller

SCSI Controller SCSI Disk

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 14
p g O))

Example of Memory mapped 1/O: graphics controller

XYY e I

CPU motherboard Graphics controller

Graphics controller: has large memory-mapped region to hold screen contents.
Process sends output to the screen by writing data into the memory-mapped region.
Controller generates screen image based on the contents of the memory.

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems
p g O))

15

Device 1/0 Port L.ocations on PCs
Usual I/O port addresses for PCs

Vincenzo Gulisano

I/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF

serial port (primary)

Operating Systems - Lecture 12 - I/O Systems

16

I[/O Hardware

I/O port typically consists of:
* Data-in register: is read by the host to get input (e.g. 1 to 4 bytes in size)

Data-out register: 1s written by the host to send output

Status register: contains bits that can be read by the host. Indicates states such as:
* whether the current command has completed
* whether a byte is available to be read
* whether a device error has occurred

Control register: to start a command or to change the mode of a device.

Example 1: a certain bit in the control register of a serial port chooses between full-duplex &
half-duplex communication.

Example 2: another bit sets the word length to 7 or 8 bits, Other bits select one of the speeds
supported by the serial port

Interaction between host and controller

* Complete interaction protocol between the host & a controller can be
intricate.

* busy-waiting / polling: the host is continuously trying to get access to the
device via the controller

* interrupt: the controller alerts the host when the device is available

Polling — Handshaking procedure

* 2 bits are used to coordinate the producer-consumer relationship between the
controller & the host.

* Controller indicates its state through the busy bit in the status register.

* Host signals its wishes via the command-ready bit in the command register.
Command ready bit: if it is set a command 1s available for the controller

* busy-waiting / polling: it is a loop, reading the status register over and over
until the busy bit becomes clear.
Reasonable: If device controller & device are fast
Inefficient: attempted repeatedly but device is busy.

* In such cases: hardware controller should notify the CPU when the device
becomes ready for service =2 this hardware mechanism is called interrupt.

Interrupts

Basic mechanism
1. CPU hardware has a wire called interrupt request line
2. CPU senses the interrupt request line after executing every instruction.

3. If yes, CPU performs a save state & jumps to the interrupt handler routine at a
fixed address in memory.

4. Interrupt handler (IH): What was the cause of the interrupt?

N

IH performs the necessary processing, performs state restore

6. ... executes a return from interrupt instruction - return CPU to the execution
state prior to the interrupt

Interrupts

CPU

Y

device driver initiates I/O

1/0O controller

_————

CPU executing checks for

interrupts between instructions

4

CPU receiving interrupt,
transfers control to
interrupt handler

initiates 1/0

y

5

A

interrupt handler
processes data,
returns from interrupt

6

CPU resumes
processing of
interrupted task

Vincenzo Gulisano

input ready, output
complete, or error
generates interrupt signal

Operating Systems - Lecture 12 - I/O Systems

21

Interrupts - Dictionary

* The device controller raises an interrupt

* ...by asserting a signal on the interrupt request line

* CPU catches the interrupt

* CPU dispatches it to the interrupt handler

* Handler clears the interrupt by servicing the device

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

Interrupts

Sophisticated Interrupt Handling

In a modern OS: we need sophisticated interrupt handling features
* Ability to defer interrupt handling during critical processing

* Efficient way to locate the proper interrupt handler for a device without asking
all devices to see which one raised the interrupt

* Multi-level interrupts so that the OS can distinguish between high & low level
priority interrupts

In modern OS these provided by CPU & interrupt controller hardware

Interrupts

Two interrupt request lines:

* Nonmaskable interrupt: reserved for events such as unrecoverable memory
errors.

* Maskable interrupt: can be turned off by CPU before the execution of
critical instruction requests.

Interrupt mechanism accepts an address: a number that selects a specific
interrupt-handling routine from a small set.

—This address is an offset in a table called interrupt vector

This vector contains the memory addresses of specialized interrupt
handlers.

Interrupts — Intel Pentitum processor event-vector table

vector number description
£ 0 divide error
1 debug exception
2 null interrupt
3 breakpoint
-+ INTO-detected overflow
5 bound range exception
6 invalid opcode
7/ device not available
8 double fault
nonmaSkable _ 9 f:opr.ocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
115 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
1931 (Intel reserved, do not use)
32-255 maskable interrupts

Vincenzo Gulisano

Operating Systems - Lecture 12 - I/O Systems

[\®)
Ul

Interrupts

OS & interrupts interaction
* A modern OS interacts with the interrupt mechanism in several ways.

* At boot time, probes the buses to see which devices are present and
installs the corresponding interrupt handler.

* During /O, device controllers raise interrupts when they are ready for
service. These interrupts may mean:
* output has completed
* input data are available

e or a failure has been detected

Direct Memory Access

Direct Memory Access

* Devices with large transfer e.g. disk drive.

