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Reading instructions

* Chapter 5.1 to 5.3

(extra facultative reading: 13.1-13.7 from Silberschatz Operating System Concepts)



Agenda

* Introduction

e [/O Hardware

* Application I/O Interface
* Kernel I/O Subsystem

e Performance
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Introduction

* Main jobs of a computer: I/O & processing.
* Role of OS: manage & control I/O operations & I/O devices.

OBJECTIVES:
* Explore structure of an OS’s I/O subsystem
* Principles & complexities of 1/O hardware

* Explain the performance aspects of 1/O hardware & software.
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I/O challenge: control as good as possible the devices of a given architecture
Why is it a challenge?
1. Variability of 1/O devices (in their function & speed)

Varied methods are needed to control them.

2. Increasing standardization of software & hardware vs Increasing types of
devices

3. Different details & oddities of devices
How does the OS address the challenge?
* dedicated I/O subsystem in the kernel

* device drivers that provide a device access interface to the I/O subsystem
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I[/O Hardware

We have different types of hardware usually available
in a computer:

i

-

® 1 . l
Storage devices (disks) . L;[ |
- |
|

* Transmission devices (network cards)

* Human-interface devices (screen, keyboard, mouse)

All of them exchange information by sending signals
(via cable or air)

How do they communicate with the CPU, then?
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I[/O Hardware

Common concepts:
* Port: the connection point (e.g., sertal port)

* Bus: a set of wires & a protocol that specifies a set of messages that can
be sent on the wires.

* Messages conveyed by patterns of electrical voltages with different timings.

* Buses vary 1n signaling methods, speed, throughput & connection methods.
* When device A plugs to device B and device B plugs to device C... We
say A,B,C,... form a daisy chain

* A daisy chain also operates as a bus



Typical PC bus structure

Important concepts:
* PCI bus: connects the processor-memory subsystem to the fast devices.
* Expansion bus: connects relatively slow devices.

* Controller: a collection of electronics that can operate a port, a bus or a
device.

Example 1: Serial-port controller

* A single chip (on the host) that controls the signals on the wires of a serial port.
Example 2: SCSI controller

* Contains a processor, a microcode, private memory to process the SCSI protocol
messages (e.g:, disk drive a circuit board).
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A typical PC Bus Structure
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I[/O Hardware

9

How can the processor give commands & data to a controller to accomplish a I/O transfer?

15t Way of Communication

* Processor reads & writes bit patterns in the controllers’ registers.
* Use of special I/O instructions that specify the transfer of a byte or word to an I/O port address.
* /O instruction triggers bus lines to select the proper device & move bits into or out of a device registet.

204 Way of Communication: Memory mapped 1/0O
* Device-control registers are mapped into the address space of the processor.

* CPU executes 1/O requests using the standard data transfer instructions to read and write the device-
control registers.

—> Some systems use both ways of communication.
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Processor reads & writes bit patterns in the controllers’ registers

CPU

I have dedicated channels
and dedicated instructions
depending on whether I want

to write a byte in memory or SCSI Controller SCSI Disk
in a certain controller
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Memory mapped 1/O
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CPU

motherboard

When I want to write a byte to a register
of a certain controller I use a given address, but

I do not really know (or care) how to differentiate
a write to memory from a write to a controller

SCSI Controller SCSI Disk
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Example of Memory mapped 1/O: graphics controller

XYY e I

CPU motherboard Graphics controller

Graphics controller: has large memory-mapped region to hold screen contents.
Process sends output to the screen by writing data into the memory-mapped region.
Controller generates screen image based on the contents of the memory.
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Device 1/0 Port L.ocations on PCs
Usual I/O port addresses for PCs
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I/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF

serial port (primary)
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I[/O Hardware

I/O port typically consists of:
* Data-in register: is read by the host to get input (e.g. 1 to 4 bytes in size)

Data-out register: 1s written by the host to send output

Status register: contains bits that can be read by the host. Indicates states such as:
* whether the current command has completed
* whether a byte is available to be read
* whether a device error has occurred

Control register: to start a command or to change the mode of a device.

Example 1: a certain bit in the control register of a serial port chooses between full-duplex &
half-duplex communication.