Not a good idea to use an expensive general-pul;i)ose processor to watch status bits &
feed data into a controller register 2 programmed I/O process.

* Use instead DMA controller
* Bypasses CPU to transfer data directly between 1/O device & memory

DMA transfer

* To initiate a DMA transfer, host writes a DMA command block into memory.

* Block contains:
* a pointer to the source of the transfer
* a pointer to the destination of the transfer
* acount of the number of bytes to be transferred.

Direct Memory Access

Handshaking between DMA controller & device controller
* Performed via a pair of wires: DMA request & DMA-acknowledge.

* A word of data available for transfer = device controller places a signal
on the DMA-request wire

e DMA controller:

* places the desired memory address on the memory-address wires.
* places a signal on the DMA-acknowledge wire.

* Device controller receives the DMA-acknowledge signal & transfers
the word of data to memory & removes the DMA-request signal.

Six Step Process to Pertorm DMA Transter

Vincenzo Gulisano

5

1. device driver is told
to transfer disk data CPU
to buffer at address X
DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 DOMA/bUS/
. when C = 0, DMA .
interrupts CPU to signal mte;[rrL:Ipt % CELLmemony.bus _J
transfer completion SeNi ol

X
memory

buffer

PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
el @i

Operating Systems - Lecture 12 - I/O Systems

Agenda

* Introduction

e /O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 30

Application 1/O Interface

* Goals:

* Abstract away the detailed differences in I/O devices by identifying a few
general kinds.

* Encapsulate device behaviors in general

* Device-driver layer hides differences among I/O controllers from
kernel.

* Make I/O subsystem independent of the hardware:
* Simplifies the job of the OS.
* Benefits the hardware manufacturers
* Attach peripherals without waiting for new support code
* BUT: each type of OS has its own standards for the device-driver interface.

Application 1/O Interface

Vincenzo Gulisano

software

hardware

kernel

kernel I/O subsystem

SCSI keyboard mouse PCI bus floppy ATAPI
device device device cee device device device
driver driver driver driver driver driver
SCSI keyboard mouse PCI bus floppy ATAPI
device device device cee device device device
controller | controller | controller controller | controller | controller
I I I A A I A
v v v
ATAPI
scs| floppy- | | devices
e keyboard mouse LR PCI bus d_|sk (disks,
drives tapes,
drives)

Operating Systems -

Lecture 12 -

I/O Systems

32

Application 1/O Interface

aspect variation example
doiharoferinods character terminal
block disk
sequential modem
access method e CD-ROM
transfer schedule Sl e 129
asynchronous keyboard
Sharin dedicated tape
9 sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
|/O direction write only graphics controller
read—write disk

Vincenzo Gulisano

Devices vary in many dimensions:

* Character-stream or block: bytes one by one or
blocks of bytes

* Sequential or random access: fixed order or
random

* Synchronous or asynchronous: data transfers
with predictable response times or not

* Sharable or dedicated: used concurrently by
several processes or not

* Speed of operation: speeds range form a few
bytes to gigabytes per sec

* Read-write, read only or write only: some both
directions, others not

Operating Systems - Lecture 12 - I/O Systems 33

Block and Character Devices

Block devices include disk drives

Block-device interface all necessary aspects for accessing disk drives & other
block-oriented devices

* Commands include read(), write(), seek()

* Memory-mapped file access possible

Character devices

* Include keyboards, mouse, serial ports
* Commands include get(), put()

* Libraries layered on top allow line editing

Network Devices

Network Devices

. Net\?f((zr)k I/O differs significantly form disks, the interface is not read(), write() and
see

e Unix & Windows include socket interface

* System calls in the socket interface enable an application to
* Create a socket
* Connect to a remote socket

Socket Interface

* Connect local socket to a remote address

* Listen remote application to plug into the local socket

* Send & recetve packets over the connection

* select() = return which sockets have a packet waiting to be received

Clocks & Timers

* Give current time.
* Give elapsed time.
* Set a timer to trigger operation X at time T.

* Programmable hardware interval timer: hardware to measure elapsed
time & trigger operations

* Example: wait a certain amount of time & then generate an interrupt
Cancel operations preceding too slowly

* Usual interrupt rate: between 18 & 60 ticks per sec.

* Hardware clock constructed from a high-frequency counter.

Blocking & Nonblocking I/O

Blocking
* Process suspended until I/O completed

* Moved from run queue to wait queue
* Later moved back to run queue & resumes
* FEasy to use & understand

e Insufficient for some needs

Nonblocking

* Example: a user interface that receives keyboard & mouse input while processing & displaying data on screen.

* Implemented via multi-threading (a thread does the blocking part, another processes results)

* Returns quickly with a return value indicating how many bytes were transferred.