Example 2: another bit sets the word length to 7 or 8 bits, Other bits select one of the speeds
supported by the serial port



Interaction between host and controller

* Complete interaction protocol between the host & a controller can be
intricate.

* busy-waiting / polling: the host is continuously trying to get access to the
device via the controller

* interrupt: the controller alerts the host when the device is available



Polling — Handshaking procedure

* 2 bits are used to coordinate the producer-consumer relationship between the
controller & the host.

* Controller indicates its state through the busy bit in the status register.

* Host signals its wishes via the command-ready bit in the command register.
Command ready bit: if it is set a command 1s available for the controller

* busy-waiting / polling: it is a loop, reading the status register over and over
until the busy bit becomes clear.
Reasonable: If device controller & device are fast
Inefficient: attempted repeatedly but device is busy.

* In such cases: hardware controller should notify the CPU when the device
becomes ready for service =2 this hardware mechanism is called interrupt.



Interrupts

Basic mechanism
1. CPU hardware has a wire called interrupt request line
2. CPU senses the interrupt request line after executing every instruction.

3. If yes, CPU performs a save state & jumps to the interrupt handler routine at a
fixed address in memory.

4. Interrupt handler (IH): What was the cause of the interrupt?

N

IH performs the necessary processing, performs state restore

6. ... executes a return from interrupt instruction - return CPU to the execution
state prior to the interrupt



Interrupts

CPU

Y

device driver initiates I/O

1/0O controller

_————

CPU executing checks for

interrupts between instructions
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CPU receiving interrupt,
transfers control to
interrupt handler

initiates 1/0

y

5

A

interrupt handler
processes data,
returns from interrupt

6

CPU resumes
processing of
interrupted task
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input ready, output
complete, or error
generates interrupt signal
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Interrupts - Dictionary

* The device controller raises an interrupt

* ...by asserting a signal on the interrupt request line

* CPU catches the interrupt

* CPU dispatches it to the interrupt handler

* Handler clears the interrupt by servicing the device
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Interrupts

Sophisticated Interrupt Handling

In a modern OS: we need sophisticated interrupt handling features
* Ability to defer interrupt handling during critical processing

* Efficient way to locate the proper interrupt handler for a device without asking
all devices to see which one raised the interrupt

* Multi-level interrupts so that the OS can distinguish between high & low level
priority interrupts

In modern OS these provided by CPU & interrupt controller hardware



Interrupts

Two interrupt request lines:

* Nonmaskable interrupt: reserved for events such as unrecoverable memory
errors.

* Maskable interrupt: can be turned off by CPU before the execution of
critical instruction requests.

Interrupt mechanism accepts an address: a number that selects a specific
interrupt-handling routine from a small set.

—This address is an offset in a table called interrupt vector

This vector contains the memory addresses of specialized interrupt
handlers.



Interrupts — Intel Pentitum processor event-vector table

vector number description
£ 0 divide error
1 debug exception
2 null interrupt
3 breakpoint
-+ INTO-detected overflow
5 bound range exception
6 invalid opcode
7/ device not available
8 double fault
nonmaSkable _ 9 f:opr.ocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
115 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
1931 (Intel reserved, do not use)
32-255 maskable interrupts
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Interrupts

OS & interrupts interaction
* A modern OS interacts with the interrupt mechanism in several ways.

* At boot time, probes the buses to see which devices are present and
installs the corresponding interrupt handler.

* During /O, device controllers raise interrupts when they are ready for
service. These interrupts may mean:
* output has completed
* input data are available

e or a failure has been detected



Direct Memory Access

Direct Memory Access

* Devices with large transfer e.g. disk drive.

Not a good idea to use an expensive general-pul;i)ose processor to watch status bits &
feed data into a controller register 2 programmed I/O process.

* Use instead DMA controller
* Bypasses CPU to transfer data directly between 1/O device & memory

DMA transfer

* To initiate a DMA transfer, host writes a DMA command block into memory.

* Block contains:
* a pointer to the source of the transfer
* a pointer to the destination of the transfer
* acount of the number of bytes to be transferred.



Direct Memory Access

Handshaking between DMA controller & device controller
* Performed via a pair of wires: DMA request & DMA-acknowledge.

* A word of data available for transfer = device controller places a signal
on the DMA-request wire

e DMA controller:

* places the desired memory address on the memory-address wires.
* places a signal on the DMA-acknowledge wire.

* Device controller receives the DMA-acknowledge signal & transfers
the word of data to memory & removes the DMA-request signal.



Six Step Process to Pertorm DMA Transter
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1. device driver is told
to transfer disk data CPU
to buffer at address X
DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 DOMA/bUS/
. when C = 0, DMA .
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transfer completion SeNi ol

X
memory

buffer

PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
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Application 1/O Interface

* Goals:

* Abstract away the detailed differences in I/O devices by identifying a few
general kinds.

* Encapsulate device behaviors in general

* Device-driver layer hides differences among I/O controllers from
kernel.

* Make I/O subsystem independent of the hardware:
* Simplifies the job of the OS.
* Benefits the hardware manufacturers
* Attach peripherals without waiting for new support code
* BUT: each type of OS has its own standards for the device-driver interface.



Application 1/O Interface
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software

hardware

kernel

kernel I/O subsystem

SCSI keyboard mouse PCI bus floppy ATAPI
device device device cee device device device
driver driver driver driver driver driver
SCSI keyboard mouse PCI bus floppy ATAPI
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ATAPI
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Application 1/O Interface

aspect variation example
doiharoferinods character terminal
block disk
sequential modem
access method e CD-ROM
transfer schedule Sl e 129
asynchronous keyboard
Sharin dedicated tape
9 sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
|/O direction write only graphics controller
read—write disk
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Devices vary in many dimensions:

* Character-stream or block: bytes one by one or
blocks of bytes

* Sequential or random access: fixed order or
random

* Synchronous or asynchronous: data transfers
with predictable response times or not

* Sharable or dedicated: used concurrently by
several processes or not

* Speed of operation: speeds range form a few
bytes to gigabytes per sec

* Read-write, read only or write only: some both
directions, others not
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Block and Character Devices

Block devices include disk drives

Block-device interface all necessary aspects for accessing disk drives & other
block-oriented devices

* Commands include read(), write(), seek()

* Memory-mapped file access possible

Character devices

* Include keyboards, mouse, serial ports
* Commands include get(), put()

* Libraries layered on top allow line editing



Network Devices

Network Devices

. Net\?f((zr)k I/O differs significantly form disks, the interface is not read(), write() and
see

e Unix & Windows include socket interface

* System calls in the socket interface enable an application to
* Create a socket
* Connect to a remote socket

Socket Interface

* Connect local socket to a remote address

* Listen remote application to plug into the local socket

* Send & recetve packets over the connection

* select() = return which sockets have a packet waiting to be received



Clocks & Timers

* Give current time.
* Give elapsed time.
* Set a timer to trigger operation X at time T.

* Programmable hardware interval timer: hardware to measure elapsed
time & trigger operations

* Example: wait a certain amount of time & then generate an interrupt
Cancel operations preceding too slowly

* Usual interrupt rate: between 18 & 60 ticks per sec.

* Hardware clock constructed from a high-frequency counter.



Blocking & Nonblocking I/O

Blocking
* Process suspended until I/O completed

* Moved from run queue to wait queue
* Later moved back to run queue & resumes
* FEasy to use & understand

e Insufficient for some needs

Nonblocking

* Example: a user interface that receives keyboard & mouse input while processing & displaying data on screen.

* Implemented via multi-threading (a thread does the blocking part, another processes results)

* Returns quickly with a return value indicating how many bytes were transferred.