Blocking & Nonblocking I/O

Asynchronous

* Process runs while 1/0O executes

* Returns immediately without waiting for I/O to complete
* Difficult to use

* I/O subsystem signals process when I/O completed

Agenda

* Introduction

e /O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 39

Kernel I/O subsystem

* Provides many services related to 1/O, including:
* I/O scheduling
* Buffering / Caching / Spooling
* Error handling
* 1/O protection

[/O Scheduling

Goal: schedule I/O requests in a good order before executing them
* Improve overall performance

* Share device access faitly among processes
* Reduce the average waiting time for I/O to complete

* Some OS maintain a wait queue of requests for each device
* Some OS try fairness
Example

* Application 1 needs a block near the end of a disk

* Application 2 needs a block near the beginning

* Application 3 needs a block near the middle of the disk
Best Scheduling: 23,1

Device status table

* When a kernel supports asynchronous /O and might schedule requests

in different orders, it must be able to keep track of many I/O requests

device: keyboard
status: idle

device: laser printer
status: busy

device: mouse
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: busy

request for

—> laser printer
address: 38546

length: 1372

Vincenzo Gulisano

request for
disk unit 2

file: xxx
operation: read
address: 43046
length: 20000

request for
disk unit 2

file: yyy
operation: write
address: 03458

length: 500

Operating Systems - Lecture 12 - I/O Systems

Buttering

* Another way to improve performance = Use storage space in main
memory or on disk via butfering, caching, spooling

Buffering

* Buffer: memory area that stores data being transferred between two devices or
between a device & an application.

* Example:

* File received via modem for storage on the hard disk.
* Buffer created in main memory to accumulate the bytes recetved from the modem.
e Buffer full 2 write data on the disk

* Disk write not instantaneous: two buffers are needed 2 Double buffering

Buftering — Differences in device speeds

System Bus
HyperTransport (32-pair)

PCI Express 2.0 (<32) Enormous differences in

Infiniband (QDR 12X) device speeds for typical

Serial ATA (SATA-300) h 3 rdwa re |
gigabit ethernet
SCSI bus
FireWire
hard disk
froder
| |
. mouse
| | |
[keyboard
0.00001 0.001 0.1 10 1000 100000 1E-

Sun Enterprise 6000 device-transfer rates (logarithmic)

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 44

Caching — Spooling

Caching

* Cache: holds a copy on faster storage of an item that resides elsewhere

* Fasier access =2 Key to performance

Spooling

* Hold output for a device

* If device can serve only one request at a time (e.g. printing)
Devices that cannot accept interleaved data streams.

Frror Handling

Error Handling

* Devices and I/O transfers can fail in many ways.
 Transient reasons: a network becomes overloaded

* Permanent reasons: a disk controller becomes defective
* OS can recover from disk read, device unavailable, transient write failures
* Most return an error number or code when I/O request fails

* System error logs hold problem reports

I/O Protection

* Necessary: User access may attempt to disrupt normal operation via
illegal I/O instructions.

* All I/O instructions defined to be privileged = Users cannot issue
them directly

* To do I/O a user program executes a system call
* OS checks if request 1s valid
* If yes it 1s executed.

* Memory mapped & I/O port memory locations must be protected

Agenda

* Introduction

e [/O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems 48

Pertormance

I/O has major impact in system performance:

Why?
* Places heavy demands on CPU to execute device driver
* Schedule processes fairly & etficiently

* Context switches due to interrupts

Example of performance: remote login

character network
typed system call packet
completes received
o,
1 @ xT= ' @
| 2 [= E| &
£|= 2 £|=
v L L 2
interrupt interrupt network
generated handled adapter
F 3
oo 0| o
= = = =
A AR
h 4 h 4
interrupt interrupt interrupt
handled generated generated
F 3
2|2
= =
2|8
h 4 4
device network device
driver adapter driver
A
h 4 Y
ernel device kernel network
driver subdaemon
ot F Y et Lol 3
x| £ > | = =
= = =
817‘” 8 L 8 @
context context
rgizrss » kernel ggg’;’ﬁéﬁ » kernel
P switch switch
sending system receiving system

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

How to improve performancer

e Reduce number of context switches

* Reduce number of times data must be copied in memory (between
device & application)

* Reduce frequency of interrupts
Use large transters, smart controllers

* Use DMA
* Balance CPU, memory, bus and I/O performance for highest throughput

Pertormance

new algorithm

A N applcation code ﬁ
2 : "
S : s .
- 5| |E kemel code £
c = g Q
Q Q -~ X
0) (0] 0 Q
= o Q X . =
o) S © device-driver code o
: 8 |3 :
- T) (0]

3 |8 0

0 = device-controller code (hardware) O

device code (hardware)

Vincenzo Gulisano Operating Systems - Lecture 12 - I/O Systems

Thank you for your attention!

Please evaluate the lecture!
https://forms.gle/CWGKDpQi9.pz237K7

https://forms.gle/CWGKDpQj9Lpz237K7