Blocking & Nonblocking I/O

Asynchronous

* Process runs while 1/0O executes

* Returns immediately without waiting for I/O to complete
* Difficult to use

* I/O subsystem signals process when I/O completed
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Kernel I/O subsystem

* Provides many services related to 1/O, including:
* I/O scheduling
* Buffering / Caching / Spooling
* Error handling
* 1/O protection



[/O Scheduling

Goal: schedule I/O requests in a good order before executing them
* Improve overall performance

* Share device access faitly among processes
* Reduce the average waiting time for I/O to complete

* Some OS maintain a wait queue of requests for each device
* Some OS try fairness
Example

* Application 1 needs a block near the end of a disk

* Application 2 needs a block near the beginning

* Application 3 needs a block near the middle of the disk
Best Scheduling: 23,1



Device status table

* When a kernel supports asynchronous /O and might schedule requests

in different orders, it must be able to keep track of many I/O requests

device: keyboard
status: idle

device: laser printer
status: busy

device: mouse
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: busy

request for

—> laser printer
address: 38546

length: 1372

Vincenzo Gulisano

request for
disk unit 2

file: xxx
operation: read
address: 43046
length: 20000

request for
disk unit 2

file: yyy
operation: write
address: 03458

length: 500
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Buttering

* Another way to improve performance = Use storage space in main
memory or on disk via butfering, caching, spooling

Buffering

* Buffer: memory area that stores data being transferred between two devices or
between a device & an application.

* Example:

* File received via modem for storage on the hard disk.
* Buffer created in main memory to accumulate the bytes recetved from the modem.
e Buffer full 2 write data on the disk

* Disk write not instantaneous: two buffers are needed 2 Double buffering



Buftering — Differences in device speeds

System Bus
HyperTransport (32-pair)

PCI Express 2.0 (<32) Enormous differences in

Infiniband (QDR 12X) device speeds for typical

Serial ATA (SATA-300) h 3 rdwa re |
gigabit ethernet
SCSI bus
FireWire
hard disk
froder
| |
. mouse
| | |
[ keyboard
0.00001 0.001 0.1 10 1000 100000 1E-

Sun Enterprise 6000 device-transfer rates (logarithmic)
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Caching — Spooling

Caching

* Cache: holds a copy on faster storage of an item that resides elsewhere

* Fasier access =2 Key to performance

Spooling

* Hold output for a device

* If device can serve only one request at a time (e.g. printing)
Devices that cannot accept interleaved data streams.



Frror Handling

Error Handling

* Devices and I/O transfers can fail in many ways.
 Transient reasons: a network becomes overloaded

* Permanent reasons: a disk controller becomes defective
* OS can recover from disk read, device unavailable, transient write failures
* Most return an error number or code when I/O request fails

* System error logs hold problem reports



I/O Protection

* Necessary: User access may attempt to disrupt normal operation via
illegal I/O instructions.

* All I/O instructions defined to be privileged = Users cannot issue
them directly

* To do I/O a user program executes a system call
* OS checks if request 1s valid
* If yes it 1s executed.

* Memory mapped & I/O port memory locations must be protected
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Pertormance

I/O has major impact in system performance:

Why?
* Places heavy demands on CPU to execute device driver
* Schedule processes fairly & etficiently

* Context switches due to interrupts



Example of performance: remote login

character network
typed system call packet
completes received
o,
1 @ xT= ' @
| 2 [= E| &
£|= 2 £|=
v L L 2
interrupt interrupt network
generated handled adapter
F 3
oo 0| o
= = = =
A AR
h 4 h 4
interrupt interrupt interrupt
handled generated generated
F 3
2|2
= =
2|8
h 4 4
device network device
driver adapter driver
A
h 4 Y
ernel device kernel network
driver subdaemon
ot F Y et Lol 3
x| £ > | = =
= = =
817‘” 8 L 8 @
context context
rgizrss » kernel ggg’;’ﬁéﬁ » kernel
P switch switch
sending system receiving system
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How to improve performancer

e Reduce number of context switches

* Reduce number of times data must be copied in memory (between
device & application)

* Reduce frequency of interrupts
Use large transters, smart controllers

* Use DMA
* Balance CPU, memory, bus and I/O performance for highest throughput



Pertormance

new algorithm

A N applcation code ﬁ
2 : "
S : s .
- 5| |E kemel code £
c = g Q
Q Q -~ X
0) (0] 0 Q
= o Q X . =
o) S © device-driver code o
: 8 |3 :
- T ) (0]

3 |8 0

0 = device-controller code (hardware) O

device code (hardware)
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Thank you for your attention!

Please evaluate the lecture!
https://forms.gle/CWGKDpQi9.pz237K7
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